JPH01182632A - Viscous coupling - Google Patents

Viscous coupling

Info

Publication number
JPH01182632A
JPH01182632A JP314888A JP314888A JPH01182632A JP H01182632 A JPH01182632 A JP H01182632A JP 314888 A JP314888 A JP 314888A JP 314888 A JP314888 A JP 314888A JP H01182632 A JPH01182632 A JP H01182632A
Authority
JP
Japan
Prior art keywords
rotating member
electromagnet
resistance plate
magnetic
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP314888A
Other languages
Japanese (ja)
Inventor
Masaaki Fushiki
正明 伏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKN Driveline Japan Ltd
Original Assignee
Tochigi Fuji Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Fuji Sangyo KK filed Critical Tochigi Fuji Sangyo KK
Priority to JP314888A priority Critical patent/JPH01182632A/en
Publication of JPH01182632A publication Critical patent/JPH01182632A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D35/00Fluid clutches in which the clutching is predominantly obtained by fluid adhesion
    • F16D35/005Fluid clutches in which the clutching is predominantly obtained by fluid adhesion with multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/02Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being magnetisable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D2037/007Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive characterised by multiple substantially radial gaps in which the fluid or medium consisting of small particles is arranged

Abstract

PURPOSE:To furthermore improve response for torque transmission to rear wheels as well as response for differential restriction by providing No.1 or No.2 rotating member monolithically with an electromagnet the transmitting characteristics of which is instantly changeable so that the line of magnetic force of it easily passes through. CONSTITUTION:When apparent viscosity of working fluid is changed in the magnetic field of an electromagnet 17, or a space between No.1 and No.2 resistance plates 15 and 16 is regulated, torque characteristics is instantly changed. Hence, when a viscous coupling 6 of this type is applied to four wheel drive based on front-engine front-drive, response for torque transmission to rear wheels can be improved. And when it is applied to a differential restriction device, response for differential restriction can be improved. In addition, the installation of the electromagnet 17 monolithically with No.1 or No.2 rotating member 19 and 13 allows the line of magnetic force of the electromagnet 17 to easily pass through No.1 or No.2 rotating member 19 and 13. Hence, both response for troque transmission and response for differential restriction can be furthermore improved.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) この発明は、粘性流体を利用したビスカスカップリング
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Field of Industrial Application) This invention relates to a viscous coupling using a viscous fluid.

(従来の技術) 従来のビスカスカップリングとしては、例えば第3図に
示すようなしのがある(特開昭61−65918号公報
参照)。同図において、101は駆動軸に連結された第
1回転部材で、102は従動輪に連結された第2回転部
材であり、この第1回転部材101と第2回転部材10
2とは相対回転可能である。第1回転部材101と第2
回転部材102とによって密閉状の作動室103が画成
されており、この作動室103には粘fi流体が充填さ
れている。作動室103には第1抵抗板104J3よび
第2抵抗板105が収装され、この第1抵抗板104お
よび第2抵抗板105はそれぞれ第1回転部材101お
よび第2回転部材102に交互にスプライン結合されて
いる。第1抵抗板104の間J3よび第2抵抗板105
の間にはそれぞれ皿ばね106.107が介装されてい
る。また、作動室103には押圧体108が収納され、
この押圧体108は導管109から送給された液圧媒体
の作用を受けるピストン11oによって同図中左右方+
n」に移動される。
(Prior Art) As a conventional viscous coupling, there is, for example, the one shown in FIG. 3 (see Japanese Patent Laid-Open No. 61-65918). In the figure, 101 is a first rotating member connected to a drive shaft, 102 is a second rotating member connected to a driven wheel, and this first rotating member 101 and second rotating member 10
It is possible to rotate relative to 2. The first rotating member 101 and the second
A closed working chamber 103 is defined by the rotating member 102, and this working chamber 103 is filled with a viscous fi fluid. A first resistance plate 104J3 and a second resistance plate 105 are housed in the working chamber 103, and the first resistance plate 104 and the second resistance plate 105 are alternately splined to the first rotation member 101 and the second rotation member 102, respectively. combined. Between the first resistance plate 104 and the second resistance plate 105
Disc springs 106 and 107 are respectively interposed between them. Further, a pressing body 108 is housed in the working chamber 103,
This pressing body 108 is moved from left to right in the figure by a piston 11o that is acted upon by a hydraulic medium fed from a conduit 109.
n”.

このビスカスカップリングは、例えばフロントエンジン
フロントドライブ(FF)ベースの四輪駆動車のトラン
スファとブロベラシトフトとの間に介設されており、第
1回転部材101および第2回転部材102はそれぞれ
トランスファおよびプロペラシャフトと連結されている
。前輪分路面摩擦係数の低い悪路でスリップすると、前
輪と後輪の間には回転数差が生じる。このため、第1抵
抗板104と第2抵抗板105は相対回転して粘性流体
を剪断する。このとぎの粘性流体の剪断力がトルクとし
て後輪へ伝達され、この後輪によって車両を押し出して
スリップ状態から脱出している。
This viscous coupling is interposed, for example, between the transfer and blower shaft of a front engine front drive (FF) based four-wheel drive vehicle, and the first rotating member 101 and the second rotating member 102 are connected to the transfer and propeller, respectively. connected to the shaft. When a vehicle slips on a rough road where the front wheels have a low road surface friction coefficient, a difference in rotational speed occurs between the front wheels and the rear wheels. Therefore, the first resistance plate 104 and the second resistance plate 105 rotate relative to each other to shear the viscous fluid. The shearing force of this viscous fluid is transmitted as torque to the rear wheels, which push the vehicle out of the slip state.

このとさ、後輪に大きなトルクを迅速に伝達するだめに
、導管109から送給された液圧媒体の作用を受けるピ
ストン110によって押圧体108を第3図中左方向へ
移動させて、第1.第2抵抗板104.105の間隔を
小さくするとともに、粘性流体の充填率を高くして剪断
抵抗を高くする。
At this time, in order to quickly transmit large torque to the rear wheels, the pressing body 108 is moved to the left in FIG. 1. The spacing between the second resistance plates 104 and 105 is reduced, and the filling rate of the viscous fluid is increased to increase shear resistance.

また、ビスカスカップリングは、他に例えば車両の左右
輪の差動回転を制限するための差動制限装置として用い
られたものがある。この場合にも左右輪の差動を迅速に
制限するために、同じように押圧体108を移動させて
、第1.第2抵抗板104.105の間隔を小さくして
、粘性流体の剪断抵抗を大きくしている。
In addition, viscous couplings are also used, for example, as differential limiting devices for limiting differential rotation between left and right wheels of a vehicle. In this case as well, in order to quickly limit the differential motion between the left and right wheels, the pressing body 108 is moved in the same manner as the first. The spacing between the second resistance plates 104 and 105 is reduced to increase the shear resistance of the viscous fluid.

(発明が解決しようとする課題) しかしながら、このような従来のビスカスカップリング
にあっては、後輪に大きなトルクを迅速に伝達するのに
、ピストン110によって押圧体108を移動させる方
式を採っていた。−膜内にこのような機械的な方式にあ
っては、後輪に大きなトルクを迅速伝達したり、あるい
は左右輪の差動を迅速に制限するのには、その迅速性に
おいて限界があった。すなわち、トルクの伝達や差動制
限の応答性が悪いという問題点があった。
(Problem to be Solved by the Invention) However, in such a conventional viscous coupling, a method is adopted in which the pressing body 108 is moved by the piston 110 in order to quickly transmit large torque to the rear wheel. Ta. -With this kind of mechanical system inside the membrane, there was a limit to how quickly it could transmit large torque to the rear wheels or quickly limit differential movement between the left and right wheels. . That is, there was a problem in that the responsiveness of torque transmission and differential limiting was poor.

[発明の構成〕 (課題を解決するための手段) このような課題を解決するために、この発明にあっては
、相対回転可能な第1回転部材および第2回転部材と、
この第1回転部材および第2回転部材のそれぞれに交互
に係合された第1抵抗板および第2抵抗板と、この第1
抵抗板および第2抵抗板が収装され、前記第1回転部材
と第2回転部材とによって画成された作動室と、この作
動室に封入され、前記第1抵抗板と第2抵抗板とによっ
て剪断される作動流体とを備えたビスカスカップリング
において、前記作動流体の見掛粘度を変化させるか、お
よび/または前記第1抵抗板と第2抵抗板との間隔を調
節して、このビスカスカップリングのトルク伝達特性を
即時に変化させる電磁石を、この電磁石の磁力線が前記
第1回転部材または第2回転部材を通りやすくするため
に、この第1回転部材または第2回転部材に一体的に設
けた構成としたものである。
[Structure of the Invention] (Means for Solving the Problems) In order to solve such problems, the present invention includes a first rotating member and a second rotating member that are relatively rotatable;
A first resistance plate and a second resistance plate alternately engaged with each of the first rotation member and the second rotation member;
a working chamber in which a resistance plate and a second resistance plate are housed and defined by the first rotating member and the second rotating member; In a viscous coupling equipped with a working fluid that is sheared by An electromagnet that instantly changes the torque transmission characteristics of the coupling is integrally attached to the first rotating member or the second rotating member in order to facilitate the passage of the magnetic field lines of the electromagnet through the first rotating member or the second rotating member. The configuration is as follows.

(作用) 電磁石の磁界によって作動流体の見掛粘度を変化させる
か、および/または第1抵抗板と第2抵抗板との間隔を
調節すると、このビスカスカップリングのトルク伝達特
性は即時に変化する。したがって、このビスカスカップ
リングをFFベースの四輪駆動車に適用したときには、
前輪がスリップすると、後輪へトルクを迅速に伝達する
ことができる。また、このビスカスカップリングを差動
制限装置に用いたときには、左右輪の差動を迅速に制限
することができる。加えて、電磁石を第1回転部材また
は第2回転部材に一体的に設けたので、電磁石の磁力線
はこの第1回転部材または第2回転部材を通りやすくな
る。したがって、前述したトルクの後輪への伝達はさら
に迅速になされる。
(Function) When the apparent viscosity of the working fluid is changed by the magnetic field of the electromagnet and/or the distance between the first resistance plate and the second resistance plate is adjusted, the torque transmission characteristics of this viscous coupling immediately change. . Therefore, when this viscous coupling is applied to a FF-based four-wheel drive vehicle,
If the front wheels slip, torque can be quickly transferred to the rear wheels. Further, when this viscous coupling is used in a differential limiting device, the differential between the left and right wheels can be quickly limited. In addition, since the electromagnet is integrally provided with the first rotating member or the second rotating member, the lines of magnetic force of the electromagnet can easily pass through the first rotating member or the second rotating member. Therefore, the aforementioned torque is transmitted to the rear wheels more quickly.

(実施例) 以下、この発明を図面に基づいて説明する。(Example) The present invention will be explained below based on the drawings.

第1図および第2図はこの発明に係るビスカスヵツブリ
ングの一実施例を示す図である。この実施例はFFベー
スの四輪駆動中のトランスファとプロペラシャフトとの
間に、ビスカスカップリングを介設した例である。
FIGS. 1 and 2 are diagrams showing an embodiment of the viscous coupling according to the present invention. This embodiment is an example in which a viscous coupling is interposed between the transfer and propeller shaft in FF-based four-wheel drive.

まず、構成を説明する。第1図において、1はトランス
ファのケースであり、このケース1はベアリングケース
2、一対の円すいころ軸受3(ただし一対のうち一方の
みを図示)、この一対の円すいころ軸受3間に介装され
たスペーサ4等を介して、トランスファの出力軸5を回
転自在に支持している。
First, the configuration will be explained. In FIG. 1, 1 is a transfer case, and this case 1 includes a bearing case 2, a pair of tapered roller bearings 3 (however, only one of the pair is shown), and a structure interposed between the pair of tapered roller bearings 3. The output shaft 5 of the transfer is rotatably supported via a spacer 4 and the like.

この出力軸5とプロペラシャフト(図示せず)との間に
はビスカスカップリング6が介設されている。すなわち
、出力軸5とスプライン結合するインナーハブ7と、こ
のインナーハブ7に固着された内側円筒8とからなる第
1回転部材9が、出力軸5と一体回転するように取り付
(ブられている。
A viscous coupling 6 is interposed between the output shaft 5 and a propeller shaft (not shown). That is, a first rotating member 9 consisting of an inner hub 7 that is spline-coupled to the output shaft 5 and an inner cylinder 8 fixed to the inner hub 7 is mounted so as to rotate integrally with the output shaft 5. There is.

第1回転部材9の外側には、内側円筒7と同一軸線とな
るように配された外側口R10と、この外側円筒10の
両側端に固着された左側端壁部材11と右側端壁部材1
2とからなる第2回転部材13が配設されている。
On the outside of the first rotating member 9, there is an outer opening R10 disposed on the same axis as the inner cylinder 7, and a left end wall member 11 and a right end wall member 1 fixed to both ends of the outer cylinder 10.
A second rotating member 13 consisting of 2 is disposed.

第1回転部材つと第2回転部材13とによって密閉状の
作動室14が画成されており、作動室14内には作動流
体として磁性流体31が封入されている。作動室14に
は非磁性材料(例えば、18−8ステンレス鋼)の第1
抵抗板15おJ:び第2抵抗板16が収納され、この第
1抵抗板15J3よび第2抵抗板16は、内側円筒8の
外周壁および外側円筒10の内周壁にそれぞれ交互にス
プライン結合している。このため、第1回転部材9と第
2回転部材13とが相対回転するときには、第1抵抗板
15と第2抵抗板16とが相対回転して磁性流体31を
剪断する。
A closed working chamber 14 is defined by the first rotating member 13 and the second rotating member 13, and a magnetic fluid 31 is sealed in the working chamber 14 as a working fluid. The working chamber 14 has a first tube made of non-magnetic material (e.g. 18-8 stainless steel).
A resistance plate 15J: and a second resistance plate 16 are housed, and the first resistance plate 15J3 and the second resistance plate 16 are spline-coupled alternately to the outer peripheral wall of the inner cylinder 8 and the inner peripheral wall of the outer cylinder 10, respectively. ing. Therefore, when the first rotating member 9 and the second rotating member 13 rotate relative to each other, the first resistance plate 15 and the second resistance plate 16 rotate relatively to shear the magnetic fluid 31.

どころで、磁性流体31は、直径が1Q−8mのマグネ
タイト(Fe304)の微粒子をシリコンオイルの溶媒
中に分散させた固液混相流体であり、この固液混相流体
は磁場の中では見掛粘度(固液混相流体における一方向
の粘度)が変化する。ここで、この磁性流体31におい
て、第1抵抗板15と第2抵抗板16による剪断方向の
見掛粘度を高< 7する。そのために、外側口fli1
0の周方向にコイルが巻回された電磁石17を、作動室
14の側方に配設する。すなわち、磁性材料の保持体1
8に包持された電磁石17は、第1回転部材13および
第2回転部材9の軸線方向であってこれらの側方のベア
リングケース2に、ニードルベアリング32を介して回
転自在に支持されている。ここで保持体18の外周端部
は第1磁気誘導部材27を介して外側円筒10に固着さ
れている。また、この保持体18の内周端部は、第2磁
気誘尋部材28を介して左側端壁部材11に固着されて
いる。
By the way, the magnetic fluid 31 is a solid-liquid multiphase fluid in which fine particles of magnetite (Fe304) with a diameter of 1Q-8m are dispersed in a silicone oil solvent, and the apparent viscosity of this solid-liquid multiphase fluid decreases in the magnetic field. (viscosity in one direction in a solid-liquid multiphase fluid) changes. Here, in this magnetic fluid 31, the apparent viscosity in the shearing direction by the first resistance plate 15 and the second resistance plate 16 is set to be high<7. To that end, the lateral opening fli1
An electromagnet 17 having a coil wound in the circumferential direction of the electromagnet 17 is disposed on the side of the working chamber 14. That is, the magnetic material holder 1
The electromagnet 17 enclosed in the electromagnet 8 is rotatably supported by the bearing case 2 on the side of the first rotating member 13 and the second rotating member 9 in the axial direction thereof via a needle bearing 32. . Here, the outer peripheral end of the holder 18 is fixed to the outer cylinder 10 via the first magnetic induction member 27. Further, the inner circumferential end of this holding body 18 is fixed to the left end wall member 11 via a second magnetic attraction member 28 .

このため、電磁石17は磁気抵抗が高いエアギャップ部
(隙間)が介在することなく第2回転部材13に一体的
に設けられている。ここで、電磁石17は第2回転部材
13に一体的に設けられているので、第2回転部材13
が回転すると、これと一体回転する。このため電磁石1
7に励!i電流を流すための導線は、保持体18にスリ
ップリング(図示せず)を介して取り付けられている。
Therefore, the electromagnet 17 is provided integrally with the second rotating member 13 without an intervening air gap portion (gap) having high magnetic resistance. Here, since the electromagnet 17 is provided integrally with the second rotating member 13, the second rotating member 13
When rotates, it rotates together with this. Therefore, electromagnet 1
Cheers to 7! A conductive wire for passing current is attached to the holder 18 via a slip ring (not shown).

電磁石17に励ta雷流を流すと、第1図に示すように
磁力線Cが通るが、この磁力線が作動室14内を通るよ
うに、左側端壁部材11の中央部11aは非磁性材料(
例えば、18−8ステンレス鋼)とし、この両側部1 
l b i、を磁性材料(例えば、炭素0.05〜0.
1%の炭素鋼)としており、中央部11aと両側部11
bとは溶接などによって固着されている。また、電磁石
17と第2回転部4413との間に磁気抵抗が高いエア
ギャップ部が介在しないので、この電磁石17によって
生じる磁力線は、磁気抵抗を受けずに第1磁気誘導部材
27および第2磁気誘導部材28を通ってさらに作動室
14内を通る。
When an excited lightning current flows through the electromagnet 17, lines of magnetic force C pass as shown in FIG.
For example, 18-8 stainless steel), and both sides 1
l b i, a magnetic material (for example, carbon 0.05 to 0.
1% carbon steel), and the central part 11a and both side parts 11
b is fixed by welding or the like. Further, since there is no air gap with high magnetic resistance between the electromagnet 17 and the second rotating part 4413, the lines of magnetic force generated by the electromagnet 17 are not subjected to magnetic resistance and are transferred to the first magnetic induction member 27 and the second magnetic induction member 4413. It passes through the guiding member 28 and further into the working chamber 14 .

右側端壁部材12はプロペウシ11フトと連結されてお
り、このため第2回転部材13に伝達されたトルクはプ
ロペラシャフト、差動装置、後輪駆動軸等を介して後輪
へ伝達される。左側端壁部材11と右側端壁部材12と
は、それぞれインナーハブ7と出力軸5にニードル軸受
22ところがり軸受23とを介して支持されている。な
お、左側端壁部材11および右側端壁部材12とインナ
ーハブ7との間にはそれぞれシール部材24.25が介
装されている。
The right end wall member 12 is connected to the propeller 11 foot, so that the torque transmitted to the second rotating member 13 is transmitted to the rear wheels via the propeller shaft, differential, rear wheel drive shaft, etc. The left end wall member 11 and the right end wall member 12 are supported by the inner hub 7 and the output shaft 5 via a needle bearing 22 and a rolling bearing 23, respectively. Note that seal members 24 and 25 are interposed between the left end wall member 11 and the right end wall member 12 and the inner hub 7, respectively.

次に作用を説明する。車両が舗装道路において直進走行
するとぎ、エンジンのトルクはトランスミッションから
前輪駆動軸へ伝達され、前輪駆動で走行する。このとき
、ビスカスカップリング6の第1回転部材9と第2回転
部材13とは同時に回転覆る。
Next, the effect will be explained. When a vehicle travels straight on a paved road, engine torque is transmitted from the transmission to the front drive shaft, driving the vehicle in front-wheel drive. At this time, the first rotating member 9 and the second rotating member 13 of the viscous coupling 6 rotate at the same time.

次に、車両が路面摩擦係数の小さな悪路を走行するとき
に前輪がスリップすると、エンジンから直接駆動される
前輪の路面から受ける抵抗が少なくなっているために、
この前輪に伝達された]・ルクは小さくしか発揮されな
い。ここで、後輪がエンジン側回転数(前輪駆動軸)よ
り少く回転しているので、後輪駆動軸と連結する第2回
転部材13は前輪駆動軸と連結する第1回転部材9より
少く回転する。このため、前輪駆動軸と後輪駆動軸との
間、すなわち第1回転部材9と第2回転部材13との間
には回転数差が生じ、第1抵抗板15と第2抵抗板16
とは相対回転して磁性流体を剪f!Fi−4る。
Next, when the front wheels slip when the vehicle is driving on a rough road with a small coefficient of road friction, the front wheels, which are directly driven by the engine, receive less resistance from the road surface.
The torque transmitted to the front wheels is only small. Here, since the rear wheels are rotating less than the engine side rotation speed (front wheel drive shaft), the second rotating member 13 connected to the rear wheel drive shaft rotates less than the first rotating member 9 connected to the front wheel drive shaft. do. Therefore, a difference in rotational speed occurs between the front wheel drive shaft and the rear wheel drive shaft, that is, between the first rotation member 9 and the second rotation member 13, and the first resistance plate 15 and the second resistance plate 16
Rotates relative to f! to shear the magnetic fluid. Fi-4ru.

このとき、電磁石17に励11電流を流すと、第1図に
示すような方向に作動室14内を磁力線が通り、磁界が
できる。このように、磁力線が作動室14内を通ると、
磁性流体は前記剪断方向にお1ノる見掛粘度が即時に高
くなる。このため、磁性流体は前記剪断方向における剪
断抵抗が即時に高くなる。したがって、磁性流体の剪断
力は即時に大きくなり、この大きな剪断力をトルクとし
て後輪駆動軸から後輪へ迅速に伝達することができる。
At this time, when an excitation current is applied to the electromagnet 17, lines of magnetic force pass through the working chamber 14 in the direction shown in FIG. 1, creating a magnetic field. In this way, when the magnetic field lines pass through the working chamber 14,
The apparent viscosity of the magnetic fluid immediately increases by 1 in the shear direction. Therefore, the shear resistance of the magnetic fluid in the shear direction immediately increases. Therefore, the shearing force of the magnetic fluid increases immediately, and this large shearing force can be quickly transmitted as torque from the rear wheel drive shaft to the rear wheels.

すなわち、トルクTの後輪への伝達の応答性を向上させ
ることができる。その結果、後輪が車両を押し出して、
前輪をスリップしている状態から迅速に脱出させる。
That is, the responsiveness of torque T to the rear wheels can be improved. As a result, the rear wheels push the vehicle,
To quickly get a front wheel out of a slipping state.

ここで、電磁石17は第2回転部材13との間にエアギ
シツブ部を介在させることなく、第1磁気誘導部材27
および第2磁気誘導部材28を介して一体的に設けられ
ている。このため、電磁石17によって生じる磁力線は
、磁気抵抗を受けることなく第1磁気誘導部材27およ
び第2磁気誘尋部材28を通ってさらに作動室14内を
通る。
Here, the electromagnet 17 is connected to the first magnetic induction member 27 without interposing an air force part between the electromagnet 17 and the second rotating member 13.
and are integrally provided via the second magnetic induction member 28. Therefore, the lines of magnetic force generated by the electromagnet 17 pass through the first magnetic induction member 27 and the second magnetic induction member 28 and further into the working chamber 14 without being subjected to magnetic resistance.

したがって、作動室14内を通る磁力線の密度は高くな
り、磁束が強まる。その結果、前述したトルクTの後輪
への伝達の応答性はさらに向上する。
Therefore, the density of the lines of magnetic force passing through the working chamber 14 increases, and the magnetic flux becomes stronger. As a result, the responsiveness of the torque T transmitted to the rear wheels is further improved.

一方、トルクの後輪への伝達の応答性を向上させるため
に、作動流体としてマグネタイトの微粒子をシリコンオ
イルの中に分散させた磁性流体を用いたが、これに限ら
ずシリコンオイル(粘性流体)だけでもよい。この場合
には、作動室14に収納された第1抵抗板15および第
2抵抗板16は非磁性材料ではなく磁性材料(例えば、
炭素0゜05〜0.1%の炭f!i)とする。電磁石1
7に励磁電流を流すと、作動室14内に磁力線Cが通っ
て磁界ができる。第1抵抗板15および第2抵抗板16
は磁性材料でできているので、この第1抵抗板15およ
び第2抵抗板16は相互に引き寄せられるとともに、作
動室14の左側端壁部材11側に集まろうとする。第1
抵抗板15と第2抵抗板16とはその間隔が小さ(なり
、場合によつでは接触する。このため、第1低抗板15
と第2抵抗板16とによって剪断されるシリコンオイル
の剪断抵抗は即時に高くなる。したがって、シリコンオ
イルの剪断力は即時に大きくなって、この大きな剪断力
をトルクとして後輪駆動軸から後輪へ迅速に伝達するこ
とができる。なお、この場合にあって、磁性流体をぞの
まま用いてもよくそのまま用いるとこのビスカスカップ
リングの伝達トルクは相乗的に大きくなる。
On the other hand, in order to improve the responsiveness of torque transmission to the rear wheels, we used a magnetic fluid in which fine magnetite particles were dispersed in silicone oil as the working fluid, but this is not limited to silicone oil (viscous fluid). It's fine just by itself. In this case, the first resistance plate 15 and the second resistance plate 16 housed in the working chamber 14 are made of magnetic material (for example,
Charcoal f with 0°05~0.1% carbon! i). Electromagnet 1
When an excitation current is passed through the working chamber 14, lines of magnetic force C pass through the working chamber 14, creating a magnetic field. First resistance plate 15 and second resistance plate 16
Since they are made of magnetic material, the first resistance plate 15 and the second resistance plate 16 are attracted to each other and tend to gather on the left end wall member 11 side of the working chamber 14. 1st
The distance between the resistance plate 15 and the second resistance plate 16 is small (and in some cases, they come into contact with each other. Therefore, the first low resistance plate 15
The shear resistance of the silicone oil sheared by the second resistance plate 16 immediately increases. Therefore, the shearing force of the silicone oil increases immediately, and this large shearing force can be quickly transmitted as torque from the rear wheel drive shaft to the rear wheels. In this case, the magnetic fluid may be used as is, and if used as is, the transmitted torque of the viscous coupling will increase synergistically.

ところで、第1回転部材9と第2回転部材13との差動
回転数ΔNに応じて後輪へ伝達されるトルクTは、電磁
石17に流す励磁W流の強さを変えれば、第2図に示す
ように励磁電流を流さないときの特性Aと、最大電流を
流したとぎの特性Bとの開の特性にすることができる。
By the way, the torque T transmitted to the rear wheels according to the differential rotation speed ΔN between the first rotating member 9 and the second rotating member 13 can be calculated as shown in FIG. As shown in FIG. 2, it is possible to obtain a characteristic that is a difference between characteristic A when no excitation current is applied and characteristic B when maximum current is applied.

したがって、路面状況や走行条f1に応じて電磁石17
に流ず励磁電流の強さを変えれば、前記トルクTを所望
する特性にすることができ、車両は安定して走行するこ
とができる。
Therefore, the electromagnet 17
By changing the strength of the excitation current instead of flowing through it, the torque T can be made to have the desired characteristics, and the vehicle can run stably.

一方、このビスカスカップリングを、車両の左右輪の差
動回転を制限するための差動制限装置として用いるとき
にも、TX磁石に励磁電流を流すと、磁性流体の見掛粘
度を即時に高くすることができる。したがって、磁性流
体の剪断抵抗を即時に大きくして、左右輪の差動を迅速
に制限することができる。すなわち、差動制限の応答性
を向上させることができる。また、この場合にも前述と
同様にエアギャップ部が介在しないので、この差動制限
の応答性はさらに向上する。
On the other hand, when using this viscous coupling as a differential limiting device to limit the differential rotation between the left and right wheels of a vehicle, when an excitation current is passed through the TX magnet, the apparent viscosity of the magnetic fluid is immediately increased. can do. Therefore, the shear resistance of the magnetic fluid can be immediately increased, and the differential motion between the left and right wheels can be quickly limited. That is, the responsiveness of differential limiting can be improved. Further, in this case as well, since no air gap is present as described above, the responsiveness of this differential limiting is further improved.

なお、車庫入れ笠のときには、前輪駆動軸と後輪駆動軸
との間、また左右輪の間には回転数差が生じるが、この
回転数差はビスカスカップリングで吸収さぼるので、こ
のときは励磁電流は切って磁性流体の剪断抵抗を低く抑
える。
Furthermore, when the car is in the garage, there will be a difference in rotational speed between the front and rear drive shafts, as well as between the left and right wheels, but this difference in rotational speed will be absorbed by the viscous coupling. The excitation current is cut to keep the shear resistance of the magnetic fluid low.

また、前記実施例においては磁性流体と、非磁性材料か
ら成る抵抗板を用いて説明したが、磁性を右さない粘性
流体と、磁性材料から成る抵抗板を用いてもよいし、磁
性流体と磁性材料から成る抵抗板とを組合せてもよい。
Furthermore, although the above embodiments have been explained using a magnetic fluid and a resistance plate made of a non-magnetic material, it is also possible to use a viscous fluid that is not magnetic and a resistance plate made of a magnetic material. It may also be combined with a resistance plate made of magnetic material.

[発明の効果] 以上説明したようにこの発明によれば、電磁石の磁界に
よって作動流体の見掛粘度を変化させるか、および/ま
たは第1抵抗板と第2抵抗板との間隔を調節することに
より、前記磁性流体の剪断抵抗を即時に変化させること
ができる。したがって、このビスカスカップリングを、
例えばFFベースの四輪駆動車のトランスファーとプロ
ペラシャフトとの間に介設したときには、トルクを後輪
へ迅速に伝達することができる。すなわち、トルクの後
輪への伝達の応答性を向上させることができる。その結
果、後輪が車両を押し出して、前輪をスリップしている
状態から迅速に脱出させることができる。
[Effects of the Invention] As explained above, according to the present invention, the apparent viscosity of the working fluid can be changed by the magnetic field of the electromagnet and/or the distance between the first resistance plate and the second resistance plate can be adjusted. Accordingly, the shear resistance of the magnetic fluid can be changed instantly. Therefore, this viscous coupling is
For example, when interposed between the transfer and propeller shaft of an FF-based four-wheel drive vehicle, torque can be quickly transmitted to the rear wheels. That is, the responsiveness of torque transmission to the rear wheels can be improved. As a result, the rear wheels can push the vehicle out, allowing the front wheels to quickly escape from the slipping state.

また、電磁石の磁力線が第1回転部材または第2回転部
材を通りやすくするために、この電磁石を第1回転部材
または第2回転部材に一体的に設けたので、作動室内を
通る磁力線の密度は高くなり、磁束が強まる。したがっ
て、前述したトルクの後輪への伝達の応答性はさらに向
上する。
In addition, in order to make it easier for the lines of magnetic force of the electromagnet to pass through the first rotating member or the second rotating member, the electromagnet is provided integrally with the first rotating member or the second rotating member, so the density of the lines of magnetic force passing through the working chamber is reduced. becomes higher and the magnetic flux becomes stronger. Therefore, the responsiveness of the aforementioned torque transmission to the rear wheels is further improved.

一方、このビスカスカップリングを差動制限装置に用い
たときには、左右輪の差動を迅速に制限することができ
る。すなわち、差動制限の応答性を向上させることがで
きる。また、前述と同様にこの差動制限の応答性はさら
に向上する。
On the other hand, when this viscous coupling is used in a differential limiting device, the differential between the left and right wheels can be quickly limited. That is, the responsiveness of differential limiting can be improved. Further, as described above, the responsiveness of this differential limiting is further improved.

ングの一実施例を示す図であり、第1図はこのビスカス
カップリングの断面図、第2図は差動回転数に応じて後
輪へ伝達されるトルクの特性を示すグラフである。第3
図は従来のビスカスカップリングを示す断面図である。
FIG. 1 is a cross-sectional view of this viscous coupling, and FIG. 2 is a graph showing the characteristics of torque transmitted to the rear wheels depending on the differential rotation speed. Third
The figure is a sectional view showing a conventional viscous coupling.

9・・・第1回転部材 13・・・第2回転部材14・
・・作動室   15・・・第1抵抗板16・・・第2
抵抗板 17・・・電磁石27・・・第1磁気誘導部材 28・・・第2磁気誘導部材 31・・・作動流体 代理人 弁理士 三 好  保 男 ΔN 第 2図 高3図
9... First rotating member 13... Second rotating member 14.
... Working chamber 15... First resistance plate 16... Second
Resistance plate 17... Electromagnet 27... First magnetic induction member 28... Second magnetic induction member 31... Working fluid agent Patent attorney Yasuo Miyoshi ΔN Figure 2 High 3

Claims (1)

【特許請求の範囲】[Claims] 相対回転可能な第1回転部材および第2回転部材と、こ
の第1回転部材および第2回転部材のそれぞれに交互に
係合された第1抵抗板および第2抵抗板と、この第1抵
抗板および第2抵抗板が収装され、前記第1回転部材と
第2回転部材とによって画成された作動室と、この作動
室に封入され、前記第1抵抗板と第2抵抗板とによって
剪断される作動流体とを備えたビスカスカップリングに
おいて、前記作動流体の見掛粘度を変化させるか、およ
び/または前記第1抵抗板と第2抵抗板との間隔を調節
して、このビスカスカップリングの伝達特性を即時に変
化させる電磁石を、この電磁石の磁力線が前記第1回転
部材または第2回転部材を通りやすくするために、この
第1回転部材または第2回転部材に一体的に設けたこと
を特徴とするビスカスカップリング。
A first rotating member and a second rotating member that are relatively rotatable; a first resistance plate and a second resistance plate that are alternately engaged with each of the first rotating member and the second rotating member; and the first resistance plate. and a working chamber in which a second resistance plate is housed and defined by the first rotating member and the second rotating member; In this viscous coupling, the apparent viscosity of the working fluid is changed and/or the distance between the first resistance plate and the second resistance plate is adjusted. An electromagnet that instantly changes the transmission characteristics of the electromagnet is provided integrally with the first rotating member or the second rotating member in order to make it easier for the lines of magnetic force of the electromagnet to pass through the first rotating member or the second rotating member. A viscous coupling featuring
JP314888A 1988-01-12 1988-01-12 Viscous coupling Pending JPH01182632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP314888A JPH01182632A (en) 1988-01-12 1988-01-12 Viscous coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP314888A JPH01182632A (en) 1988-01-12 1988-01-12 Viscous coupling

Publications (1)

Publication Number Publication Date
JPH01182632A true JPH01182632A (en) 1989-07-20

Family

ID=11549267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP314888A Pending JPH01182632A (en) 1988-01-12 1988-01-12 Viscous coupling

Country Status (1)

Country Link
JP (1) JPH01182632A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266325A (en) * 1988-04-13 1989-10-24 Railway Technical Res Inst Power transmission device using magnetic substance in viscous fluid and device therefor
JP2003042192A (en) * 2001-08-01 2003-02-13 Viscodrive Japan Ltd Viscous coupling
JP2016205589A (en) * 2015-04-28 2016-12-08 株式会社デンソー Rotation transmission device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266325A (en) * 1988-04-13 1989-10-24 Railway Technical Res Inst Power transmission device using magnetic substance in viscous fluid and device therefor
JP2003042192A (en) * 2001-08-01 2003-02-13 Viscodrive Japan Ltd Viscous coupling
JP2016205589A (en) * 2015-04-28 2016-12-08 株式会社デンソー Rotation transmission device

Similar Documents

Publication Publication Date Title
JP5085056B2 (en) Transaxle unit with integrated power take-off unit and torque coupling device
KR100484212B1 (en) Clutch assembly having reaction force circuit
JP4143177B2 (en) Clutch with magneto-rheological actuator for transfer case etc.
US4960011A (en) Differential drive mechanism
JPH01238719A (en) Multiple disc clutch
JPH10196765A (en) Differential filled with rheological fluid
JPH10194005A (en) Four-wheel drive vehicle
JPS63195425A (en) Fluid friction clutch
JP2667180B2 (en) Viscous coupling
US4966265A (en) Clutch
JPH0218117A (en) Power transmission device
EP0209136B1 (en) Drive shaft apparatus
JPH03219123A (en) Coupling device
JPH01182632A (en) Viscous coupling
JP2550371B2 (en) Viscous coupling
JPH01158231A (en) Power transmission device
JPH01182630A (en) Power transmitting device
JPH086762B2 (en) Power transmission device
JPH01182633A (en) Viscous coupling
JPH01182629A (en) Viscous coupling
JPS6231364A (en) Magnetic coupler
JPH0238722A (en) Power transmission gear
CN108757882B (en) Antiskid mechanism, antiskid differential mechanism for automobile and automobile
JPH01266325A (en) Power transmission device using magnetic substance in viscous fluid and device therefor
JPH02150516A (en) Power transmission device