JPH02150516A - Power transmission device - Google Patents

Power transmission device

Info

Publication number
JPH02150516A
JPH02150516A JP30076288A JP30076288A JPH02150516A JP H02150516 A JPH02150516 A JP H02150516A JP 30076288 A JP30076288 A JP 30076288A JP 30076288 A JP30076288 A JP 30076288A JP H02150516 A JPH02150516 A JP H02150516A
Authority
JP
Japan
Prior art keywords
resistance
rotating member
magnetic fluid
front wheel
driving shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30076288A
Other languages
Japanese (ja)
Inventor
Masao Teraoka
正夫 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKN Driveline Japan Ltd
Original Assignee
Tochigi Fuji Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Fuji Sangyo KK filed Critical Tochigi Fuji Sangyo KK
Priority to JP30076288A priority Critical patent/JPH02150516A/en
Publication of JPH02150516A publication Critical patent/JPH02150516A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/02Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being magnetisable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D2037/004Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive characterised by multiple substantially axial gaps in which the fluid or medium consisting of small particles is arranged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D2037/007Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive characterised by multiple substantially radial gaps in which the fluid or medium consisting of small particles is arranged

Abstract

PURPOSE:To attempt to enhance torque transmission responsiveness and a torque transmission amount to a wheel having a high friction coefficient by using magnetic fluid as work fluid, and pulling this magnetic fluid toward one side or other side of a working chamber by magnetic force. CONSTITUTION:As resistance acting on a front wheel driving shaft is small when a front wheel slips while a vehicle travels on a rough road of a low friction coefficient, torque transmitted to this front wheel is exhibited to small extent only. As turning amount of a rear wheel is smaller than that of the front wheel driving shaft at that time, a second rotary member 24 connected to a rear wheel driving shaft turns with turning amount smaller than that of a first rotary member 21 connected to the front wheel driving shaft, thereby a rotational difference is generated between the front wheel driving shaft and the rear wheel driving shaft, and a first resistance part 28 and a second resistance part 29 relatively rotate to shutdown the magnetic fluid. If an exciting current is fed to an electro-magnet 30 at this time, the magnetic fluid is pulled toward one side of a working chamber 27. Thus, the magnetic fluid filled in the chamber 27 is shutdown by the resistance parts 28 and 29.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、車両等の動力伝達系に組み込まれ、粘性流
体を利用した動力伝達装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a power transmission device that is incorporated into a power transmission system of a vehicle or the like and utilizes viscous fluid.

(従来の技術) 従来の動力伝達装置としては、例えば第5図に示すよう
なものがある。同図において、101は駆動軸に連結さ
れた第1回転部材で、102は従動輪に連結された第2
回転部材であり、この第1回転部材101と第2回転部
材102とは相対回転可能である。第1回転部材101
と第2回転部材102とによって密閉状に作動室103
が画成されており、この作動室103には粘性流体が封
入されている。粘性流体を作動室103に密封するため
に、第1回転部材101と第2回転部材102との間に
はシール部材としてのXリング106が介装されている
。作動室103には第1抵抗板104および第2抵抗板
105が収装され、この第1抵抗板104および第2抵
抗板105はそれぞれ第1回転部材101および第2回
転部材102に相互にスプライン結合されている。
(Prior Art) As a conventional power transmission device, there is one shown in FIG. 5, for example. In the figure, 101 is a first rotating member connected to a drive shaft, and 102 is a second rotating member connected to a driven wheel.
The first rotating member 101 and the second rotating member 102 are rotating members, and the first rotating member 101 and the second rotating member 102 can rotate relative to each other. First rotating member 101
and the second rotating member 102 hermetically seal the working chamber 103.
A working chamber 103 is defined, and a viscous fluid is sealed in this working chamber 103. In order to seal the viscous fluid in the working chamber 103, an X-ring 106 as a sealing member is interposed between the first rotating member 101 and the second rotating member 102. A first resistance plate 104 and a second resistance plate 105 are housed in the working chamber 103, and the first resistance plate 104 and the second resistance plate 105 are mutually splined to the first rotation member 101 and the second rotation member 102, respectively. combined.

このビスカスカップリングは、例えばフロントエンジン
フロントドライブ(FF)ベースの四輪駆動車のトラン
スファとプロペラシャフトとの間に介設されており、第
1回転部材101と第2回転部材102とはそれぞれト
ランスファとプロペラシャフトとに連結されている。前
輪が路面摩擦係数の低い悪路でスリップすると、前輪と
後輪の間には大きな回転差が生じる。このため、第1抵
抗板104と第2抵抗板105は相対回転して粘性流体
を剪断する。このときの粘性流体の剪断力がトルクとし
て後輪へ伝達され、この後輪によって車両を押し出して
スリップ状態から脱出している。
This viscous coupling is interposed, for example, between a transfer and a propeller shaft of a four-wheel drive vehicle based on a front engine, front drive (FF), and the first rotating member 101 and the second rotating member 102 are each connected to a transfer shaft. and the propeller shaft. When the front wheels slip on a rough road with a low coefficient of friction, a large rotational difference occurs between the front and rear wheels. Therefore, the first resistance plate 104 and the second resistance plate 105 rotate relative to each other to shear the viscous fluid. The shearing force of the viscous fluid at this time is transmitted as torque to the rear wheels, which push the vehicle out of the slip state.

一方、車庫入れ等のように低速でハンドルを大きく切る
ときには、前輪駆動軸と後輪駆動軸との間、また左右輪
の間には回転数差が生じるが、この回転数差は小さいの
でビスカスカップリングによって吸収させて、いわゆる
タイトコーナーブレーキング現象の発生を防止している
On the other hand, when the steering wheel is turned sharply at low speeds, such as when parking in a garage, there is a difference in rotational speed between the front and rear drive shafts and between the left and right wheels, but this rotational speed difference is small, so the viscous This is absorbed by the coupling to prevent the so-called tight corner braking phenomenon from occurring.

(発明が解決しようとする課題) しかしながら、このような従来の動力伝達装置にあって
は、車両をスリップ状態から脱出させるためには、後輪
へ伝達するトルクは大きくしなければならず、そのため
には作動室103に充填する粘性流の充填率を高くしな
ければならない。
(Problem to be Solved by the Invention) However, in such a conventional power transmission device, in order to get the vehicle out of a slip state, the torque transmitted to the rear wheels must be increased. Therefore, the filling rate of the viscous flow filling the working chamber 103 must be increased.

ところが、一方で車庫入れ等の低速大操舵時におけるタ
イトコーナーブレーキング現象の発生を防止するために
は、第1抵抗板104と第2抵抗板105とを相対回転
可能としなければならず、そのために今度は粘性流体の
充填率を低くしなければならない。そこで、粘性流体の
充填率はスリップ状態から迅速に脱出するためとタイト
コーナーブレーキング現象の発生の防止のために、はど
ほどの(中間の)充填率としなければならない。このた
め、車両がスリップ状態から迅速に脱出することができ
ず、またタイトコーナーブレーキング現象の発生を完全
に防止することができないといこのような課題を解決す
るために、この発明にあっては相対回転可能に配設され
た第1回転部材および第2の回転部材と、この第1回転
部材および第2回転部材のそれぞれに固設されてこの相
対回転中心線方向に延設され交互に重なり合う第1抵抗
部および第2抵抗部と、この第1抵抗部と第2抵抗部と
によって剪断される作動流体が充填された作動室とを備
えた動力伝達装置において、前記作動流体を磁性流体と
して、この磁性流体を磁力によって作動室の一方側また
は他方側に引き寄せるようにした構成とするものである
(第1の発明)。
However, on the other hand, in order to prevent the occurrence of a tight corner braking phenomenon during low-speed large steering such as when parking the vehicle, the first resistance plate 104 and the second resistance plate 105 must be able to rotate relative to each other. Now, the filling rate of viscous fluid must be lowered. Therefore, the filling rate of the viscous fluid must be set to a certain (intermediate) filling rate in order to quickly escape from the slip state and to prevent the occurrence of tight corner braking. Therefore, in order to solve such problems, the vehicle cannot quickly escape from the slip state and the occurrence of tight corner braking phenomenon cannot be completely prevented. A first rotating member and a second rotating member that are arranged to be relatively rotatable, and fixedly attached to each of the first rotating member and the second rotating member, extending in the direction of the relative rotation center line and alternately overlapping each other. A power transmission device comprising a first resistance part, a second resistance part, and a working chamber filled with a working fluid sheared by the first resistance part and the second resistance part, wherein the working fluid is a magnetic fluid. , the magnetic fluid is drawn to one side or the other side of the working chamber by magnetic force (first invention).

また、相対回転可能に配設された第1回転部材および第
2回転部材と、この第1回転部材および第2回転部材の
それぞれに固設されてこの相対回転中心線方向に延設さ
れ交互に重なり合う第1抵抗部および第2抵抗部と、こ
の第1抵抗部と第2抵抗部とによって剪断される作動流
体が充填された作動室とを備えた動力伝達装置において
、前記第1抵抗部と前記第2抵抗部との重なり長さを変
更可能とし、この重なり長さを磁力によって変更させる
磁石を設ける構成とした(第2の発明)。
Also, a first rotating member and a second rotating member are arranged to be relatively rotatable, and the first rotating member and the second rotating member are fixedly provided to each of the first rotating member and the second rotating member, and are arranged alternately in the direction of the relative rotation center line. In a power transmission device comprising a first resistance part and a second resistance part that overlap each other, and a working chamber filled with a working fluid that is sheared by the first resistance part and the second resistance part, the first resistance part and the second resistance part overlap each other. The overlapping length with the second resistive portion can be changed, and a magnet is provided to change the overlapping length using magnetic force (second invention).

(作用) 第1回転部材と第2回転部材とが相対回転すると、第1
抵抗部と第2抵抗部は作動流体を剪断する。このとき、
第1の発明においては、磁力によって磁性流体を作動室
の一方側に引き寄せると、第1抵抗部と第2抵抗部によ
って剪断される磁性流体の剪断力は大きくなる。次に磁
石によって磁性流体を作動室の他方側に引き寄せると、
第1抵抗部と第2抵抗部によって剪断される磁性流体の
剪断力は小さくなる。
(Function) When the first rotating member and the second rotating member rotate relative to each other, the first
The resistor and the second resistor shear the working fluid. At this time,
In the first invention, when the magnetic fluid is drawn to one side of the working chamber by magnetic force, the shearing force of the magnetic fluid sheared by the first resistance part and the second resistance part increases. Next, when the magnetic fluid is drawn to the other side of the working chamber by a magnet,
The shearing force of the magnetic fluid sheared by the first resistance part and the second resistance part becomes small.

第2の発明においては、磁石によって第1抵抗部又は第
2抵抗部を移動させて重なり長さを変更し、重なり長さ
が長くなると作動流体の剪断力は大ぎくなる。逆に重な
り長さが短かくなると剪断力は小さくなる。
In the second invention, the overlapping length is changed by moving the first resistor or the second resistor using a magnet, and as the overlapping length increases, the shearing force of the working fluid increases. Conversely, as the overlap length becomes shorter, the shearing force becomes smaller.

(実施例) 以下、この発明の実施例を図面に基づいて説明する。第
1図ないし第2図はこの発明に係る動力伝達装置の第1
実施例を示ず図である。この実施例はFFベースの四輪
駆動車の前輪駆動軸と後輪駆動軸との間に本発明におけ
る動力伝達装置に介設した例である。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. Figures 1 and 2 show a first diagram of a power transmission device according to the present invention.
It is a figure without an example. This embodiment is an example in which the power transmission device of the present invention is interposed between the front wheel drive shaft and the rear wheel drive shaft of a FF-based four-wheel drive vehicle.

まず、構成を説明する。第1図において、1は内燃機関
であり、内燃機関1から出力されたトルクは、クラッチ
2を介してトランスミッション3へ伝達される。トルク
はトランスミッション3のドライブギア4からリングギ
ア5を介して前輪側差動歯車機構6へ伝達され、前輪駆
動軸7の左側輪駆動軸7aと右側輪駆動軸7bに差動を
与えることが可能に伝達される。差動歯車機構6のデフ
ケース8に伝達されたトルクは、動ツノ伝達歯車9へ伝
達され、トランス710の方向変換歯車組10aによっ
て直角に方向変換される。直角に方向変換されたトルク
は、動力伝達@置11を介してプロペラシャフト12へ
伝達され、ドライブピニオン13からリングギア14を
介して後輪側差動歯車機構15へ伝達され、後輪駆動軸
16の左側輪駆動軸16aと右側輪駆動軸’16bに差
動を与えることが可能に伝達している。
First, the configuration will be explained. In FIG. 1, reference numeral 1 denotes an internal combustion engine, and torque output from the internal combustion engine 1 is transmitted to a transmission 3 via a clutch 2. Torque is transmitted from the drive gear 4 of the transmission 3 to the front wheel differential gear mechanism 6 via the ring gear 5, and it is possible to provide a differential between the left wheel drive shaft 7a and the right wheel drive shaft 7b of the front wheel drive shaft 7. is transmitted to. The torque transmitted to the differential case 8 of the differential gear mechanism 6 is transmitted to the dynamic horn transmission gear 9, and the direction is changed at right angles by the direction changing gear set 10a of the transformer 710. The torque whose direction has been changed at right angles is transmitted to the propeller shaft 12 via the power transmission unit 11, and is transmitted from the drive pinion 13 to the rear wheel differential gear mechanism 15 via the ring gear 14, and then to the rear wheel drive shaft. The differential is transmitted between the left wheel drive shaft 16a and the right wheel drive shaft 16b.

動力伝達装置f11を第2図に示して説明する。The power transmission device f11 will be explained with reference to FIG. 2.

21はトランスファ10の出力軸と連結する第1回転部
材であり、この第1回転部材21は入ツノ軸22とこの
入力軸22に固設されたフランジ部23とからなってい
る。第1回転部材21には、この第1回転部材21と相
対回転可能に第2回転部材24が配設され、この第2回
転部材24は7ランジ部23を覆う形のハウジング部2
5と、このハウジング部25に固設され、プロペラシャ
ツ1へ12と連結する出力軸26とからなっている。第
1回転部材21の入力軸22と第2回転部材24の出力
軸26とは路間−軸線上に位置している。
Reference numeral 21 denotes a first rotating member connected to the output shaft of the transfer 10, and the first rotating member 21 includes an input horn shaft 22 and a flange portion 23 fixed to the input shaft 22. A second rotating member 24 is disposed on the first rotating member 21 so as to be rotatable relative to the first rotating member 21.
5, and an output shaft 26 which is fixed to the housing part 25 and connected to the propeller shirt 12. The input shaft 22 of the first rotating member 21 and the output shaft 26 of the second rotating member 24 are located on the path-axis line.

第1回転部材21と第2回転部材24とによって作動室
27が画成され、この作動室27内には第1抵抗部28
と第2抵抗部29とが収装されている。すなわち、7ラ
ンジ部23には略円筒状の第1抵抗部28が径方向に重
ねるようにして複数個取り付けられている。一方、フラ
ンジ部23に対抗するハウジング25の内壁には略円筒
状の第2抵抗部29が径方向に重ねるようにして複数個
取りイ」けられている。第1抵抗部28と第2抵抗部2
9とは互いに対向しており、かつ相対回転中心線(入力
軸22、出力軸26の中心線)方向に延設されている。
A working chamber 27 is defined by the first rotating member 21 and the second rotating member 24, and a first resistor 28 is provided in the working chamber 27.
and a second resistance section 29 are housed. That is, a plurality of substantially cylindrical first resistance portions 28 are attached to the seven flange portions 23 so as to overlap in the radial direction. On the other hand, a plurality of substantially cylindrical second resistance portions 29 are provided on the inner wall of the housing 25 opposing the flange portion 23 so as to overlap in the radial direction. The first resistance section 28 and the second resistance section 2
9 are opposed to each other and extend in the direction of the relative rotation center line (the center line of the input shaft 22 and the output shaft 26).

第1抵抗部28の延設長さの方が第2抵抗部29の延設
長さより長く構成されているので、作動室27の一方側
(第2図中左方側)において、第1抵抗部28と第2抵
抗部29とは交互型なり合っており、他方側(第2図中
右方側)Cは第1抵抗部28と第2抵抗部29とは重な
り合っていない。
Since the extension length of the first resistance part 28 is longer than the extension length of the second resistance part 29, the first resistance part The portions 28 and the second resistance portions 29 are arranged in an alternating manner, and on the other side (right side in FIG. 2) C, the first resistance portions 28 and the second resistance portions 29 do not overlap.

また、作動室27には作動流体としての磁性流体が充填
されている。磁性流体は、直径が10−8mのマグネタ
イト(Fe3st)の微粒子をシリコンオイルの溶媒中
に分散ざぜた固液混相流体である。
Further, the working chamber 27 is filled with magnetic fluid as a working fluid. The magnetic fluid is a solid-liquid multiphase fluid in which fine particles of magnetite (Fe3st) with a diameter of 10-8 m are dispersed in a silicone oil solvent.

ここで作動室27の一方側近傍と他方側近傍には電磁石
30.31がそれぞれ配設され、この電磁石30.31
はそれぞれ磁性材料からなる保持体32.33に包持さ
れている。なお、ハウジング25と入力軸22との間に
は磁性流体をl+1止づ−るためのシール部材34が介
装されている。
Here, electromagnets 30, 31 are arranged near one side and near the other side of the working chamber 27, and these electromagnets 30, 31
are respectively held in holders 32 and 33 made of magnetic material. Note that a sealing member 34 is interposed between the housing 25 and the input shaft 22 to stop l+1 magnetic fluid.

次に作用を説明する1,車両が舗装道路において直進走
行するとぎ、エンジン1のトルクはトランスミッション
3から前輪駆動軸7とトランスファ10へ伝達されるが
、トランスノア10とプロペラシャフト12の間に動ツ
ノ伝達装置111が設【ブであるためプロペラシャフト
12側へはトルクがほとんど伝達されず、前輪駆動車と
して走行する。
Next, the operation will be explained. 1. When the vehicle travels straight on a paved road, the torque of the engine 1 is transmitted from the transmission 3 to the front wheel drive shaft 7 and the transfer 10. Since the horn transmission device 111 is installed, almost no torque is transmitted to the propeller shaft 12 side, and the vehicle runs as a front-wheel drive vehicle.

このとき動力伝達装置11の第1回転部材21と第2回
転部材24とは同時に回転する。
At this time, the first rotating member 21 and the second rotating member 24 of the power transmission device 11 rotate simultaneously.

次に、車両が路面摩擦係数の小ざな悪路を走行するとき
に前輪がスリップすると、前輪駆動軸7は、エンジンか
ら直接駆動されるが前輪の抵抗が少なくなっているため
、この前輪に伝達されたトルクは小さくしか発揮されな
い。ここで、後輪がエンジン側回転数(前輪駆動軸7)
より少なく回転しているので、後輪駆動軸16と連結す
る第2回転部材24は前輪駆動軸7と連結する第1回転
部材21より少なく回転する。このため、前輪駆動軸7
と後輪駆動軸16との間、すなわち第1回転部材21と
第2回転部材24との間には回転差が生じ、第1抵抗部
28と第2抵抗部29とは相対回転して磁性流体を剪断
する。
Next, when the front wheels slip when the vehicle is traveling on a rough road with a small coefficient of road friction, the front wheel drive shaft 7 is directly driven by the engine, but since the front wheels have less resistance, the transmission is transmitted to the front wheels. Only a small amount of torque is exerted. Here, the engine side rotation speed of the rear wheel (front wheel drive shaft 7)
Since it rotates less, the second rotating member 24 connected to the rear wheel drive shaft 16 rotates less than the first rotating member 21 connected to the front wheel drive shaft 7 . For this reason, the front wheel drive shaft 7
A difference in rotation occurs between the rear wheel drive shaft 16 and the first rotating member 21 and the second rotating member 24, and the first resistive portion 28 and the second resistive portion 29 rotate relative to each other, and the magnetic Shear the fluid.

このとき、電磁石30に励磁電流を流すと、この電磁石
30の磁力によって磁性流体は第2図に示すように作動
室27の一方側に引き寄せられる。
At this time, when an exciting current is applied to the electromagnet 30, the magnetic force of the electromagnet 30 draws the magnetic fluid toward one side of the working chamber 27, as shown in FIG.

このため、作動室27内に充填された磁性流体はその略
全部が第1抵抗部28と第2抵抗部29によって剪断さ
れることになる。したがって、磁性流体の剪断力は即時
に大きくなり、この大きな剪断ツノをトルクとして後輪
駆動軸16から後輪へ迅速に伝達することができる。す
なわち、トルクの後輪への伝達の応答性を向上させるこ
とができる。
Therefore, substantially all of the magnetic fluid filled in the working chamber 27 is sheared by the first resistance section 28 and the second resistance section 29. Therefore, the shear force of the magnetic fluid becomes large immediately, and this large shear horn can be quickly transmitted as torque from the rear wheel drive shaft 16 to the rear wheels. That is, the responsiveness of torque transmission to the rear wheels can be improved.

その結果、後輪が車両を押し出して、前輪をスリップし
ている状態から迅速脱出させる。
As a result, the rear wheels push the vehicle out, allowing the front wheels to quickly escape from the slipping situation.

次に車庫入れ等の低速大操舵時には前輪駆動軸7と後輪
駆動軸16の間に回転数差が生じるので、この回転数差
は動力伝達装置に吸収させる。そこで、今度は電磁石3
1に励磁電流を流すと、磁性流体は作動室27の他方側
に引き寄せられる、ずなわら、磁性流体は第1抵抗部2
8と第2抵抗部29が重なり合わない側へ引き寄せられ
る。このため、第1抵抗部28と第2抵抗部29はあま
り磁性流体の剪断抵抗を受けることなく、スムーズに相
対回転する。したがって、前記回転数差はこの動力伝達
装置によって吸収され、タイトコーナーブレーキング現
象を完全に防止することかできる。
Next, during low-speed large steering such as when parking the vehicle, a rotational speed difference occurs between the front wheel drive shaft 7 and the rear wheel drive shaft 16, so this rotational speed difference is absorbed by the power transmission device. So, this time electromagnet 3
When an excitation current is applied to the first resistor 2, the magnetic fluid is attracted to the other side of the working chamber 27.
8 and the second resistance section 29 are drawn to the side where they do not overlap. Therefore, the first resistance section 28 and the second resistance section 29 smoothly rotate relative to each other without being subjected to much shear resistance of the magnetic fluid. Therefore, the rotational speed difference is absorbed by the power transmission device, and tight corner braking can be completely prevented.

ところで、電磁石30.31に同時に励磁電流を流して
、電磁石30に流す電流の強さと電磁石31に流す電流
の強さを変えることにより、磁性流体は作動室27内を
一方側から他方側までの範囲を移動させることができる
。このため、第1抵抗部28と第2抵抗部2つによって
剪断される磁性流体の剪断抵抗は変化し、後輪へ伝達さ
れるトルクの特性を変えることができる。その結果、路
面状況や走行条件に応じてトルクの特性を唆えれば車両
は路面を安定して走行させることができる。
By the way, by simultaneously passing excitation current through the electromagnets 30 and 31 and changing the strength of the current flowing through the electromagnet 30 and the current flowing through the electromagnet 31, the magnetic fluid flows in the working chamber 27 from one side to the other. You can move the range. Therefore, the shear resistance of the magnetic fluid sheared by the first resistance section 28 and the two second resistance sections changes, and the characteristics of the torque transmitted to the rear wheel can be changed. As a result, the vehicle can run stably on the road by adjusting the torque characteristics according to road conditions and driving conditions.

第3図は、第1実施例に用いられる第1.第2抵抗部2
8.29の他の実施例を示し、このものにおいては、両
抵抗部28.29は延設長は等しく構成されているが、
両抵抗部28.29に設けられる長孔28a 、29a
を軸方向片側(図面上では左側)に寄せて形成したもの
である。このように形成しても、第1抵抗部28と第2
抵抗部29の延設長さを変えたものと同様な作用・効果
を奏し、作動流体としての磁性流体が長孔28a。
FIG. 3 shows the first example used in the first embodiment. Second resistance section 2
Another embodiment of 8.29 is shown, in which both the resistance parts 28 and 29 have the same extension length, but
Elongated holes 28a and 29a provided in both resistance parts 28 and 29
is formed to be shifted to one side in the axial direction (left side in the drawing). Even if formed in this way, the first resistance part 28 and the second
The same operation and effect as when the extension length of the resistance part 29 is changed is achieved, and the magnetic fluid as the working fluid is formed in the elongated hole 28a.

29a側に寄せられた時にトルクを太き(伝達する。When it is moved to the 29a side, the torque is transmitted thickly.

第4図には第2実施例を示し、第1実施例と同一部材に
は同一の符号を付けて詳細に説明を省略する。第1抵抗
11128を一体的に支持するフランジ部23は、入力
軸に係合部41で軸方向移動可能で、回転方向に対して
回転しないように係合されている。7ランジ部23の背
面(第1抵抗部が設けられる側と反対)にはスプリング
40が介設されて、常時フランジ部を第4図左側に押し
ている。この場合少なくともフランジ部23は磁性材で
形成され、作動流体としては強粘性流体であるシリコン
オイル等が用いられている。
FIG. 4 shows a second embodiment, in which the same members as in the first embodiment are given the same reference numerals and detailed explanations are omitted. The flange portion 23 that integrally supports the first resistor 11128 is engaged with the input shaft so as to be movable in the axial direction at the engaging portion 41 so as not to rotate with respect to the rotational direction. 7. A spring 40 is interposed on the back surface of the flange portion 23 (opposite to the side where the first resistance portion is provided), and constantly pushes the flange portion to the left side in FIG. In this case, at least the flange portion 23 is made of a magnetic material, and the working fluid is a highly viscous fluid such as silicone oil.

作用としては、摩擦係数の小さな悪路を走行する時には
電磁石31の励磁電流を切っておくと、第1抵抗部28
はスプリング40によって左方に抑圧移動され、第2抵
抗部29との重なり代が多くなる。このため動力伝達@
置11を介して伝達するトルクは大きくなり、悪路にお
いても迅速な走行が可能となる。又、動力伝達装置11
を介して伝達するトルクを大きくしたくないような時に
は、電磁石31に励磁電流を流すと、7ランジ部23は
電磁石31により引っ張られて、第1抵抗部28と第2
抵抗部29との重なり代が少なくなり、小さなトルクし
か伝達しないようになり、タイトコーナブレーキ現象等
が防止されるようになる。
The effect is that when the excitation current of the electromagnet 31 is cut off when driving on a rough road with a small coefficient of friction, the first resistance section 28
is suppressed and moved to the left by the spring 40, and the amount of overlap with the second resistance portion 29 increases. For this reason, power transmission @
The torque transmitted through the gearbox 11 becomes larger, allowing rapid travel even on rough roads. Moreover, the power transmission device 11
When you do not want to increase the torque transmitted through the electromagnet 31, when an excitation current is passed through the electromagnet 31, the 7 flange portion 23 is pulled by the electromagnet 31, and the first resistance portion 28 and the second resistance portion 23 are pulled.
The amount of overlap with the resistance portion 29 is reduced, so that only a small torque is transmitted, and tight corner braking phenomena, etc., are prevented.

[発明の効果〕 以上説明したように、この発明によれば、作動流体を磁
性流体として、この磁性流体を磁力によって作動室の一
方側または他方側に引ぎ寄せるようにしたので、この動
力伝達装置を、四輪駆動車の動力伝達系路に設けた場合
には、摩擦係数の高い方の車輪に大きなトルクを迅速に
伝達することができる。すなわち、摩擦係数の高い車輪
へのトルク伝達の応答性及び伝達トルク量を向上させる
ことができる。その結果、車両をスリップしている状態
から迅速に脱出させることができる。
[Effects of the Invention] As explained above, according to the present invention, the working fluid is a magnetic fluid, and this magnetic fluid is drawn to one side or the other side of the working chamber by magnetic force, so that this power transmission is improved. When the device is installed in the power transmission line of a four-wheel drive vehicle, a large torque can be quickly transmitted to the wheel with a higher coefficient of friction. That is, it is possible to improve the responsiveness of torque transmission to wheels with a high friction coefficient and the amount of transmitted torque. As a result, it is possible to quickly get the vehicle out of a slipping state.

また、車庫入れ等の低速大操舵時におけるタイトコーナ
ーブレーキング現象の発生を完全に防止することができ
る。
Furthermore, it is possible to completely prevent the occurrence of tight corner braking during low-speed large steering such as when parking the vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明に係る動力伝達装置の第
1実施例を示す図であり、第1図はこの動力伝達装置を
四輪駆動車の動力伝達系路に介設した概略全体図、第2
図はこの動力伝達装置の概略断面図、第3図は第1実施
例に用いられる第1第2抵抗部の他の実施例を示す斜視
図、第4図は第2実施例に係る概略断面図、第5図は従
来の動力伝達装置を示す断面図である。 21・・・第1回転部材 24・・・第2回転部材 27・・・作動室 28・・・第1抵抗部 29・・・第2抵抗部 30.31・・・電磁石 代理人 弁理士  三 好 保 男 第5図
1 and 2 are diagrams showing a first embodiment of a power transmission device according to the present invention, and FIG. 1 is a schematic diagram showing the entire structure of this power transmission device interposed in a power transmission path of a four-wheel drive vehicle. Figure, 2nd
The figure is a schematic sectional view of this power transmission device, FIG. 3 is a perspective view showing another embodiment of the first and second resistance parts used in the first embodiment, and FIG. 4 is a schematic sectional view of the second embodiment. FIG. 5 is a sectional view showing a conventional power transmission device. 21...First rotating member 24...Second rotating member 27...Working chamber 28...First resistance part 29...Second resistance part 30.31...Electromagnet agent Patent attorney 3 Yoshi Yasuo figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)相対回転可能に配設された第1回転部材および第
2回転部材と、この第1回転部材および第2回転部材の
それぞれに固設されてこの相対回転中心線方向に延設さ
れ交互に重なり合う第1抵抗部および第2抵抗部と、こ
の第1抵抗部と第2抵抗部とによって剪断される作動流
体が充填された作動室とを備えた動力伝達装置において
、前記作動流体を磁性流体として、この磁性流体を磁力
によって作動室の一方側または他方側に引き寄せるよう
にしたことを特徴とする動力伝達装置。
(1) A first rotating member and a second rotating member that are arranged so as to be relatively rotatable, and fixedly attached to each of the first rotating member and the second rotating member and extending in the direction of the center line of the relative rotation and arranged alternately. A power transmission device including a first resistance part and a second resistance part overlapping each other, and a working chamber filled with a working fluid that is sheared by the first resistance part and the second resistance part. A power transmission device characterized in that, as a fluid, this magnetic fluid is drawn to one side or the other side of a working chamber by magnetic force.
(2)相対回転可能に配設された第1回転部材および第
2回転部材と、この第1回転部材および第2回転部材の
それぞれに固設されてこの相対回転中心線方向に延設さ
れ交互に重なり合う第1抵抗部および第2抵抗部と、こ
の第1抵抗部と第2抵抗部とによって剪断される作動流
体が充填された作動室とを備えた動力伝達装置において
、前記第1抵抗部と前記第2抵抗部との重なり長さを変
更可能とし、この重なり長さを磁力によって変更させる
磁石を設けたことを特徴とする動力伝達装置。
(2) A first rotating member and a second rotating member that are arranged to be relatively rotatable, and fixedly installed on each of the first rotating member and the second rotating member and extending in the direction of the relative rotation center line and alternately A power transmission device comprising: a first resistance section and a second resistance section that overlap with each other; and a working chamber filled with a working fluid that is sheared by the first resistance section and the second resistance section. 1. A power transmission device characterized by being provided with a magnet that is capable of changing an overlapping length between the second resistance portion and the second resistance portion, and that changes the overlapping length using magnetic force.
JP30076288A 1988-11-30 1988-11-30 Power transmission device Pending JPH02150516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30076288A JPH02150516A (en) 1988-11-30 1988-11-30 Power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30076288A JPH02150516A (en) 1988-11-30 1988-11-30 Power transmission device

Publications (1)

Publication Number Publication Date
JPH02150516A true JPH02150516A (en) 1990-06-08

Family

ID=17888792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30076288A Pending JPH02150516A (en) 1988-11-30 1988-11-30 Power transmission device

Country Status (1)

Country Link
JP (1) JPH02150516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012273A (en) * 2000-01-20 2010-01-21 Massachusetts Inst Of Technol <Mit> Prosthetic joint device and operation method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012273A (en) * 2000-01-20 2010-01-21 Massachusetts Inst Of Technol <Mit> Prosthetic joint device and operation method for the same
USRE42903E1 (en) 2000-01-20 2011-11-08 Massachusetts Institute Of Technology Electronically controlled prosthetic knee

Similar Documents

Publication Publication Date Title
US6183386B1 (en) Differential containing rheological fluid
US5732791A (en) Steering apparatus
US4960011A (en) Differential drive mechanism
JPH0654133B2 (en) Fluid friction clutch
US5007515A (en) Viscous coupling apparatus
EP0209136B1 (en) Drive shaft apparatus
JPH03219123A (en) Coupling device
JP2002081526A (en) Helical gear type differential limiting device
JPH02150516A (en) Power transmission device
JP2550371B2 (en) Viscous coupling
JPS61191434A (en) Driving device of vehicle
JPH0238722A (en) Power transmission gear
JPH01182630A (en) Power transmitting device
JPH01158231A (en) Power transmission device
JPH01266325A (en) Power transmission device using magnetic substance in viscous fluid and device therefor
JPH086762B2 (en) Power transmission device
JP2003042192A (en) Viscous coupling
JPH01182633A (en) Viscous coupling
JP3754652B2 (en) Differential unit with differential limiting mechanism
JPH01182629A (en) Viscous coupling
JPH02253018A (en) Viscous coupling
JPS62253532A (en) Four-wheel driving device
JPH02253017A (en) Viscous coupling
JP2796407B2 (en) Four-wheel drive coupling device
JPH1071867A (en) Drive force control device for vehicle