JPH01182620A - Magnetic bearing - Google Patents
Magnetic bearingInfo
- Publication number
- JPH01182620A JPH01182620A JP458888A JP458888A JPH01182620A JP H01182620 A JPH01182620 A JP H01182620A JP 458888 A JP458888 A JP 458888A JP 458888 A JP458888 A JP 458888A JP H01182620 A JPH01182620 A JP H01182620A
- Authority
- JP
- Japan
- Prior art keywords
- electromagnets
- rotating body
- rotor
- magnetic bearing
- magnets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 claims description 19
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- XTKDAFGWCDAMPY-UHFFFAOYSA-N azaperone Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CCN(C=2N=CC=CC=2)CC1 XTKDAFGWCDAMPY-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0474—Active magnetic bearings for rotary movement
- F16C32/0489—Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
- F16C32/0491—Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing with electromagnets acting in axial and radial direction, e.g. with conical magnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0459—Details of the magnetic circuit
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
この発明は磁気力によって回転体を非接触に支持する磁
気軸受に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a magnetic bearing that supports a rotating body in a non-contact manner by magnetic force.
[従来の技術]
従来より、回転体を磁石の吸引力を利用して非接触に支
える磁気軸受が知られている。[Prior Art] Magnetic bearings that support a rotating body in a non-contact manner using the attractive force of a magnet have been known.
第7図は従来の磁気軸受である。101は回転体、10
2は電磁石で、軸に直角な2つの面にそれぞれ4個回転
体の円筒面にすきまを保って配置され、さらに回転体1
01の両端面に2個合計で10個備えられている。10
3は変位センサーで軸に直角な2つの面に回転体101
の円筒面に対向してそれぞれ2個、回転体+01の端面
の一方に1個備える。これら変位センサー103の数5
個は、回転体101の軸まわりの回転を除く残りの制御
すべき剛体としての自由度の5に対応している。電磁石
102は2個一組で、ある一つの方向の力を発生し、合
計5組で回転体101を非接触に支える。2個〜組とす
るのは電磁石は反発力を発生し得ないので、吸引力の釣
り合いにより非接触に支えるためである。電磁石102
は変位センサー103のすきま検出信号を基とする制御
電流を生成する図示しない制御回路に1って駆動され、
上記吸引力の釣り合いを取る。FIG. 7 shows a conventional magnetic bearing. 101 is a rotating body, 10
2 is an electromagnet, and 4 electromagnets are arranged on each of the two surfaces perpendicular to the axis with a gap maintained on the cylindrical surface of the rotating body.
There are 2 pieces on both end faces of 01, 10 pieces in total. 10
3 is a displacement sensor with a rotating body 101 on two surfaces perpendicular to the axis.
Two pieces are provided each facing the cylindrical surface of the rotating body +01, and one piece is provided on one end face of the rotating body +01. The number of these displacement sensors 103 is 5
5 corresponds to 5 degrees of freedom as a rigid body to be controlled, excluding the rotation of the rotating body 101 around the axis. A set of two electromagnets 102 generates a force in one direction, and a total of five sets support the rotating body 101 in a non-contact manner. The reason why electromagnets are arranged in groups of two or more is that since electromagnets cannot generate repulsive force, they can be supported without contact by balancing their attractive forces. Electromagnet 102
is driven by a control circuit (not shown) that generates a control current based on the clearance detection signal of the displacement sensor 103,
Balance the above suction power.
[発明が解決しようとする課題]
しかしながら、上記従来の技術における磁気軸受の構造
では、−組の磁石の力と他の組の磁石の力との干渉は少
ないが、磁石数従って部品点数が多く、軸方向に長さが
大きくなる欠点があった。[Problems to be Solved by the Invention] However, in the structure of the magnetic bearing in the above-mentioned conventional technology, although there is little interference between the force of one set of magnets and the force of another set of magnets, the number of magnets and therefore the number of parts is large. However, there was a drawback that the length increased in the axial direction.
特に電子計算機システムの技術分−野において将来実現
するであろう小形な記憶装置の記録媒体となる精密な回
転体への応用においては不都合な構造である。This structure is especially inconvenient when applied to precision rotating bodies that will serve as recording media for small storage devices that will be realized in the future in the technical field of electronic computer systems.
本発明は、上記問題点を解決するために創案されたもの
で、磁石数が少なく小形に製作することができる磁気軸
受を提供することを目的とする。The present invention was devised to solve the above problems, and an object of the present invention is to provide a magnetic bearing that has a small number of magnets and can be manufactured in a small size.
[課題を解決するための手段]
上記の目的を達成するための本発明の磁気軸受の構成は
、
回転体と、該回転体とのすきまを検出する複数の変位セ
ンサーと、該変位センサーの信号によってその磁気力を
制御し得る複数の電磁石とを備える磁気軸受において、
軸ニ直角な2平面上のそれぞれに前記電磁石をその磁気
力が放射状に3方向に向くように3個ずつ合計で6個配
置し、
かつ前記回転体の一部の2ケ所が円錐面を成しており、
前記電磁石の磁極を該円錐面とすきまを保つように対向
させたことを特徴とする。[Means for Solving the Problems] The configuration of the magnetic bearing of the present invention for achieving the above object includes: a rotating body, a plurality of displacement sensors that detect the clearance between the rotating body, and a signal from the displacement sensor. In a magnetic bearing equipped with a plurality of electromagnets whose magnetic force can be controlled by: three electromagnets on each of two planes perpendicular to the axis so that the magnetic force is oriented radially in three directions, for a total of six electromagnets. and two parts of the rotating body form conical surfaces, and the magnetic poles of the electromagnets are opposed to the conical surfaces so as to maintain a gap.
[作用]
本発明は軸に直角な2つの面上の磁石数をそれぞれ3個
とし、かつこの2面の磁石が軸方向にも力を及ぼすよう
に、磁極およびこれが対向する回転体の面を円錐の一部
とし、合計6個の磁石で回転体の軸の回転を除(残り5
自由度を非接触に拘束することを特徴としたものである
。このため部品点数が少なくなり、かつ軸方向に短い小
形化に適した磁気軸受を提供できる。[Function] In the present invention, the number of magnets on each of the two surfaces perpendicular to the axis is three, and the magnetic poles and the surface of the rotating body facing the magnetic poles are arranged so that the magnets on the two surfaces also exert force in the axial direction. A total of 6 magnets are used as part of the cone to remove the rotation of the axis of the rotating body (the remaining 5
It is characterized by restricting degrees of freedom without contact. Therefore, it is possible to provide a magnetic bearing that has fewer parts and is short in the axial direction and is suitable for miniaturization.
[実施例]
以下、本発明の実施例を図面に基づいて詳細に説明する
。[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.
第1図、第2図は本発明の一実施例を示す斜視図と平面
図である。1は回転体、2a、2b、2Cは回転体lの
回転軸に直角な一つの平面に設けられた電磁石の組、2
d、2e、2fは同じく回転体1の回転軸に直角な他の
平面に設けられた電磁石の組、3a、3b、3c、3d
、3eは回転体lの軸の回転を除く残り5自由度の非接
触状態をすきま検出で行い電磁石の磁気力を制御するた
めの変位センサー、4a、4b、4c、4d、4e、4
fは各電磁石2a〜2fに巻かれたコイル、5.6は回
転体1の一部に形成された円錐面となっている被吸引部
分である。回転体lは、後記するようにモーターに直結
されて回転されても良いし、回転伝達機構を介して回転
されても良い。電磁石21〜2fは、回転体lの軸に直
角な2つ面にそれぞれ3個備えられており、回転体lに
対しては円錐面部分5.6で対向され、その対向する電
磁石2の磁極部にも円錐面部分5.6に倣って円錐面の
一部を形成する。第2図において回転軸に直角な面上の
3個の電磁石2a、2b、2cはそれぞれの磁気力の方
向が放射状になるように配置されており、回転体lに対
し互いに吸引力を及ぼしあってすきまを保ちつつこれを
支持する。この面内の力の釣り合いはこれら3個の磁石
で充分である。第2図では電磁石の力の方向は互いに1
20度をなすように描いであるが、配置はこの角度にか
ぎる必要はない。さらに本発明では第2図のようにこれ
ら3個の電磁石が二組ありその吸引力が回転体の円錐面
部分5.6に作用し、回転体lの軸方向についてもこれ
を支える力を及ぼす。FIGS. 1 and 2 are a perspective view and a plan view showing an embodiment of the present invention. 1 is a rotating body; 2a, 2b, and 2C are a set of electromagnets provided on one plane perpendicular to the rotation axis of the rotating body 1; 2
d, 2e, and 2f are sets of electromagnets 3a, 3b, 3c, and 3d, which are also provided on other planes perpendicular to the rotation axis of the rotating body 1.
, 3e is a displacement sensor for controlling the magnetic force of the electromagnet by detecting the non-contact state of the remaining 5 degrees of freedom excluding the rotation of the axis of the rotating body l, 4a, 4b, 4c, 4d, 4e, 4
f is a coil wound around each of the electromagnets 2a to 2f, and 5.6 is a conical surface formed on a part of the rotating body 1 to be attracted. The rotating body 1 may be directly connected to a motor and rotated, as will be described later, or may be rotated via a rotation transmission mechanism. Three electromagnets 21 to 2f are provided on two surfaces perpendicular to the axis of the rotating body l, and are opposed to the rotating body l at a conical surface portion 5.6, and the magnetic poles of the electromagnet 2 facing the rotating body l are A part of the conical surface is also formed in the conical surface portion 5.6. In Fig. 2, three electromagnets 2a, 2b, and 2c on a plane perpendicular to the rotation axis are arranged so that the direction of their magnetic force is radial, and they mutually exert an attractive force on the rotating body l. Support this while maintaining the clearance. These three magnets are sufficient to balance the forces in this plane. In Figure 2, the directions of the forces of the electromagnets are 1
Although it is drawn to form an angle of 20 degrees, the arrangement does not have to be limited to this angle. Furthermore, in the present invention, as shown in Fig. 2, there are two sets of these three electromagnets, and their attractive force acts on the conical surface portion 5.6 of the rotating body, and also exerts a supporting force in the axial direction of the rotating body l. .
これにより回転体Iの軸回転を除いた残りの5自由度を
合計6個の電磁石2の制御力で非接触に拘束できる。As a result, the remaining five degrees of freedom excluding the axial rotation of the rotating body I can be restrained in a non-contact manner by the control force of a total of six electromagnets 2.
第3図は第1図の実施例の回転体を変形した例の側面図
であり、第4図はその回転体のみの側面図である。第1
図においては分かり易くするため各面の電磁石2a〜2
fを軸方向に離して描いであるが、第3図のように密に
重ねて組み立てると本発明の効果が一層顕著となる。す
なわち第2図のように異なる面の電磁石2a〜2fは放
射状の配置関係を互いに角度が異なるように配置しであ
るため、コイル4a〜4fが電磁石2a〜4fのヨーク
の面より突出していても、これら異なる2而の各々3個
の電磁石2a、2b、2c (一部図示せず)の組と2
d、2e、2f (一部図示せず)の組とを密に重ねる
のを防げることが無い。この結果、本発明の磁気軸受は
軸方向に長さを小さくできる。この時、回転体lの軸方
向の変位を検出する変位センサー3eは、軸方向の長さ
が小さい構成とすることは可能であり、磁気軸受の長さ
を短くすることの妨げとはならない。3 is a side view of a modification of the rotating body of the embodiment shown in FIG. 1, and FIG. 4 is a side view of only the rotating body. 1st
In the figure, for ease of understanding, electromagnets 2a to 2 on each side are shown.
Although the parts f are shown separated in the axial direction, the effect of the present invention becomes even more remarkable when assembled closely stacked as shown in Fig. 3. That is, as shown in FIG. 2, the electromagnets 2a to 2f on different surfaces are arranged radially at different angles, so even if the coils 4a to 4f protrude from the yoke surface of the electromagnets 2a to 4f, , a set of three electromagnets 2a, 2b, 2c (partially not shown) of each of these two different types, and 2
There is no way to prevent the pairs d, 2e, and 2f (partially not shown) from being closely overlapped. As a result, the magnetic bearing of the present invention can be made smaller in length in the axial direction. At this time, the displacement sensor 3e that detects the axial displacement of the rotating body 1 can be configured to have a small axial length, and this does not prevent the length of the magnetic bearing from being shortened.
第5図は本発明の他の実施例であって、回転体の形状が
第4図の場合と異なり、回転体の円錐面の部分が細くな
るように構成しである。このため、回転体lを収納する
とともに電磁石2a〜2f(−部図示せず)や変位セン
サー3a〜3eを固定する円筒状の固定部(図示せず)
の穴へ回転体1をあとから入れ込むことが可能になるの
で、その固定部は上下に分割されない1つの部材となり
、正確な円筒加工ができ、各部材の取り付け・や収納を
正確な真円度を保って行うことができるようになる。FIG. 5 shows another embodiment of the present invention, in which the shape of the rotating body is different from that shown in FIG. 4, and the conical surface of the rotating body is configured to be thin. Therefore, a cylindrical fixing part (not shown) is used to house the rotating body l and fix the electromagnets 2a to 2f (- part not shown) and the displacement sensors 3a to 3e.
Since it is possible to insert the rotating body 1 into the hole later, the fixed part becomes one member that is not divided into upper and lower parts, and accurate cylindrical processing is possible, and each part can be installed and stored in a perfect circle. You will be able to do it in a controlled manner.
第6図は電磁石と回転体とのすきまを保つ制御系を説明
するためのブロック図で、8は微分回路、9は変位信号
演算部、10は信号処理および電力増幅器、11はすき
まである。第7図は1つの電磁石2について代表して描
いであるが、実際には例えば微分回路8および変位信号
演算部9はセンサー3に対応して5つ設けられ、信号処
理および電力増幅器lOは電磁石2に対応して6つ設け
られる。変位センサー3により回転体lとのすきまに応
じて発生された信号電圧は、変位信号演算部9に直接入
力されるとともに、微分回路8を通して速度信号として
も入力される。この速度信号により、ダンピングをかけ
ることができ、すきまを保つ制御系を安定させることが
できる。変位信号演算部9は、上記信号電圧と速度信号
に各々変位状態に応じて適宜な定数を乗じ、それらを各
信号処理および電力増幅器IOに分配する。分配された
各信号は、信号処理および電力増幅器10によって適宜
加算増幅されフィードバックされて、電磁石2のコイル
4の電流を制御しすきま11を保つ。FIG. 6 is a block diagram for explaining a control system that maintains a gap between the electromagnet and the rotating body, in which 8 is a differential circuit, 9 is a displacement signal calculation section, 10 is a signal processing and power amplifier, and 11 is a gap. Although FIG. 7 is representatively drawn for one electromagnet 2, in reality, for example, five differentiating circuits 8 and displacement signal calculation units 9 are provided corresponding to the sensors 3, and the signal processing and power amplifier lO is provided for the electromagnet. 6 are provided corresponding to 2. A signal voltage generated by the displacement sensor 3 according to the clearance between the displacement sensor 3 and the rotating body 1 is input directly to the displacement signal calculation unit 9 and also input as a speed signal through the differentiating circuit 8 . Using this speed signal, damping can be applied and the control system that maintains the clearance can be stabilized. The displacement signal calculation section 9 multiplies the signal voltage and speed signal by appropriate constants depending on the displacement state, and distributes them to each signal processing and power amplifier IO. The distributed signals are appropriately added and amplified by the signal processing and power amplifier 10 and fed back to control the current in the coil 4 of the electromagnet 2 and maintain the gap 11.
以上に述べた各実施例の磁気軸受は、軸の直角方向に2
段に設けた電磁石の組がそれぞれ放射状に3方向に回転
体を吸引して軸の周面方向を非接触に支えるとともに、
さらに回転体の被吸引部の円錐面において、上記電磁石
の各組が軸方向にも互いに回転体を吸引することで軸方
向にも非接触に支える。この結果、各組の電磁石はそれ
ぞれ1個減り、軸方向の電磁石2個が省略可能になって
、合計6個で回転体を支えることができる。また軸方向
の電磁石の省略と、各段の電磁石の配置間隔が広がって
これら2段の電磁石を密に重ねることが可能になること
により、軸方向に短い小形な軸受を提供できる。The magnetic bearing of each of the embodiments described above has two
A set of electromagnets installed in each stage radially attracts the rotating body in three directions and supports the circumferential direction of the shaft without contact.
Further, on the conical surface of the attracted portion of the rotating body, each set of the electromagnets mutually attracts the rotating body in the axial direction, thereby supporting the rotating body in a non-contact manner in the axial direction as well. As a result, the number of electromagnets in each set is reduced by one, and two axial electromagnets can be omitted, making it possible to support the rotating body with a total of six electromagnets. Furthermore, by omitting the electromagnet in the axial direction and increasing the spacing between the electromagnets in each stage, making it possible to closely stack the two stages of electromagnets, it is possible to provide a compact bearing that is short in the axial direction.
以上述べたように、本発明はその主旨に沿って種々に応
用され、種々の実施態様を取り得るものである。As described above, the present invention can be applied in various ways in accordance with its gist and can take various embodiments.
[発明の効果]
以上の説明で明らかなように、本発明の磁気軸受によれ
ば、互いに吸引力を及ぼしあう各々放射状配置の3個の
電磁石を軸方向に2段とし、かつ回転体の被吸引部を円
錐面としてこれらの電磁石が軸方向にも互いに回転体を
吸引するようにし、かつこれら2段の電磁石を密に重ね
ることができるように配置可能なので、6個と少ない電
磁石数で構成でき、かつ軸方向に短い小形な軸受を提供
できる利点がある。[Effects of the Invention] As is clear from the above description, according to the magnetic bearing of the present invention, the three electromagnets each arranged radially and exerting an attractive force on each other are arranged in two stages in the axial direction, and the rotating body is covered with The suction part is a conical surface so that these electromagnets attract the rotating body to each other in the axial direction, and these two stages of electromagnets can be arranged so that they can be closely stacked, so the number of electromagnets is as small as 6. This has the advantage of being able to provide a compact bearing that is short in the axial direction.
第1図は本発明の一実施例を示す斜視図、第2図はその
平面図、第3図は上記実施例の変形例の側面図、第4図
はその回転体のみの側面図、第5図は本発明の他の実施
例を示す側面図、第6図は制御系のブロック図、第7図
は従来の磁気軸受の斜視図である。
1−・・回転体、2.2a、2b、2c、2d、2e
、、 2 f−電磁石、3,3a、3b、3c、3d。
3 e−変位センサー、4.4a、4b、4c、4d、
4e、4f・・・コイル、5.6・・・円錐面、lO・
・・すきま。
1−−−−−−一回転体
2a、2b、2c、2d、2e、2f−−−−−雪5t
’ffJ3a、3b、3c、3d、3e−−−−−−
9イ2ンブー4o、4b、4c、4d、4e、4f−−
−−−)イν5、6−−−−一咀錐面
第1図
第2図
第3図
第4図
第5図
第6図
第7図FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a plan view thereof, FIG. 3 is a side view of a modification of the above embodiment, FIG. 4 is a side view of only the rotating body, and FIG. FIG. 5 is a side view showing another embodiment of the present invention, FIG. 6 is a block diagram of a control system, and FIG. 7 is a perspective view of a conventional magnetic bearing. 1-...Rotating body, 2.2a, 2b, 2c, 2d, 2e
,, 2 f-electromagnets, 3, 3a, 3b, 3c, 3d. 3 e-displacement sensor, 4.4a, 4b, 4c, 4d,
4e, 4f...Coil, 5.6...Conical surface, lO・
··Gap. 1-------One rotating body 2a, 2b, 2c, 2d, 2e, 2f----Snow 5t
'ffJ3a, 3b, 3c, 3d, 3e------
9i 2inbo 4o, 4b, 4c, 4d, 4e, 4f--
---) A ν5, 6 --- One conical surface Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7
Claims (1)
変位センサーと、該変位センサーの信号によってその磁
気力を制御し得る複数の電磁石とを備える磁気軸受にお
いて、 軸に直角な2平面上のそれぞれに前記電磁石をその磁気
力が放射状に3方向に向くように3個ずつ合計で6個配
置し、 かつ前記回転体の一部の2ケ所が円錐面を成しており、 前記電磁石の磁極を該円錐面とすきまを保つように対向
させたことを特徴とする磁気軸受。(1) In a magnetic bearing comprising a rotating body, a plurality of displacement sensors that detect the clearance between the rotating body and a plurality of electromagnets whose magnetic force can be controlled by signals from the displacement sensors, two orthogonal to the axis are provided. Three of the electromagnets are arranged on each plane so that their magnetic forces are directed in three directions, for a total of six, and two parts of the rotating body form conical surfaces, A magnetic bearing characterized in that the magnetic poles of an electromagnet are opposed to the conical surface so as to maintain a gap.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP458888A JPH01182620A (en) | 1988-01-12 | 1988-01-12 | Magnetic bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP458888A JPH01182620A (en) | 1988-01-12 | 1988-01-12 | Magnetic bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01182620A true JPH01182620A (en) | 1989-07-20 |
Family
ID=11588198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP458888A Pending JPH01182620A (en) | 1988-01-12 | 1988-01-12 | Magnetic bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01182620A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105422623A (en) * | 2015-12-28 | 2016-03-23 | 宁波达奋精工轴承有限公司 | Self-powered type magnetic bearing |
CN105508425A (en) * | 2015-12-28 | 2016-04-20 | 宁波达奋精工轴承有限公司 | Self-generating magnetic bearing |
JP2022542107A (en) * | 2019-08-27 | 2022-09-29 | 受勲 李 | electric magnetic motor |
-
1988
- 1988-01-12 JP JP458888A patent/JPH01182620A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105422623A (en) * | 2015-12-28 | 2016-03-23 | 宁波达奋精工轴承有限公司 | Self-powered type magnetic bearing |
CN105508425A (en) * | 2015-12-28 | 2016-04-20 | 宁波达奋精工轴承有限公司 | Self-generating magnetic bearing |
JP2022542107A (en) * | 2019-08-27 | 2022-09-29 | 受勲 李 | electric magnetic motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6727618B1 (en) | Bearingless switched reluctance motor | |
US4918345A (en) | Magnetic bearing for active centering of a body movable relative to a static body with respect to at least one axis | |
US6727617B2 (en) | Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack | |
US4043614A (en) | Magnetic suspension apparatus | |
EP0130541B1 (en) | Flywheel apparatus | |
US3976339A (en) | Magnetic suspension apparatus | |
US5142175A (en) | Magnetic bearing system | |
US4000929A (en) | Magnetic bearing system | |
US4370004A (en) | Magnetically suspended type momentum ring assembly | |
EP0687827A1 (en) | Hybrid magnetic/foil gas bearings | |
US5804899A (en) | Miniature magnetic bearing with at least one active axis | |
JPH11230255A (en) | Inertia damper | |
JPH01182620A (en) | Magnetic bearing | |
JPH09177782A (en) | Magnetic bearing alternately provided with driving device and sensor | |
JPH11325075A (en) | Magnetic bearing | |
JPH10131966A (en) | Magnetic bearing device | |
US6362549B1 (en) | Magnetic bearing device | |
JPH1137155A (en) | Magnetic bearing and control system thereof | |
JPS63133354A (en) | Bearing assembly | |
Studer | Magnetic bearings for spacecraft | |
US20050253473A1 (en) | Alternative magnetic bearing | |
JPS6211218B2 (en) | ||
JP2004316756A (en) | Five-axis control magnetic bearing | |
JPH04203520A (en) | Thrust rolling bearing and roller and motor using thereof | |
CN85104531B (en) | Globular rotor moment electric motor |