JPH01182330A - Cellular film having heat resistance imparted thereto and production thereof - Google Patents

Cellular film having heat resistance imparted thereto and production thereof

Info

Publication number
JPH01182330A
JPH01182330A JP63004355A JP435588A JPH01182330A JP H01182330 A JPH01182330 A JP H01182330A JP 63004355 A JP63004355 A JP 63004355A JP 435588 A JP435588 A JP 435588A JP H01182330 A JPH01182330 A JP H01182330A
Authority
JP
Japan
Prior art keywords
porous membrane
membrane
monomers
porous
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63004355A
Other languages
Japanese (ja)
Inventor
Kunihiro Aoki
青木 邦廣
Yasushi Ohori
康司 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP63004355A priority Critical patent/JPH01182330A/en
Publication of JPH01182330A publication Critical patent/JPH01182330A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title cellular film having excellent heat resistance and applicable to membrane separation uses, such as medical applications, by thermally polymerizing a specific polymerizable monomer and monomers in a state held on the surface of a cellular film made of polyethylene. CONSTITUTION:The aimed cellular film, obtained by thermally polymerizing (B) one or more polymerizable monomers consisting of styrene and alpha- methylstyrene and (C) monomers containing divinylbenzene in a state held on the surface of at least part of (A) a cellular film consisting of polyethylene or polypropylene and holding a crosslinked polymer consisting of the components (B) and (C) on the surface of at least part of the component (A).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性に優れた多孔質膜に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a porous membrane with excellent heat resistance.

詳しくはポリエチレン又はポリプロピレン裂多孔質膜に
耐熱性を付与した多孔質膜及びその製造法に関する。
Specifically, the present invention relates to a porous membrane in which heat resistance is imparted to a polyethylene or polypropylene fissured porous membrane, and a method for producing the same.

〔従来の技術〕 。[Conventional technology].

近年産業の発達に伴い、浄水分野、血液処理分野、空気
浄化分野、食品工業分野等において各種の分離膜が使用
されている。たとえば高純度の水或いは高清浄度の空気
を得るために精密濾過膜が利用されている。精密濾過膜
としてはポリエチレン或いはポリプロピレンからなる多
孔質膜が低価格で耐薬品性に優れ、強伸度、柔軟性とい
った膜物性の点でも優れておシ、特に多用されている。
In recent years, with the development of industry, various separation membranes have been used in the water purification field, blood treatment field, air purification field, food industry field, etc. For example, microfiltration membranes are used to obtain highly purified water or highly clean air. Porous membranes made of polyethylene or polypropylene are particularly frequently used as precision filtration membranes because they are inexpensive, have excellent chemical resistance, and have excellent membrane properties such as strength, elongation, and flexibility.

中でも多孔質中空糸膜は単位体積あ九シに大きな膜面積
を設定できる・という利点の故に、極めて望ましい膜形
態である。
Among these, porous hollow fiber membranes are an extremely desirable membrane form because of their advantage in that a large membrane area can be set per unit volume.

そして精密濾過膜は、その適用範囲は増々拡大し、特に
高温下での使用が強く望まれている。
The scope of application of precision filtration membranes is expanding more and more, and use at high temperatures is particularly strongly desired.

また一方、精密濾過膜は、その用途によっては膜自体が
菌、黴等の微生物により汚染されていることに許されず
、その場合は何等かの方法により滅菌処理が施される。
On the other hand, depending on the use of the microfiltration membrane, the membrane itself cannot be allowed to be contaminated with microorganisms such as bacteria and mold, and in that case, it is sterilized by some method.

滅菌法としてに、エチレンオキサイド、ホルマリン、過
酸化水素等の薬剤、r線のような放射線、水蒸気加熱と
いつ念力法が挙げられるが、効果と簡便さの点で水蒸気
加熱法が最も望ましく、水蒸気加熱法でに通常121℃
で30分間程度の条件が採用されている。
Sterilization methods include drugs such as ethylene oxide, formalin, and hydrogen peroxide, radiation such as R-rays, steam heating, and psychokinesis, but the steam heating method is the most desirable in terms of effectiveness and simplicity. Normally 121℃ by heating method
A condition of approximately 30 minutes is adopted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるにポリエチレン、ポリプロピレンからなる多孔質
膜に熱収縮が著しく、これらの多孔質膜を加熱処理しめ
るいは高温下で使用すると、水或いは空気透過性が極端
に低下したりして分離膜としての機能が低下する。
However, porous membranes made of polyethylene and polypropylene undergo significant heat shrinkage, and when these porous membranes are heat-treated or used at high temperatures, their water or air permeability decreases dramatically, making them difficult to function as a separation membrane. decreases.

かかる状況に鑑み、本発明者らにポリエチレン又はポリ
プロピノン製多孔質膜の特長を生かしつつこのような高
温下での使用や熱処理に耐えうる多孔質膜及びその製造
方法について研究した結果本発明を完成し念。
In view of this situation, the present inventors have conducted research on a porous membrane that can withstand use and heat treatment at such high temperatures while taking advantage of the features of porous membranes made of polyethylene or polypropynon, and have developed the present invention. I hope it's completed.

〔問題点を解決する九めの手段] 本発明の要旨は、ポリエチレン又はポリプロピレンから
なる多孔質膜の少なくとも一部の表面上にスチレン、α
−メチルスチレンからなる一m以上の重合性モノマーと
ジビニルベンゼンとからなる架橋重合体を保持せしめた
多孔質膜にあり、更にポリエチレン又はポリプロピレン
からなる多孔質膜の少なくとも一部の表面上にスチレン
、α−メチルスチレンからなる一種以上の重合性モノマ
ーとジビニルベンゼンt−fむモノマー類を保持させた
状態で熱重合させることを特徴とする耐熱性が付与され
た多孔質膜の製造方法にある。
[Ninth Means for Solving the Problems] The gist of the present invention is that styrene, α
- A porous membrane holding a crosslinked polymer of divinylbenzene and a polymerizable monomer of 1 m or more consisting of methylstyrene, and styrene, A method for producing a porous membrane imparted with heat resistance, characterized by carrying out thermal polymerization in a state in which one or more polymerizable monomers consisting of α-methylstyrene and monomers such as divinylbenzene t-f are retained.

本発明で用いられるジビニルベンゼンとは通常に工業的
に入手できるものをいうが、更に純度の高いものであっ
てもよい。工業的に入手できるジビニルベンゼンにたと
えば、ジビニルベンゼン55〜6096.エチルビニル
ベンゼン35〜40%、飽和化合物10qb以下の混合
物である。
Divinylbenzene used in the present invention refers to divinylbenzene that is normally available industrially, but it may be of higher purity. Examples of industrially available divinylbenzene include divinylbenzene 55-6096. It is a mixture of 35-40% ethylvinylbenzene and 10 qb or less of saturated compounds.

本発明において一前記架橋重合体を用いるのは耐熱性、
熱水中での耐加水分解特性を考慮したためであり、アク
リルメタクリレート系架橋重合体のようなエステル系の
架橋重合体では熱水中での耐加水分解特性が劣るので多
孔質膜に充分な耐熱性を付与することができない。
In the present invention, one of the crosslinked polymers used is heat resistance,
This is because the hydrolysis resistance in hot water was considered. Ester-based crosslinked polymers such as acrylic methacrylate crosslinked polymers have poor hydrolysis resistance in hot water, so the porous membrane does not have sufficient heat resistance. cannot be assigned gender.

以下ジビニルベンゼンt−ri橋橋上モノマーといい、
重合性モノマーと架橋性モノマーを合わせて「七ツマー
類」とめう。
Hereinafter referred to as divinylbenzene t-ri bridge monomer,
Polymerizable monomers and crosslinking monomers are collectively referred to as "septumers."

本発明においてポリエチレン又はポリプロピレン多孔質
膜c以下単に「多孔質膜」という)としては中空糸膜、
平膜、管状膜等の任意の形態のものを用−ることができ
、また用途に応じて種々の細孔径のものを使用すること
ができるが、好ましい例として、膜厚がおよそ20〜2
00μm程度、空孔率がおよそ20〜90憾程度、アル
コール親水化法での水透過率がα001〜1017m”
 shr 働sw+Hg程度、細孔径が101〜5 a
m程度のものを挙げることができる。
In the present invention, the polyethylene or polypropylene porous membrane (hereinafter simply referred to as "porous membrane") includes hollow fiber membranes,
Any form of membrane, such as a flat membrane or a tubular membrane, can be used, and membranes with various pore diameters can be used depending on the application.
00μm, porosity is approximately 20-90m, water permeability by alcohol hydrophilization method is α001-1017m"
shr Working sw+Hg degree, pore diameter 101~5a
Examples include those of about m.

多孔質膜の細孔構造としては種々のものを用−うるが、
その中でも架橋重合体の保持が容易である点及び空孔率
が大きくて目詰tbによる性能低下が少ないという点か
ら溶融賦形後延伸する方法によって得られる多孔質膜が
好ましく用いられる゛。この多孔質膜に、ミクロフィブ
リルと節部とによって形成されるスリット状の微小空間
(空孔)が3次元的に相互に連通した細孔構造を有する
多孔質膜であシ、九とえば特公昭56−52123号公
報、特開昭57−42919号公報等に記載され念力法
によって製造することができる。
Various pore structures can be used for the porous membrane, but
Among these, a porous membrane obtained by a method of melt shaping and stretching is preferably used because the crosslinked polymer can be easily held and the porosity is large so that there is little performance deterioration due to clogging tb. This porous membrane has a pore structure in which slit-like microspaces (pores) formed by microfibrils and knots communicate with each other in three dimensions. It can be produced by the psychokinetic method described in Publication No. 56-52123, Japanese Patent Application Laid-open No. 57-42919, etc.

又、多孔質膜の形態としては単位容積当たシの膜面積が
大きいことから中空糸状のものが好ましく用いられる。
Further, as the form of the porous membrane, a hollow fiber type is preferably used because the membrane area per unit volume is large.

本発明の多孔質膜において架橋重合体が保持される多孔
質膜の少なくとも一部の表面とは、細孔表面及び外表面
の一部あるいは全部をいう。
In the porous membrane of the present invention, at least a part of the surface of the porous membrane on which the crosslinked polymer is retained refers to a part or all of the pore surface and the outer surface.

即ち、実質的に耐熱性が向上されるように架橋重合体が
保持されていればよく、必ずしも全ての表面に架橋重合
体が保持されている必要はない。
That is, it is sufficient that the crosslinked polymer is retained so that the heat resistance is substantially improved, and it is not necessary that the crosslinked polymer be retained on all surfaces.

表面に保持される架橋重合体のfに多孔質膜の空孔率や
細孔径にも依存し、要求される耐熱性と膜の透過性能と
のバランスにより適宜選択することができるが、多孔質
膜の重量に対しておよそ1〜150重量鳴程度であれば
よく、好ましくは5〜120重量係程度、−更に好まし
くは10〜100重量係程度である。121℃下20〜
30分間程度の水蒸気加熱処理時の収縮を抑制するとい
う要求に対しては架橋重合体の保持1に1〜40重量係
程度であればよい。しかし70℃以上の熱水を長時間に
亘って一過するというような高温下での長期間使用に於
て特に中空糸膜を外圧法で用いる場合にu、濾過圧力が
大きくなると経時的な中空糸膜形態のつぶれ、扁平化に
よる透過性能の低下が生じる。従ってこのような高温、
高−過圧力下で長時間使用する場合には架橋重合体の保
持llハ更に多いことが好ましい。尚、架橋重合体の保
持量が多くなると細孔容積の減少に伴う透過性能の低下
がある程度生じるが高温高濾過圧力下で使用可能という
メリットの方が勝るのでろる。
The f of the crosslinked polymer retained on the surface depends on the porosity and pore diameter of the porous membrane, and can be selected appropriately depending on the balance between the required heat resistance and membrane permeability. The weight ratio may be approximately 1 to 150% by weight, preferably approximately 5 to 120% by weight, and more preferably 10 to 100% by weight relative to the weight of the membrane. 20~ below 121℃
In response to the requirement of suppressing shrinkage during steam heat treatment for about 30 minutes, it is sufficient that the weight ratio is about 1 to 40 per weight of the crosslinked polymer. However, when using a hollow fiber membrane for a long period of time at high temperatures, such as passing hot water over 70°C for a long period of time, especially when using a hollow fiber membrane by the external pressure method, the filtration pressure increases over time. The permeation performance decreases due to the collapse and flattening of the hollow fiber membrane configuration. Therefore, such high temperatures
When used for long periods of time under high overpressure, it is preferred that the crosslinked polymer be retained even more. It should be noted that as the amount of crosslinked polymer retained increases, the permeation performance decreases to some extent due to the decrease in pore volume, but this is outweighed by the advantage of being usable at high temperatures and high filtration pressures.

架橋重合体の保持量が1%未満では多孔質膜の耐熱性か
不充分でめシ、150憾を越えた範囲では充分な透過性
能を示さないので、いずれの場合も実用的でない。
If the amount of crosslinked polymer retained is less than 1%, the heat resistance of the porous membrane will be insufficient, and if it exceeds 150%, sufficient permeation performance will not be exhibited, so neither is practical.

架橋重合体を構成する重合性七ツマ−と架橋性モノマー
の組成比は特に限定されず、およそ98/2〜2/98
 (重量部)程度であればよい。
The composition ratio of the polymerizable heptamer and the crosslinkable monomer constituting the crosslinked polymer is not particularly limited, and is approximately 98/2 to 2/98.
(parts by weight) may be sufficient.

保持させてなるとは保存中や使用中に容易に脱離しなi
程度に架橋重合体が該細孔表面に強固に結合な−し密着
されていることをいい、架橋重合体が該細孔表面に化学
結合していてもよく、また架橋重合体が微細孔部分にア
ンカー効果によって密着していてもよく、化学結合やア
ンカー効果による保持が混在していてもよい。
Retained means that it does not easily come off during storage or use.
It means that the cross-linked polymer is tightly bonded to the pore surface to some degree, but the cross-linked polymer may be chemically bonded to the pore surface, or the cross-linked polymer is tightly bonded to the pore surface. They may be closely attached to each other by an anchor effect, or may be held together by a chemical bond or an anchor effect.

特に、多孔質膜として前述の溶融賦形後延伸する方法に
よって多孔質化され九ものを用いると、ミクロフィブリ
ルを包むようにして架橋重合体が形成され強固に保持さ
せることができるので多孔質膜としては溶融賦形後延伸
する方法によって多孔質化され九ものを用iることか好
ましい。
In particular, when a porous membrane made porous by the above-mentioned melt-forming and stretching method is used, a crosslinked polymer is formed to wrap around the microfibrils and can be held firmly. It is preferable to use a material made porous by a method of melt-forming and then stretching.

次に本発明の耐熱性が付与され九多孔質膜の製造方法に
ついて説明する。
Next, a method for producing a nine-porous membrane imparted with heat resistance according to the present invention will be described.

本発明において重合体を多孔質膜の細孔表面上に保持さ
せる方法としては、種々の方法を採用することができる
。飼えば、適当な溶媒にモノマー類又は更に必要に応じ
て重合開始剤を溶解させ九溶液を調製し、多孔質膜をそ
の溶液中に浸漬する方法、あるいは多孔質膜で膜モジエ
ールを製作し九後この溶液を多孔質膜内に圧入する方法
等によプ該溶液を多孔質膜に含浸させた後、溶媒を揮発
除去させる方法が採用できる。
In the present invention, various methods can be employed to retain the polymer on the pore surface of the porous membrane. If the animal is grown, a solution can be prepared by dissolving monomers or a polymerization initiator if necessary in a suitable solvent, and a porous membrane can be immersed in the solution, or a membrane module can be produced using the porous membrane. After that, a method can be adopted in which the solution is impregnated into the porous membrane by pressurizing the solution into the porous membrane, and then the solvent is removed by volatilization.

溶媒で希釈した溶液を用いることによって多孔質膜の細
孔を塞ぐことなく多孔質膜の全体にわたってモノマー類
をほぼ均一に付着させることができる。また、該溶液の
モノマー類の濃度や浸漬時剥を変化させることによシモ
ノマー類の付着量が調整できる。
By using a solution diluted with a solvent, monomers can be deposited almost uniformly over the entire porous membrane without blocking the pores of the porous membrane. In addition, the amount of the monomers attached can be adjusted by changing the concentration of the monomers in the solution and the peeling rate during immersion.

前記の溶液を調製する場合の溶媒としては、モノマー類
よりも沸点が低く、かつ七ツマー類を溶解することが可
能な有機溶剤が用いられるが、重合開始剤を添加する場
合は重合開始剤をも溶解できる溶媒を用いることが好ま
しい。
When preparing the above solution, an organic solvent is used that has a boiling point lower than that of the monomers and is capable of dissolving the heptamers, but when adding a polymerization initiator, the polymerization initiator is It is preferable to use a solvent that can dissolve both.

このような有機溶媒としてはメタノール、エタノール、
プロパツール、インプロパツール等のアルコール類、ア
セトン、メチルエチルケトン、メチルイソブチルケトン
等のケトン類、テトラヒドロフラン、ジオキサν等のエ
ーテル類、酢酸エチル、クロロホルム等を挙げることが
できる。
Such organic solvents include methanol, ethanol,
Examples include alcohols such as propatool and impropatool; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ethers such as tetrahydrofuran and dioxa v; ethyl acetate and chloroform.

有機溶媒の沸点は特に限定されないが、重合工程前の溶
媒除去が容易であることを考慮するとおよそ100℃以
下であることが好ましく、およそ80℃以下であること
がより好ましい。
The boiling point of the organic solvent is not particularly limited, but in view of ease of solvent removal before the polymerization step, it is preferably about 100°C or less, more preferably about 80°C or less.

溶液中におけるモノマー類と溶媒との組成は溶媒の種類
や目標とする架橋重合体の保持量等を考慮して適宜選択
すればよく、モノマー類100重量部に対して溶媒は5
〜10000重置部程度であればよく50〜5000重
量部程度であることがより好ましい。
The composition of the monomers and the solvent in the solution may be selected appropriately taking into consideration the type of solvent and the target amount of crosslinked polymer retained, etc., and the proportion of the solvent is 5 parts by weight per 100 parts by weight of the monomers.
The amount may be about 10,000 to 10,000 parts by weight, and more preferably about 50 to 5,000 parts by weight.

これらの溶液を用いて多孔質膜に対して浸漬処理または
圧入処理する際の浸漬時間またに圧入時間はおよそα5
秒〜30分間程度であり、多孔質膜に対する濡れ特性が
良好種溶液を用い九場合程、よシ短時間で実施すること
ができる。
The immersion time or press-fitting time when dipping or press-fitting a porous membrane using these solutions is approximately α5.
It takes about 10 seconds to 30 minutes, and can be carried out in a much shorter time using a seed solution with good wetting properties for the porous membrane.

このようにしてモノマー類ま九に更に重合開始剤を少な
くとも一部の表面上に保持された多孔質膜は周囲の余分
な液を除去された後火の重合工程に移される。尚、細孔
内部の溶媒は重合前又は重合の進行中に蒸発により除去
することができる。
In this manner, the porous membrane, which retains the monomers and the polymerization initiator on at least a portion of its surface, is subjected to a polymerization step after removal of excess liquid around it. Note that the solvent inside the pores can be removed by evaporation before or during polymerization.

本発明においては熱重合法、光重合法、放射線重合法、
プラズマ重合法等の重合方法を採用することができ、重
合開始剤は公知のものを用いることができる。
In the present invention, thermal polymerization method, photopolymerization method, radiation polymerization method,
A polymerization method such as a plasma polymerization method can be employed, and a known polymerization initiator can be used.

熱重合法の場合、重合温度に前記重合開始剤の分解温度
以上であり、また多孔質膜の膜構造を変化させることな
くかつ膜基質を損傷しない程度以下の温度とすることが
望ましく、通常に50〜100℃程度の温度を採用する
ことができる。また加熱時間は重合開始剤の種類と加熱
温度に依存するがパッチ法でに通常は1分間〜5時間程
度よシ好ましくは15分間〜3時間程度である。又、連
続法でに熱伝達効率が高いためにより短時間で重合でき
、加熱時間は通常10秒間〜60分間程度よう好ましく
は20秒間〜10分間程度である。
In the case of a thermal polymerization method, it is desirable that the polymerization temperature is higher than the decomposition temperature of the polymerization initiator and lower than the temperature that does not change the membrane structure of the porous membrane and damage the membrane substrate. A temperature of about 50 to 100°C can be employed. The heating time depends on the type of polymerization initiator and the heating temperature, but in the patch method it is usually about 1 minute to 5 hours, preferably about 15 minutes to 3 hours. Further, since the heat transfer efficiency is high in a continuous method, polymerization can be carried out in a shorter time, and the heating time is usually about 10 seconds to 60 minutes, preferably about 20 seconds to 10 minutes.

光重合法の場合、光照射の光源としてに紫外線や可視光
線を用いることができ、紫外線源としては低圧水銀灯、
高圧水銀灯、キセノン灯、アーク灯等を用いることがで
きる。
In the case of the photopolymerization method, ultraviolet rays or visible light can be used as the light source for light irradiation, and the ultraviolet ray sources include low-pressure mercury lamps,
High-pressure mercury lamps, xenon lamps, arc lamps, etc. can be used.

光照射条件としてはたとえば水銀灯を光源として用いる
場合は入力を10〜500 W / cm程度とし10
〜50am程度の距離から(L5〜300秒間程度照射
することによってα001〜10jouie / 51
”程度よ〕好ましくはl105〜1jou’le /c
vm”程度のエネルギーを照射する条件が採用される。
As for the light irradiation conditions, for example, when using a mercury lamp as a light source, the input should be about 10 to 500 W/cm.
From a distance of ~50 am (by irradiating for about L5~300 seconds, α001 ~ 10 jouie / 51
``It's about 105~1jou'le/c.''
A condition of irradiating energy of about 100 yen (vm) is adopted.

放射線重合の場合にたとえば電子線照射装置を用い、1
20℃以下よ〕好ましくは100℃以下の温度にて電子
線f:lo〜50 M rad程度照射することによっ
て実施することができる。
In the case of radiation polymerization, for example, using an electron beam irradiation device, 1
This can be carried out by irradiating with an electron beam f:lo to about 50 Mrad at a temperature of 20° C. or lower, preferably 100° C. or lower.

尚、これらの重合の際、雰囲気内に酸素が存在すると重
合反応が著しく阻害されるので窒素雰囲気等の不活性ガ
ス雰囲気、あるいは真空等の実質的に酸素が存在しない
状態にて重合させることが望ましい。
In addition, during these polymerizations, the presence of oxygen in the atmosphere will significantly inhibit the polymerization reaction, so it is best to carry out the polymerization in an inert gas atmosphere such as a nitrogen atmosphere, or in a state in which oxygen is substantially absent, such as in a vacuum. desirable.

本発明に訃いては上述のように種々の重合法を採用でき
るが、熱エネルギーによる方法が最も好ましい。熱エネ
ルギーを利用する場合は多孔質膜の細孔部分まで均一温
度に加熱することができるのでモノマー類が保持されて
いる全ての細孔表面上において均一に重合することがで
き、かつ、重合温度を適度に設定することによって膜の
構造を変化させることなくかつ膜基質を劣化させ諷こと
なく重合することができる利点がある。一方、光エネル
ギーを利用する場合は光の散乱によって多孔質膜の細孔
部分まで光が十分に到達しにくいという問題及び光の照
射強度を上げると膜基質の劣化が進行しやすいという問
題があシ、また放射線エネルギーを利用する場合も膜基
質の劣化が進行しやすいという問題がある。従ってこれ
らの重合方法を採用する場合は膜基質を劣化させないよ
うな重合条件を慎重に選定することが必要である。
Although various polymerization methods can be employed in accordance with the present invention as described above, a method using thermal energy is most preferred. When using thermal energy, the pores of the porous membrane can be heated to a uniform temperature, so monomers can be uniformly polymerized on all pore surfaces where monomers are held, and the polymerization temperature can be maintained evenly. By appropriately setting , there is an advantage that polymerization can be carried out without changing the structure of the membrane and without causing deterioration of the membrane substrate. On the other hand, when using light energy, there is a problem that light scattering makes it difficult for light to reach the pores of a porous membrane, and that increasing the intensity of light irradiation tends to cause deterioration of the membrane substrate. Furthermore, when using radiation energy, there is a problem in that the membrane substrate tends to deteriorate. Therefore, when employing these polymerization methods, it is necessary to carefully select polymerization conditions that will not deteriorate the membrane substrate.

多孔質膜の表面上に保持されたモノマー類はこれらの重
合手法によって重合、架橋するので、多孔質膜の少なく
とも一部の表面はこれらの架橋重合体によって被覆され
る。
Since the monomers held on the surface of the porous membrane are polymerized and crosslinked by these polymerization techniques, at least a portion of the surface of the porous membrane is coated with these crosslinked polymers.

架橋重合体が生成され念後は、必要に応じて適当な洗浄
溶媒を用い浸漬法や圧入法によって多孔質膜細孔表面や
外表面の周囲に存在する未反応モノマーや遊離したポリ
マー等の不要成分を除去することが望ましい。
After the crosslinked polymer is generated, use an appropriate cleaning solvent as necessary to remove unreacted monomers and free polymers that exist around the pore surface and outer surface of the porous membrane by dipping or press injection. It is desirable to remove the components.

以上、各工程について別々に説明してきたが、本発明に
おいては多孔質膜の表面上へのモノマー類等の保持、溶
媒除去、重合、重合後の洗浄等1−1−1ぼ連続的に行
なうこともできる。
Each step has been explained separately above, but in the present invention, retention of monomers etc. on the surface of the porous membrane, solvent removal, polymerization, washing after polymerization, etc. are carried out continuously in 1-1-1. You can also do that.

〔実施例〕〔Example〕

以下実施例によシ本発明を具体的に説明する。 The present invention will be specifically explained below using examples.

尚、実施例においてに多孔質膜としていずれも溶融賦形
後延伸する方法によって得られるミクロフィブリルと節
部とで形成されるスリット状の空間(空孔)が3次元的
に連通し九多孔質膜を用い、該多孔質膜の孔径は該スリ
ット状空間の幅の平均値と長さの平均値とで表現し九。
In addition, in the examples, slit-like spaces (pores) formed by the microfibrils and knots obtained by a method of melt-forming and then stretching the porous membranes are connected three-dimensionally to form nine pores. A porous membrane is used, and the pore diameter of the porous membrane is expressed by the average width and length of the slit-like spaces.

又、ジビニルベンゼンとしては純度55〜60俤程度の
市販グレードのものを用い念。
Also, be sure to use commercial grade divinylbenzene with a purity of about 55 to 60 yen.

架橋重合体の保持量にテトラリン還流下、多孔質膜を溶
解させる溶解分別法によル求め多孔質膜に対する重量鳴
で表示した。又、水透過率及び耐圧力は有効膜面積が1
65cym”の試験膜モジュールを用い次の方法によっ
て測定した。
The retained amount of the crosslinked polymer was determined by a dissolution fractionation method in which the porous membrane was dissolved under refluxing tetralin, and expressed as the weight relative to the porous membrane. In addition, water permeability and pressure resistance are determined when the effective membrane area is 1
The measurement was carried out by the following method using a 65cym'' test membrane module.

(1)水透過率:試験膜モジュールの一方(中空糸膜の
場合は中空糸膜の内側)からエタノール’f 25 d
 / minのatで15分間圧大して多孔質膜の細孔
内部まで充分にエタノールで湿潤させ九後、水を100
 d / Winの流量で15分間流し、細孔内部に存
在するエタノールを水で置換する。続iで試験膜モジュ
ールの一方(中空糸の場合は中空糸の内側)から25℃
の水を流して膜間差圧が50−Hg  における透過水
Jllt−測定し、その値から水透過率(1/−・hr
・111g )を求める。
(1) Water permeability: Ethanol from one side of the test membrane module (inside the hollow fiber membrane in the case of a hollow fiber membrane)
/min for 15 minutes to thoroughly wet the inside of the pores of the porous membrane with ethanol, and then add water to 100 ml of water.
d/Win for 15 minutes to replace the ethanol present inside the pores with water. 25℃ from one side of the test membrane module (inside of the hollow fiber in case of hollow fiber)
The permeated water Jllt- was measured at a transmembrane pressure difference of 50-Hg by flowing water, and from that value the water permeability (1/-・hr
・111g).

(2)耐圧カニ中空糸状多孔質膜についてのみ測定する
。外圧法によ〕濾過圧力を毎分α5匈151”の割合で
上昇させながら90℃の水を透過させ、水透過率の濾過
圧力依存性が急激に変化する点(第1図のム点)に対応
する濾過圧力を測定し、とのF!正圧力耐圧力とする。
(2) Only the pressure-resistant hollow fiber porous membrane is measured. By the external pressure method] water at 90°C is permeated while increasing the filtration pressure at a rate of α5 151" per minute, and the point where the dependence of the water permeability on the filtration pressure changes rapidly (point M in Figure 1). Measure the filtration pressure corresponding to F! and take it as the positive pressure withstand pressure.

(3)経時耐圧特性:中空糸状多孔質膜についてのみ測
定する。外圧法により濾過圧力5 kll/cya”で
90℃の水t−1時間透過させ透過水量の経時変化を測
定し、その値がら水透過率CL/m8・hr・−Bg)
の経時変化を求める。
(3) Pressure resistance properties over time: Measured only for hollow fiber porous membranes. Using the external pressure method, water at 90°C was permeated for t-1 hours at a filtration pressure of 5 kll/cya", and the change in the amount of permeated water over time was measured, and the value was determined based on the water permeability rate CL/m8・hr・-Bg)
Find the change over time.

実施例1 多孔質膜としてスリット状細孔の幅(L8μm1違し 長さ2.2μ、空孔率70s1膜厚55μm1内径27
0μm1アルコール親水化法による水透過率(25℃)
が4.617 m”−hr ・wHgであるポリエチレ
ン多孔質中空糸膜を用いた。該中空糸[t−スチレン5
0部、ジビニルベンゼン50部の組成比の混合モノマー
25部、過酸化ベンゾイル(1025部、′アセトン1
00部からなる溶液中に10秒間浸漬した後、溶液中か
ら取〕出し室温下で30分間風乾しアセトンを揮散除去
した。次いで窒素雰囲気中60℃で2時間加熱すること
によシモノマー類を重合させ念。
Example 1 Width of slit-like pores as a porous membrane (L8 μm, length 2.2 μm, porosity 70s, membrane thickness 55 μm, inner diameter 27
0μm1 Water permeability by alcohol hydrophilization method (25℃)
A polyethylene porous hollow fiber membrane having a temperature of 4.617 m"-hr .wHg was used. The hollow fiber [t-styrene 5
0 parts, 25 parts of mixed monomers with a composition ratio of 50 parts of divinylbenzene, benzoyl peroxide (1025 parts, 'acetone 1 part)
After immersing it in a solution consisting of 0.00 parts for 10 seconds, it was taken out from the solution and air-dried for 30 minutes at room temperature to volatilize and remove the acetone. Next, the cymonomers were polymerized by heating at 60° C. for 2 hours in a nitrogen atmosphere.

このようにして得られた多孔質膜の架橋重合体の保持量
は2五8憾、水透過率は45L/m”・hr−samH
g、  耐圧力は五5 kg/eta”であった。
The amount of crosslinked polymer retained in the porous membrane thus obtained was 258, and the water permeability was 45 L/m"・hr-samH.
g, and the pressure resistance was 55 kg/eta.

又この多孔質膜の経時耐圧特性を測定したところ水透過
率は若干低下する傾向を示した(第2図)。更にこの多
孔質膜を121℃の水蒸気で30分間加熱処理したとこ
ろ形態変化はなく、熱処理後の水透過率d4.5L/m
”・hr・−11gであり熱処理前の値と同等であった
When the pressure resistance characteristics of this porous membrane were measured over time, the water permeability tended to decrease slightly (Figure 2). Furthermore, when this porous membrane was heat-treated with steam at 121°C for 30 minutes, there was no change in morphology, and the water permeability after heat treatment was 4.5L/m.
”・hr・−11 g, which was equivalent to the value before heat treatment.

実施例2 スチレン50部、ジビニルベンゼン50部の組成比の混
合モノマー40部、過酸化ベンゾイル104部、アセト
ン100部からなる溶液を用いそれ以外の条件は実施ガ
1と同様の条件で多孔質膜を得た。かくして得られた多
孔質膜架橋重合体の保持量は62.5%、水透過率ハ4
.O1/m” ・hr ・wxHg 、耐圧力frl 
4.5 kg7cm”であ〕、経時耐圧特性も良好で6
つ九(第2図)。
Example 2 A porous membrane was prepared under the same conditions as in Example 1 using a solution consisting of 40 parts of a mixed monomer with a composition ratio of 50 parts of styrene and 50 parts of divinylbenzene, 104 parts of benzoyl peroxide, and 100 parts of acetone. I got it. The retention amount of the porous membrane crosslinked polymer thus obtained was 62.5%, and the water permeability was 4.
.. O1/m" ・hr ・wxHg, pressure resistance frl
4.5 kg 7 cm"] and has good pressure resistance over time.
19 (Figure 2).

又この膜を121℃の水蒸気で30分間加熱処理したと
ころ形態変化になく、水透過率も変化しなかった。
Further, when this membrane was heat-treated with steam at 121° C. for 30 minutes, there was no change in morphology and no change in water permeability.

比較例1 実施列1で用いたのと同様のポリエチレン多孔質中空糸
膜そのものについて耐圧力と経時耐圧特性を測定し友。
Comparative Example 1 The same polyethylene porous hollow fiber membrane as used in Example 1 was measured for pressure resistance and pressure resistance characteristics over time.

耐圧力はα5 kg/cra”と極めて低く、経時耐圧
特性は第2図に示す如く悪かつ念。
The pressure resistance is extremely low at α5 kg/cra, and the pressure resistance characteristics over time are poor and poor as shown in Figure 2.

又121℃で水蒸気加熱処理するとクリンプが発生し、
水透過率は2.8t/−・hr・11gに減少した。
Also, when steam heat treated at 121℃, crimp occurs.
The water permeability decreased to 2.8t/-.hr.11g.

〔発明の効果] 実施例の結果から明らかなように本発明の多孔質膜は通
常のポリエチレン製多孔質膜やポリプロピノン製多孔質
膜と比較すると著しく耐熱性が向上されたものである。
[Effects of the Invention] As is clear from the results of the Examples, the porous membrane of the present invention has significantly improved heat resistance as compared to ordinary polyethylene porous membranes and polypropynon porous membranes.

即ち、本発明の架橋重合体が保、持された多孔質膜は9
0℃の熱水中での耐圧力が高く、又、121℃での水蒸
気処理後においても形態変化や水透過率の低下が殆どな
い。
That is, the porous membrane in which the crosslinked polymer of the present invention is retained is 9
It has high pressure resistance in hot water at 0°C, and there is almost no change in form or decrease in water permeability even after steam treatment at 121°C.

従って本発明の多孔質膜に医療、食品工業、発酵工業等
の水蒸気滅菌処理が必要な膜分離用途への適用が可能で
あり、多糖類精製、発電所の復水処理等の高温水処理へ
の適用が可能である。
Therefore, the porous membrane of the present invention can be applied to membrane separation applications that require steam sterilization in the medical, food, and fermentation industries, as well as in high-temperature water treatment such as polysaccharide purification and condensate treatment in power plants. can be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐圧力測定の一例を示す図であり、第2図は経
時耐圧特性の測定結果を示す図である。 青 1 口
FIG. 1 is a diagram showing an example of pressure resistance measurement, and FIG. 2 is a diagram showing measurement results of pressure resistance characteristics over time. blue 1 mouth

Claims (2)

【特許請求の範囲】[Claims] (1)ポリエチレン又はポリプロピレンからなる多孔質
膜の少なくとも一部の表面上にスチレン、α−メチルス
チレンからなる一種以上の重合性モノマーとジビニルベ
ンゼンとからなる架橋重合体を保持せしめた多孔質膜。
(1) A porous membrane comprising a crosslinked polymer comprising one or more polymerizable monomers such as styrene or α-methylstyrene and divinylbenzene held on at least a portion of the surface of a porous membrane comprising polyethylene or polypropylene.
(2)ポリエチレン又はポリプロピレンからなる多孔質
膜の少なくとも一部の表面上にスチレン、α−メチルス
チレンからなる一種以上の重合性モノマーとジビニルベ
ンゼンを含むモノマー類を保持させた状態で熱重合させ
ることを特徴とする耐熱性が付与された多孔質膜の製造
方法。
(2) Carrying out thermal polymerization while retaining one or more polymerizable monomers such as styrene and α-methylstyrene and monomers containing divinylbenzene on at least a portion of the surface of a porous membrane made of polyethylene or polypropylene. A method for producing a porous membrane imparted with heat resistance, characterized by:
JP63004355A 1988-01-12 1988-01-12 Cellular film having heat resistance imparted thereto and production thereof Pending JPH01182330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004355A JPH01182330A (en) 1988-01-12 1988-01-12 Cellular film having heat resistance imparted thereto and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004355A JPH01182330A (en) 1988-01-12 1988-01-12 Cellular film having heat resistance imparted thereto and production thereof

Publications (1)

Publication Number Publication Date
JPH01182330A true JPH01182330A (en) 1989-07-20

Family

ID=11582094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004355A Pending JPH01182330A (en) 1988-01-12 1988-01-12 Cellular film having heat resistance imparted thereto and production thereof

Country Status (1)

Country Link
JP (1) JPH01182330A (en)

Similar Documents

Publication Publication Date Title
EP0498414B1 (en) Porous hollow fiber membrane of polypropylene and production thereof
US5294338A (en) Porous polyethylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous polyethylene hollow fiber membranes
KR910007307B1 (en) Hydrophilized porous membrane and production process thereof
US5049275A (en) Modified microporous structures
JPS5857205B2 (en) Manufacturing method of semipermeable membrane
JPH05115760A (en) Antibacterial hydrophilic porous membrane and production thereof
JP3168036B2 (en) Large-pore porous polyethylene hollow fiber membrane, method for producing the same, and hydrophilic porous polyethylene hollow fiber membrane
JPS63190602A (en) Hydrophilic porous membrane and its manufacture
US4876289A (en) Hydrophilized porous membrane and production process thereof
EP0566754B1 (en) Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof
JPH0768141A (en) Hollow fiber membrane and humidifying method using the same membrane
JPH01182330A (en) Cellular film having heat resistance imparted thereto and production thereof
JPS63260938A (en) Porous membrane having heat resistance imparted thereto and its production
JPH06169755A (en) Porous hollow filament membrane for cell culture
JPS62163703A (en) Hydrophilic porous membrane and its production
JPH03193125A (en) Heat-resistant porous membrane and manufacture thereof
JP3130996B2 (en) Large pore porous polypropylene hollow fiber membrane, method for producing the same, and hydrophilized porous polypropylene hollow fiber membrane
US4961853A (en) Porous membranes and production processes thereof
JPH0259030A (en) Heat-resistant hydrophilicity imparted porous membrane and preparation thereof
JPH0365225A (en) Hydrophilic, porous membrane and its manufacturing method
JPS62253638A (en) Modification of polyolefin based porous substrate
JPH04358529A (en) Heat-resistant hydrophilic porous membrane and preparation thereof
JPS63311961A (en) Anticoagulant porous membrane
JPH037751A (en) Novel polyacrylonitrile composition and production thereof
JPH0369673A (en) Heat-resistant hydrophilic porous polyolefin hollow fiber