JPH01181843A - Ophthalmic device - Google Patents

Ophthalmic device

Info

Publication number
JPH01181843A
JPH01181843A JP63004030A JP403088A JPH01181843A JP H01181843 A JPH01181843 A JP H01181843A JP 63004030 A JP63004030 A JP 63004030A JP 403088 A JP403088 A JP 403088A JP H01181843 A JPH01181843 A JP H01181843A
Authority
JP
Japan
Prior art keywords
eye
measurement
examined
cornea
measurement system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63004030A
Other languages
Japanese (ja)
Inventor
Shigeo Maruyama
茂男 丸山
Kazunobu Kobayashi
小林 萬伸
Yukitsugu Nakamura
中村 行告
Yoshimasa Hamano
好正 濱野
Isao Matsumura
勲 松村
Takashi Masuda
増田 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63004030A priority Critical patent/JPH01181843A/en
Priority to DE8888116028T priority patent/DE3878123T2/en
Priority to EP88116028A priority patent/EP0310045B1/en
Publication of JPH01181843A publication Critical patent/JPH01181843A/en
Priority to US07/767,360 priority patent/US5116114A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/10Eye inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/152Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames

Abstract

PURPOSE:To safely and easily switch two measuring systems having different functions by providing the edge part position recognizing means and the edge part position setting means of a detected edge which is in contact with the cornea of an eye to be examined. CONSTITUTION:A first measuring system measuring the cornea refraction force of an examined eye E and a second measuring system obtaining an eye axis length are provided in a main body 2 provided on a sliding stand 1. In the second measuring system, when a contact shoe slides in the direction of the examined eye E, a motor driving controller drives and controls an electric motor 16 at a high speed in an initial sliding stage, and when the switch of a probe holder 13 is turned on, the low-speed sliding of the electric motor 16 is controlled. Thus, a switching time is shortened, and a fear that the probe 12 collides with the cornea of the examined eye E at intersive inertia force can be evaded. At the time of the measurement of cornea refraction force, after a suitable alignment operation is carried out while a television monitor 8 is being observed, when a mode is switched to an eye axis length measuring mode, the alignment operation is not readjusted, the measurement of the eye axis length can be immediately measured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば角膜屈折力を測定手段のように被検眼
角膜に対して非接触で測定する測定系と、超音波眼軸長
測定手段のように接触させて測定する測定系とを複合し
た眼科装置に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a measuring system for measuring corneal refractive power in a non-contact manner to the cornea of an eye to be examined, such as a measuring means, and an ultrasonic axial length measuring means. The present invention relates to an ophthalmological device that combines a measuring system that performs contact measurement, such as the above.

[従来の技術] 例えば、白濁した水晶体を摘出し人工水晶体を挿入する
白内障手術においては、適正な屈折力の人工水晶体を選
定する場合に、角膜屈折力の測定を光学式の測定装置で
行い、次に角膜から網膜までの長さを超音波式眼軸長測
定装置で求め、両者の値から所定の計算式によって人工
水晶体の屈折力を算出する方法が一般に行われている。
[Prior Art] For example, in cataract surgery in which a cloudy crystalline lens is extracted and an artificial crystalline lens is inserted, when selecting an artificial crystalline lens with an appropriate refractive power, the corneal refractive power is measured using an optical measuring device. Next, the length from the cornea to the retina is determined using an ultrasonic axial length measuring device, and the refractive power of the artificial crystalline lens is calculated from both values using a predetermined formula.

[発明が解決しようとする問題点] しかし、従来は角膜屈折力と眼軸長の測定は別個の装置
によって行っていたため、装置の顔量は部に患者の顔を
固定し、摺動台の7ライメントを行ってから測定すると
いう操作をそれぞれの装置について別々に行わなければ
ならず、測定が面倒で時間が掛かるという問題がある。
[Problems to be solved by the invention] However, in the past, corneal refractive power and axial length were measured using separate devices. The operation of performing seven alignments and then measuring must be performed separately for each device, which poses a problem that measurement is troublesome and time-consuming.

更には、広い設置スペースが必要であるばかりでなく、
視力の悪い患者を移動しなければならない等の問題点も
ある。
Furthermore, not only is a large installation space required,
There are also problems such as having to move patients with poor eyesight.

そこで、角膜屈折力を測定する機能と眼軸長を測定する
機能を1台の装置に複合したいという要望があるが、角
膜屈折力の測定系は比較的長い空間距離を保持して測定
するのに対し、眼軸長の測定系は検出端を被検眼の角膜
に接触させる必要がある。このような2つの測定を行う
ために、摺動台を光軸方向に移動させて実施しようとす
ると、被検眼との位置合わせ状態が崩れてしまい、結局
はアライメントをし直さなければならないという問題点
がある。
Therefore, there is a desire to combine the function of measuring corneal refractive power and the function of measuring axial length in one device, but the corneal refractive power measurement system requires measurement while maintaining a relatively long spatial distance. In contrast, the axial length measurement system requires the detection end to be in contact with the cornea of the eye to be examined. If you try to move the sliding table in the optical axis direction to perform these two measurements, the alignment with the subject's eye will collapse, resulting in the problem of having to re-align it. There is a point.

また、動力によって超音波探触子を測定状態に切換える
とき、角膜に対する探触子の端部位置を一様に設定する
と、探触子と角膜との接触圧の調整が不可能となって、
操作者の要望に十分対応できないという問題もある。
Furthermore, when switching the ultrasound probe to the measurement state using power, if the end position of the probe with respect to the cornea is set uniformly, it becomes impossible to adjust the contact pressure between the probe and the cornea.
There is also the problem that the operator's requests cannot be fully met.

[発明の目的] 本発明の目的は、上述の問題点を解消し、機能が異なる
2つの測定系の切換えを安全にかつ容易に行い得るよう
にするため、被検眼の角膜に接触される検出端の端部位
置認識手段及び端部位置設定手段を設けることにより、
検出端の端部位置を自在に設定できるようにした眼科装
置を提供することにある。
[Object of the Invention] An object of the present invention is to solve the above-mentioned problems and to enable safe and easy switching between two measuring systems with different functions. By providing an end position recognition means and an end position setting means,
An object of the present invention is to provide an ophthalmologic apparatus in which the end position of a detection end can be freely set.

[発明の概要] 上述の目的を達成するための本発明の要旨は、被検眼の
角膜に対して所定の距離を保持した状態で被検眼情報を
検出する第1の測定系と、被検眼の角膜に検出端の端部
を接触させた状態で被検眼情報を検出する第2の測定系
とを同一の摺動台に支持された測定器本体に取り付け、
被検眼の位置を固定した状態で前記第1、第2の測定系
を切換可能とした眼科装置において、前記第1の測定系
の測定状態から前記第2の測定系の測定状態に切換えた
とき、前記第2の測定系の検出端の端部が前記第1の測
定系の適正測定状態の被検眼の角膜位置に対して測定器
本体の光軸方向に可変の所定位置になるように設定する
端部位置設定手段と、前記検出端の位置を認識する端部
位置認識手段とを有することを特徴とする眼科装置であ
る。
[Summary of the Invention] The gist of the present invention for achieving the above-mentioned object is to provide a first measurement system that detects eye information to be examined while maintaining a predetermined distance from the cornea of the eye to be examined; A second measurement system that detects information on the eye to be examined with the end of the detection end in contact with the cornea is attached to the measuring instrument main body supported on the same sliding table,
In an ophthalmological apparatus in which the first and second measurement systems can be switched while the position of the eye to be examined is fixed, when the measurement state of the first measurement system is switched to the measurement state of the second measurement system. , the end of the detection end of the second measurement system is set to a variable predetermined position in the optical axis direction of the measuring instrument body with respect to the cornea position of the eye to be examined in the proper measurement state of the first measurement system; This ophthalmologic apparatus is characterized by having an end position setting means for detecting the position of the detection end, and an end position recognition means for recognizing the position of the detection end.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.

第1図において、摺動台1上に設けられた本体2内に、
被検眼Eの角膜屈折力を測定する第1の測定系と、眼軸
長を求めるための第2の測定系が設けられている。第1
の測定系においては、被検眼Eに対向して対物レンズ3
が配置され、その後方に光路に沿ってミラー4.5、結
像レンズ6、COD等から成る二次元撮像素子7が配置
され、この二次元撮像素子7の出力はテレビモニタ8に
接続されている。そして、対物レンズ3、ミラー4.5
は一体構造とされ、電動機9により駆動するワイヤ10
により上下動し得るようになっている。また、対物レン
ズ1の周囲には、第2図に示すように発光ダイオード等
から成る複数個の投影指標光源11a〜lidが光軸り
を中心にして等間隔に配置されている。更に、第2の測
定系においては、ミラー4の後方に配置された超音波探
触子12が探触子ホルダ13を介して摺動案内部材14
により保持され、この超音波探触子12はテンションば
ね15によって前方に付勢されている。また、超音波ホ
ルダ13は電動機16により動くワイヤ17によって前
後進し得るようになっている。なお、第1図において、
18.19はそれぞれワイヤ10,17を案内するガイ
ドローラ、20aは操作桿、20bは上下動調整環を示
している・ ここで、投影視標光源11a〜lidを所定の空間距離
を設けて被検眼Eの角膜に投影すると、角膜の凸面鏡作
用によって投影視標光源11a〜lidの角膜反射像が
形成されるわけであるが、角膜の曲率半径や乱視度の大
きさに応じてこれらの角膜反射像の光点位置の相互関係
が変化するために、この変化を検出することによって角
膜屈折力や角膜乱視度、軸角度を求めることができるこ
とは周知の通りである。
In FIG. 1, inside the main body 2 provided on the sliding table 1,
A first measurement system for measuring the corneal refractive power of the eye E to be examined and a second measurement system for determining the axial length are provided. 1st
In the measurement system, an objective lens 3 is placed opposite the eye E to be examined.
A two-dimensional image sensor 7 consisting of a mirror 4.5, an imaging lens 6, a COD, etc. is arranged behind it along the optical path, and the output of this two-dimensional image sensor 7 is connected to a television monitor 8. There is. And objective lens 3, mirror 4.5
has an integral structure, and a wire 10 driven by an electric motor 9
It can be moved up and down. Further, around the objective lens 1, as shown in FIG. 2, a plurality of projection index light sources 11a to 11d made of light emitting diodes or the like are arranged at equal intervals around the optical axis. Furthermore, in the second measurement system, the ultrasonic probe 12 placed behind the mirror 4 is connected to the sliding guide member 14 via the probe holder 13.
The ultrasonic probe 12 is held forward by a tension spring 15. Further, the ultrasonic holder 13 can be moved back and forth by a wire 17 moved by an electric motor 16. In addition, in Figure 1,
Reference numerals 18 and 19 indicate guide rollers that guide the wires 10 and 17, respectively, 20a an operation stick, and 20b a vertical adjustment ring. Here, the projection target light sources 11a to lid are placed with a predetermined spatial distance between them. When projected onto the cornea of the optometrist E, corneal reflection images of the projection target light sources 11a to lid are formed due to the convex mirror action of the cornea. It is well known that since the mutual relationship between the positions of light spots in an image changes, corneal refractive power, degree of corneal astigmatism, and axial angle can be determined by detecting this change.

第1の測定系は投影視標光源11a〜lidの角膜反射
像を対物レンズ3、ミラー4.5、結像レンズ6から成
る光学系により、二次元撮像素子7に結像させることに
よって検知している。この検知信号を図示しない電気回
路において信号処理を行い、更には演算処理等を行って
角膜屈折力や角膜乱視度、軸角度を求める。なお、二次
元撮像素子7は測定信号検出のみでなく、被検眼Eの前
眼部観察機構としても利用でき、テレビモニタ8で前眼
部観察を行いながら、摺動台1を操作してアライメント
できるようにされている。
The first measurement system detects the corneal reflection images of the projection target light sources 11a to 11d by forming an image on a two-dimensional image sensor 7 using an optical system consisting of an objective lens 3, a mirror 4.5, and an imaging lens 6. ing. This detection signal is processed in an electric circuit (not shown) and further subjected to arithmetic processing to determine corneal refractive power, corneal astigmatism, and axial angle. The two-dimensional image sensor 7 can be used not only to detect measurement signals but also as a mechanism for observing the anterior segment of the eye E. While observing the anterior segment on the TV monitor 8, alignment can be performed by operating the sliding table 1. It is made possible.

第2の測定系においては、第3図に示すように探触子ホ
ルダ13の位置を検出するスイッチ21a、21bがス
イッチ台板22に取り付けられ、スイッチ台板22の曲
折部23は送り軸24の雄ねじ25と螺合し、送り軸2
4の端部に設けられた調整つまみ26を廻すことにより
、スイッチ台板22即ちスイッチ21a、21bの位置
を探触子12の摺動方向へ動かして任意の位置に設定で
きるようになっている。また、スイッチ台板22には指
針27が設けられ、この指針27と組合わされた目盛板
28から設定位置を読み取れるようにされている。探触
子12の中には超音波発振子、受信子が内蔵されており
、探触子12にはケーブル12aを介して図示しない電
気回路部と接続されている。
In the second measurement system, switches 21a and 21b for detecting the position of the probe holder 13 are attached to a switch base plate 22, as shown in FIG. The feed shaft 2
By turning an adjustment knob 26 provided at the end of the probe 4, the positions of the switch base plate 22, that is, the switches 21a and 21b can be moved in the sliding direction of the probe 12 and set to any desired position. . Further, a pointer 27 is provided on the switch base plate 22, and the setting position can be read from a scale plate 28 combined with the pointer 27. An ultrasonic oscillator and a receiver are built into the probe 12, and the probe 12 is connected to an electric circuit section (not shown) via a cable 12a.

探触子12が被検眼Eの方向へ摺動する場合に、図示し
ないモータ駆動制御器が摺動初期は早い速度で電動機1
6を駆動制御し、探触子ホルダ13がスイッチ21aを
オンさせると電動機16に低速摺動の駆動制御を行う、
更に、探触子ホルダ13がスイッチ21bをオンさせる
位置に至ると、電動機16を停止させる。これにより切
換え時間を短縮し、かつ探触子12が被検眼Eの角膜E
cに強い慣性力のまま突き当るという危険性を回避する
ことができる。
When the probe 12 slides in the direction of the eye E, a motor drive controller (not shown) switches the electric motor 1 at a high speed at the beginning of the slide.
6, and when the probe holder 13 turns on the switch 21a, the electric motor 16 is driven and controlled for low-speed sliding.
Further, when the probe holder 13 reaches a position where the switch 21b is turned on, the electric motor 16 is stopped. This shortens the switching time and allows the probe 12 to connect to the cornea E of the eye E.
It is possible to avoid the risk of hitting c with a strong inertial force.

超音波探触子12を被検眼Eの角膜Ecに接触させた状
態で、探触子12の先端から超音波パルスを発振し、被
検眼Eの網膜からの反射エコーを受信することによって
、角膜Ecの表面から網膜までの眼軸長を検出し、測定
値を求めることができることは周知の通りである。
With the ultrasound probe 12 in contact with the cornea Ec of the eye E, ultrasonic pulses are emitted from the tip of the probe 12 and the reflected echo from the retina of the eye E is received. It is well known that the axial length from the surface of Ec to the retina can be detected and a measured value obtained.

このようにして、被検眼Eの角膜屈折力と眼軸長を測定
したら、これらの値を経験的に得られた計算式により、
人工水晶体の屈折力を算出することができることも良く
知られている。
After measuring the corneal refractive power and axial length of the eye E in this way, these values can be calculated using empirically obtained formulas.
It is also well known that the refractive power of an artificial lens can be calculated.

本実施例では、角膜屈折力測定時には超音波探触子12
は角膜屈折力測定光路を妨げないように、ミラー4の後
方に退避されているが、図示しない切換スイッチより眼
軸長測定モードに切換えると、対物レンズ3、ミラー4
.5が下降し、次に探触子12が被検眼Eの方向に移動
を開始し、探触子ホルダ13がスイッチ21a、21b
を順次にオンさせた後、探触子12は移動を停止しその
先端が角膜Haに接触して第3図に示す状態になる。こ
のとき、対物レンズ3、ミラー4.5の下降動作は、電
動機9、ワイヤ10等から成る駆動機構によって動かさ
れる。同様に、探触子12の移動も電動機16とワイヤ
17等から成る駆動機構によって行われる。
In this embodiment, when measuring the corneal refractive power, the ultrasound probe 12
is retracted behind the mirror 4 so as not to obstruct the corneal refractive power measurement optical path. However, when switching to the axial length measurement mode using a changeover switch (not shown), the objective lens 3 and mirror 4
.. 5 descends, then the probe 12 starts moving in the direction of the eye E, and the probe holder 13 closes the switches 21a and 21b.
After sequentially turning on the probe 12, the probe 12 stops moving and its tip contacts the cornea Ha, resulting in the state shown in FIG. 3. At this time, the objective lens 3 and the mirror 4.5 are lowered by a drive mechanism including an electric motor 9, a wire 10, and the like. Similarly, the movement of the probe 12 is also performed by a drive mechanism consisting of an electric motor 16, a wire 17, and the like.

ここで、角膜屈折力測定時における被検眼Eの角膜の位
置と、眼軸長測定時における超音波探触子12の先端の
位置とを概略一致させておくか、又は光軸方向に若干付
き出すようにしておくかは調整つまみ26によって任意
に設定することができる。かくすることにより、角膜屈
折力測定時にテレビモニタ8を観察しながら、適正なア
ライメント操作を行った後に眼軸長測定モードに切換え
た場合には、アライメントの再調整をしなくとも探触子
12の先端は角膜に接触する位置まで前進し、直ちに眼
軸長の測定を行うことができる。
Here, the position of the cornea of the eye E to be examined when measuring the corneal refractive power should be approximately the same as the position of the tip of the ultrasound probe 12 when measuring the axial length, or the position of the tip of the ultrasound probe 12 should be slightly aligned in the optical axis direction. The adjustment knob 26 can be used to arbitrarily set whether or not it should be exposed. By doing so, if the mode is switched to the axial length measurement mode after performing appropriate alignment operations while observing the television monitor 8 during corneal refractive power measurement, the probe 12 can be adjusted without readjusting the alignment. The tip of the eyepiece is advanced to a position where it touches the cornea, and the axial length can be immediately measured.

第4図は第2の実施例を示し、第3図と同一の符号は同
−又は同等の部材を表している。この実施例においては
、スイッチ21a、21bを取り付けたスイッチ台板2
2a、22bを別個にし、スイッチ21a、21bをそ
れぞれの送り軸24a、24b、調整つまみ26a、2
6bによって個別に調整できるようにしである。また、
スイッチ台板22bに設けられた指針27bは目盛板2
8bと組合わせ、スイッチ台板22aに設けられた指針
27aと組合わせられる目盛28aはスイッチ台板22
bに設けられている。このように構成すれば、探触子1
2の摺動速度を低速に切換えるスイッチ21aの位置と
、探触子12の停止位置を検出するスイッチ21bの位
置とを独立に設定できるため、角膜Ecの屈折力測定モ
ードから眼軸長測定モードへ切換えるときの切換えに要
する時間を自在に設定することが可能になる。
FIG. 4 shows a second embodiment, in which the same reference numerals as in FIG. 3 represent the same or equivalent members. In this embodiment, the switch base plate 2 on which the switches 21a and 21b are attached is
2a and 22b are separated, and the switches 21a and 21b are connected to the respective feed shafts 24a and 24b and adjustment knobs 26a and 2.
6b allows for individual adjustment. Also,
The pointer 27b provided on the switch base plate 22b is the scale plate 2.
The scale 28a that is combined with the pointer 27a provided on the switch base plate 22a is the scale 28a that is combined with the pointer 27a provided on the switch base plate 22a.
b. With this configuration, probe 1
Since the position of the switch 21a that changes the sliding speed of the probe 2 to a low speed and the position of the switch 21b that detects the stop position of the probe 12 can be set independently, the mode can be changed from the refractive power measurement mode of the cornea Ec to the axial length measurement mode. It becomes possible to freely set the time required for switching.

第5図は第3の実施例を示し、この実施例では探触子ホ
ルダ13の位置検出手段として、第6図に示すように縞
状の複数の反射部を有し、基準位置に光束透過孔30a
を設けたマーク板30、探触子ホルダ13側に設けられ
た一対の発光素子31と受光素子32、基準位置に配置
された基準位置検出用の受光素子33から成る非接触型
光検出器が用いられ、発光素子31からマーク板30に
向けた光の反射光を受光素子32によって受光し、マー
ク板30が移動して発光素子31が基準位置近くにきた
ときは、発光素子31からの光を光束透過孔30aを介
して受光素子33が受光するようにされている。
FIG. 5 shows a third embodiment. In this embodiment, as a position detection means of the probe holder 13, a plurality of striped reflecting parts are provided as shown in FIG. Hole 30a
A non-contact photodetector consists of a mark plate 30 provided with a mark plate 30, a pair of light emitting elements 31 and a light receiving element 32 provided on the probe holder 13 side, and a light receiving element 33 for detecting a reference position placed at a reference position. The light receiving element 32 receives the reflected light from the light emitting element 31 toward the mark plate 30, and when the mark plate 30 moves and the light emitting element 31 comes near the reference position, the light from the light emitting element 31 is The light receiving element 33 receives the light through the light flux transmission hole 30a.

第7図はこの実施例の信号処理系を例示したものであり
、探触子ホルダ13の摺動に伴って受光素子32から出
力されるパルス状信号は加算器34によって積算され、
積算器34の加算出力は受光素子33の出力信号によっ
てリセットされる。速度演算器35は初速設定器36、
終速設定器37及び加算器34からのデータを入力して
速度制御信号Sを演算出力し、モータ駆動制御器38を
介して第1図に示す電動機16を駆動制御する。速度演
算器35での演算内容は、初速設定器36、終速設定器
37による初速値から終速値に至る速度変化を加算器3
4の出力データに対する関数として演算し、任意の関数
型を速度演算器35に設定することが可能である。一方
、速度演算器35は加算器34の出力データと端部位置
設定器39の値が一致したとき、及び受光素子33の出
力信号を入力したときに、速度制御信号Sに停止指令の
信号を与えるようになっている。この実施例の場合も、
角膜屈折力測定モードから眼軸長測定モードへ切換える
際の所要時間を最短に設定する速度制御が可能である。
FIG. 7 shows an example of the signal processing system of this embodiment, in which pulsed signals output from the light receiving element 32 as the probe holder 13 slides are integrated by an adder 34.
The addition output of the integrator 34 is reset by the output signal of the light receiving element 33. The speed calculator 35 includes an initial speed setting device 36,
The data from the final speed setter 37 and the adder 34 are input, a speed control signal S is calculated and outputted, and the electric motor 16 shown in FIG. 1 is driven and controlled via the motor drive controller 38. The content of the calculation in the speed calculator 35 is that the speed change from the initial speed value to the final speed value by the initial speed setter 36 and the final speed setter 37 is calculated by the adder 3.
It is possible to calculate as a function for the output data of No. 4 and set an arbitrary function type in the speed calculator 35. On the other hand, the speed calculator 35 outputs a stop command signal to the speed control signal S when the output data of the adder 34 and the value of the end position setter 39 match, and when the output signal of the light receiving element 33 is input. It is designed to give. Also in this example,
It is possible to control the speed to minimize the time required to switch from the corneal refractive power measurement mode to the axial length measurement mode.

なお、この実施例ではマーク板30を1ビツトのエンコ
ーダで構成した場合を示したが、位置の絶対値が読み取
り可能な多ビットのエンコーダで構成することもできる
In this embodiment, the mark plate 30 is constructed of a 1-bit encoder, but it can also be constructed of a multi-bit encoder that can read the absolute value of the position.

また、上述の実施例は被検眼の角膜に対して所定の距離
を保持して、被検眼情報を検出する第1の測定系として
角膜屈折力測定手段を、また角膜に検出端子端を接触さ
せた状態で、被検眼情報を検出する第2の測定系として
超音波眼軸長測定手段を適用し、検出端が超音波探触子
である場合を示したが、これは単に一例を示したもので
あり、第1の測定系及び第2の測定系には、その他の測
定手段を適用してもよいことは勿論である。
Further, in the above-described embodiment, the corneal refractive power measuring means is held at a predetermined distance from the cornea of the eye to be examined as the first measurement system for detecting information about the eye to be examined, and the end of the detection terminal is brought into contact with the cornea. In this case, an ultrasonic axial length measuring means is applied as a second measurement system for detecting information on the subject's eye, and the detection end is an ultrasonic probe, but this is merely an example. Of course, other measurement means may be applied to the first measurement system and the second measurement system.

[発明の効果] 以上説明したように本発明に係る眼科装置は、被検眼の
角膜に接触する検出端の端部位置を任意に設定できる゛
ようにしたため、被検眼の角膜に対して所定の距離を保
って測定を行う第1の測定系の機能状態から、検出端を
角膜に接触させて測定を行う第2の測定系の機能状態に
迅速に移行することができる0例えば、角膜屈折力測定
モードから眼軸長測定モードへの移行の際の探触子の低
速摺動開始位置を適正に設定することによって切換えに
要する時間を最短に設定しておけば、角膜屈折力と眼軸
長の計測を連続的に迅速に行うことができ、白内障手術
等において患者や施術者に掛かる負担を大幅に軽減する
ことが可能である。
[Effects of the Invention] As explained above, the ophthalmological device according to the present invention allows the end position of the detection end that contacts the cornea of the eye to be examined to be set arbitrarily, so that For example, corneal refractive power can quickly shift from the functional state of the first measuring system, which performs measurements while maintaining a distance, to the functional state of the second measuring system, which performs measurements by bringing the detection end into contact with the cornea. If the time required for switching from the measurement mode to the axial length measurement mode is set appropriately by setting the low-speed sliding start position of the probe appropriately, the corneal refractive power and the axial length can be can be measured continuously and quickly, making it possible to significantly reduce the burden on patients and practitioners during cataract surgery and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る眼科装置の実施例を示し、第1図は
全体の構成図、第2図は投影指標光源の配置例の正面図
、第3図〜第5図はそれぞれ第1〜第3の実施例の構成
図、第6図はマーク板の平面図、第7図は信号処理系の
ブロック図である。 符号1は摺動台、2は本体、3は対物レンズ、7は二次
元撮像素子、8はテレビモニタ、9.16は電動機、1
0.17はワイヤ、11a〜11dは投影視標光源、1
2は超音波探触子、13は探触子ホルダ、14は摺動案
内部材、15はテンシ重ンばね、21a、21bはスイ
ッチ、22はスイッチ台板、24は送り軸、25は雄ね
じ、26は調整つまみ、27は指針、28は目盛板、3
0はマーク板、30aは光束透過孔、31は発光素子、
32.33は受光素子、34は加算器、35は速度演算
器、36は初速設定器、37は終速設定器、38はモー
タ駆動制御器、39は端部位置設定器である。 図 面     第1図 第2図 0〜11c 第5図 亮6図 第7図
The drawings show an embodiment of the ophthalmological apparatus according to the present invention, in which FIG. 1 is an overall configuration diagram, FIG. 2 is a front view of an example of the arrangement of projection index light sources, and FIGS. FIG. 6 is a plan view of the mark plate, and FIG. 7 is a block diagram of the signal processing system. 1 is a sliding table, 2 is a main body, 3 is an objective lens, 7 is a two-dimensional image sensor, 8 is a television monitor, 9.16 is an electric motor, 1
0.17 is a wire, 11a to 11d are projection target light sources, 1
2 is an ultrasonic probe, 13 is a probe holder, 14 is a sliding guide member, 15 is a tension spring, 21a, 21b are switches, 22 is a switch base plate, 24 is a feed shaft, 25 is a male screw, 26 is an adjustment knob, 27 is a pointer, 28 is a scale plate, 3
0 is a mark plate, 30a is a luminous flux transmission hole, 31 is a light emitting element,
32 and 33 are light receiving elements, 34 is an adder, 35 is a speed calculator, 36 is an initial speed setter, 37 is a final speed setter, 38 is a motor drive controller, and 39 is an end position setter. Figure 1 Figure 2 Figure 0-11c Figure 5 Ryo 6 Figure 7

Claims (1)

【特許請求の範囲】 1、被検眼の角膜に対して所定の距離を保持した状態で
被検眼情報を検出する第1の測定系と、被検眼の角膜に
検出端の端部を接触させた状態で被検眼情報を検出する
第2の測定系とを同一の摺動台に支持された測定器本体
に取り付け、被検眼の位置を固定した状態で前記第1、
第2の測定系を切換可能とした眼科装置において、前記
第1の測定系の測定状態から前記第2の測定系の測定状
態に切換えたとき、前記第2の測定系の検出端の端部が
前記第1の測定系の適正測定状態の被検眼の角膜位置に
対して測定器本体の光軸方向に可変の所定位置になるよ
うに設定する端部位置設定手段と、前記検出端の位置を
認識する端部位置認識手段とを有することを特徴とする
眼科装置。 2、前記第2の測定系の機能状態への設定を動力によっ
て行う駆動手段を有し、前記端部位置認識手段の出力に
より前記検出端の駆動速度を制御する速度制御手段を有
する特許請求の範囲第1項に記載の眼科装置。 3、前記第1の測定系は角膜屈折力測定手段とし、前記
第2の測定系は超音波眼軸長測定手段とした特許請求の
範囲第1項に記載の眼科装置。
[Scope of Claims] 1. A first measurement system that detects information on the eye to be examined while maintaining a predetermined distance from the cornea of the eye to be examined, and an end of the detection end in contact with the cornea of the eye to be examined. A second measuring system for detecting information on the eye to be examined is attached to the main body of the measuring instrument supported on the same sliding table, and the first,
In an ophthalmological apparatus in which a second measurement system can be switched, when the measurement state of the first measurement system is switched to the measurement state of the second measurement system, the end of the detection end of the second measurement system an end position setting means for setting the detection end to a variable predetermined position in the optical axis direction of the measuring instrument body with respect to the corneal position of the eye to be examined in the proper measurement state of the first measurement system; An ophthalmological apparatus characterized by having an end position recognition means for recognizing. 2. A driving means for setting the functional state of the second measurement system using power, and a speed control means for controlling the driving speed of the detection end based on the output of the end position recognition means. The ophthalmological device according to scope 1. 3. The ophthalmologic apparatus according to claim 1, wherein the first measurement system is corneal refractive power measurement means, and the second measurement system is ultrasonic axial length measurement means.
JP63004030A 1987-09-30 1988-01-12 Ophthalmic device Pending JPH01181843A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63004030A JPH01181843A (en) 1988-01-12 1988-01-12 Ophthalmic device
DE8888116028T DE3878123T2 (en) 1987-09-30 1988-09-28 DEVICE FOR Ophthalmology.
EP88116028A EP0310045B1 (en) 1987-09-30 1988-09-28 Ophthalmologic apparatus
US07/767,360 US5116114A (en) 1987-09-30 1991-09-30 Ophthalmologic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004030A JPH01181843A (en) 1988-01-12 1988-01-12 Ophthalmic device

Publications (1)

Publication Number Publication Date
JPH01181843A true JPH01181843A (en) 1989-07-19

Family

ID=11573563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004030A Pending JPH01181843A (en) 1987-09-30 1988-01-12 Ophthalmic device

Country Status (1)

Country Link
JP (1) JPH01181843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244457A (en) * 2006-03-14 2007-09-27 Nidek Co Ltd Opthalmological device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244457A (en) * 2006-03-14 2007-09-27 Nidek Co Ltd Opthalmological device

Similar Documents

Publication Publication Date Title
US5116114A (en) Ophthalmologic apparatus
US6309068B1 (en) Eye examining apparatus
US11191431B2 (en) Ophthalmic apparatus
KR20020077229A (en) Ophthalmologic apparatus and auto-alignment method
JP6071304B2 (en) Ophthalmic apparatus and alignment method
JPH04200436A (en) Ophthamologic apparatus
US11134842B2 (en) Observation system and non-transitory computer-readable medium storing computer-readable instructions
US20040156019A1 (en) Opthalmologic apparatus
JP2014209993A (en) Ophthalmologic apparatus, control method for ophthalmologic apparatus, and program
JP2000033075A (en) Ophthalmologic device and ophthalmologic examination method
CN100496383C (en) Ophthalmologic apparatus
JP4749836B2 (en) Ophthalmic equipment
JP2000245698A (en) Instrument for measuring eye refractivity
JPH0554771B2 (en)
JPH01181843A (en) Ophthalmic device
JP6586599B2 (en) Eye refractive power measuring device
EP0189350B1 (en) Automatic eye refractive power measuring apparatus
JP6823339B2 (en) Ophthalmic equipment
JPH01119229A (en) Eye refractometer
JP7035630B2 (en) Ophthalmic equipment
JPH06304140A (en) Eye examination device
JPS61293426A (en) Apparatus for automatic measurement of eye refraction power
JPH0191833A (en) Ophthalmic apparatus
JP2021065669A (en) Optometer
JP2000033073A (en) Ophthalmologic apparatus