JPH01181522A - X ray aligner for manufacturing semiconductor element - Google Patents

X ray aligner for manufacturing semiconductor element

Info

Publication number
JPH01181522A
JPH01181522A JP63003110A JP311088A JPH01181522A JP H01181522 A JPH01181522 A JP H01181522A JP 63003110 A JP63003110 A JP 63003110A JP 311088 A JP311088 A JP 311088A JP H01181522 A JPH01181522 A JP H01181522A
Authority
JP
Japan
Prior art keywords
axis table
axis
weight
air cylinder
upward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63003110A
Other languages
Japanese (ja)
Inventor
Setsuo Setoguchi
瀬戸口 節男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP63003110A priority Critical patent/JPH01181522A/en
Publication of JPH01181522A publication Critical patent/JPH01181522A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving

Abstract

PURPOSE:To enable x-axis table driving force to be small and positioning control to be extremely speedy and highly accurate by providing an air cylinder for compensation for balancing each weight of x-axis and y-axis tables. CONSTITUTION:An air cylinder 5 for compensation and a y-axis table 6 are connected magnetically by permanent magnets 10 and 13. Supporting and working forces matching the weight of weight plus y-axis tables 6, 6 of an x-axis table 2 are operated upward by constantly supplying a compressed air of a certain pressure to an actuation chamber 22. A y-axis table 6 is driven upward or downward by linear motors 9 and 8. Thus, in either upward or downward drive, the same driving force can be used for linear motors 7 and 8 for allowing positioning control to be made highly precisely and at high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子製造工程におけるSOR」のX線
露光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray exposure apparatus for "SOR" in a semiconductor device manufacturing process.

〔従来の技術とその課題〕[Conventional technology and its issues]

周知の通り、半導体素子製造工程では、マスクのパター
ンとウェハのパターンとの相対的な位置を合せる必要が
ある。これをマスク合せまたは位置決め(アライメント
)と称し、この工程の後、紫外線、電子線やX線を照射
して露光する。そして、このマスク合せおよび露光を行
う装置を露光装置と称している。
As is well known, in the semiconductor device manufacturing process, it is necessary to align the relative positions of a mask pattern and a wafer pattern. This is called mask alignment or mask alignment, and after this step, exposure is performed by irradiating ultraviolet rays, electron beams, or X-rays. The device that performs this mask alignment and exposure is called an exposure device.

ところで、半導体素子の超小形化と、高密度化の要請に
応じ、パターの幅が1μmあるいはそれ以下のものが出
現されるようになった。そのため、露光に際し、波長の
短いX線露光装置が脚光をあびるようになった(実公昭
56−5307号公報参照)。すなわち、線幅0.25
μmという超精密な露光には、特にSORを光源とする
X線露光が好ましく、そのため、X線露光装置について
各種の提案が行われている。かかるSORをX線源とす
る露光装置においては、X線輝変が大きいことの他に、
光がほぼ平行に近いので、従来のxtas(電子線励起
影線源やプラズマX線源)で問題になっていた半影ぼけ
やランアウト誤差は全く問題にならない利点があるもの
の、SORリングが大型で、かつ光が水平に出るため、
ウェハテーブル(またはステージともいう)面が垂直に
なることなどの制約が新たに発生している。
By the way, in response to the demand for ultra-miniaturization and high density semiconductor devices, patterns with a width of 1 μm or less have appeared. For this reason, X-ray exposure devices with short wavelengths have come into the spotlight for exposure (see Japanese Utility Model Publication No. 56-5307). That is, line width 0.25
X-ray exposure using an SOR as a light source is particularly preferable for ultra-precise exposure on the order of μm, and therefore various proposals have been made regarding X-ray exposure apparatuses. In an exposure apparatus using such an SOR as an X-ray source, in addition to large changes in X-ray brightness,
Since the lights are almost parallel, the penumbra blur and runout errors that were problems with conventional xtas (electron beam excited shadow sources and plasma And since the light comes out horizontally,
New constraints have arisen, such as the wafer table (or stage) surface being vertical.

すなわち、SORをX線源とする露光装置においては、
水平(X軸)および垂直(y軸)方向の位置決めを高精
度に、かつ高速に行うためのX軸テーブルおよびy軸テ
ーブルが設けられているが、このうち垂直(y軸)方向
にy軸テーブルを位置決めする場合には、移動方向が上
向きまたは下向きにより、これを駆動するアクチュエー
タには、テーブル自身の重量の負荷がプラス方向に作用
したり、マイナス方向に作用したりするので、位置決め
制御上、大きな外乱要因となり、これらテーブルを高精
度に位置決めすることが困難となる。
In other words, in an exposure apparatus that uses SOR as an X-ray source,
An X-axis table and a y-axis table are provided to perform positioning in the horizontal (X-axis) and vertical (y-axis) directions with high precision and at high speed. When positioning a table, depending on whether the table is moving upward or downward, the weight of the table itself acts on the actuator that drives it in a positive or negative direction, so positioning control is affected. This causes a large disturbance, making it difficult to position these tables with high precision.

したがって、従来、この種の通常の露光装置では、テー
ブル自身の重量と同等の負荷をテーブルの自重と反対向
きに作用させて、上記外乱要因を極力回避するようにし
ている。
Therefore, conventionally, in this type of normal exposure apparatus, a load equivalent to the weight of the table itself is applied in a direction opposite to the table's own weight in order to avoid the above-mentioned disturbance factors as much as possible.

すなわち、カウンタウェイト方式と呼ばれる装置が知ら
れており、この方式は次のように構成されている。1対
の無端状の鋼製ベルト(またはワイヤ)が上および下に
位置されたプーリにそれぞれ巻架されていて、この1対
の鋼製ベルトに亘りy軸テーブルが取付けられている。
That is, a device called a counterweight system is known, and this system is configured as follows. A pair of endless steel belts (or wires) are wound around pulleys located above and below, respectively, and a y-axis table is attached across the pair of steel belts.

一方、これらプーリを中心にy軸テーブルと対称的な位
置に、X軸およびy軸テーブルと同一重量のウェイトを
鋼製ベルトに吊り下げている。
On the other hand, weights having the same weight as the X-axis and y-axis tables are suspended from steel belts at positions symmetrical to the y-axis tables around these pulleys.

しかしながら、かかるカウンタウェイト方式では、l)
制御しようとする重量が、テーブル重量、カウンタウェ
イトの重量および鋼製ベルトの重量など、テーブル重量
の2倍以上となって、アクチュエータの容量が大きくな
るという問題がある。
However, in such a counterweight method, l)
There is a problem in that the weight to be controlled is more than twice the table weight, such as the table weight, the weight of the counterweight, and the weight of the steel belt, resulting in an increase in the capacity of the actuator.

2)、また、テーブルやウェイトを連結する鋼製ベルト
は、可及的に剛性が高いことが要求されるが、他方、上
下位置の各プーリで曲げる必要上、曲げ抵抗の小さなこ
とが要求され、両者の要求は互いに対立する。したがっ
て、鋼製ベルトは剛性が低くなり、しかも曲げ変形抵抗
を有する、という問題がある。更に、鋼製ベルI・とは
引張り方向にはある程度の剛性を有するが、圧縮方向に
は剛性が極めて低い、したがって、テーブルとカウンタ
ウェイトとは、低い固有振動を有する系を構成すること
になり、アライメントに不都合な微細な振動を発生する
、という問題がある。3)更に、プーリの回転支持部の
摩擦抵抗、鋼製ベルトの振動、および鋼製ベルトの曲げ
抵抗により、負荷変動が生じる、という問題がある。
2) Also, the steel belt that connects the table and weights is required to have as high rigidity as possible, but on the other hand, it is required to have low bending resistance because it needs to be bent by the pulleys at the top and bottom positions. , both demands conflict with each other. Therefore, there is a problem that the steel belt has low rigidity and also has resistance to bending deformation. Furthermore, the steel bell I has a certain degree of rigidity in the tensile direction, but extremely low rigidity in the compressive direction.Therefore, the table and counterweight form a system with low natural vibration. , there is a problem in that minute vibrations that are inconvenient to alignment are generated. 3) Furthermore, there is a problem in that load fluctuations occur due to frictional resistance of the rotating support portion of the pulley, vibration of the steel belt, and bending resistance of the steel belt.

したがって、これらl)、2)、3)の理由により、か
かるカウンタウェイト方式は、高精度で高速の位置決め
を行うためには好ましくない点が伏在するのである。
Therefore, for reasons 1), 2), and 3), this counterweight method is undesirable for high-accuracy and high-speed positioning.

〔課題を解決するための手段〕[Means to solve the problem]

そこで本発明は、かかる問題点を解決することに着目し
て創作されたもので、その要旨とするところは、SOR
のX線光源から分離され、かつ垂直タイプのX軸テーブ
ルを垂直タイプのy軸テーブルに水平方向に移動自在に
架設したX線露光装置において、前記y軸テーブルを垂
直方向に移動して位置決めするためのアクチュエータと
、前記X軸テーブルおよびy軸テーブルの重量とバラン
スさせるための補償用エアシリンダと、該補償用エアシ
リンダのピストンおよびy軸テーブルにそれぞれ設けら
れ、かつ該補償用エアシリンダと該y軸テーブルとを非
接触的に連結するための磁石と、からなる半導体素子製
造用X線露光装置にある。
Therefore, the present invention was created with a focus on solving such problems, and its gist is that SOR
In an X-ray exposure apparatus that is separated from an X-ray light source, and in which a vertical type X-axis table is installed on a vertical type y-axis table so as to be movable in the horizontal direction, the y-axis table is moved in the vertical direction for positioning. a compensating air cylinder for balancing the weights of the X-axis table and the y-axis table; and a compensating air cylinder provided on the piston of the compensating air cylinder and the y-axis table, respectively; An X-ray exposure apparatus for manufacturing semiconductor devices includes a magnet for connecting a y-axis table in a non-contact manner.

〔実施例〕〔Example〕

本発明の構成を作用とともに、添付図面に示す実施例よ
り詳細に説明する。第1図は本発明の実施例の正面図、
第2図は第1図のA矢視断面図、第3図は第1図の一部
詳細断面図、第4図は第3図のB矢視断面図、第5図は
他の実施例の一部詳細断面図で第3図に相当する。第6
図は第5図のC矢視断面図、第7図は第5図のD矢視断
面図を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure and operation of the present invention will be explained in detail with reference to embodiments shown in the accompanying drawings. FIG. 1 is a front view of an embodiment of the present invention;
Fig. 2 is a sectional view taken along arrow A in Fig. 1, Fig. 3 is a partially detailed sectional view of Fig. 1, Fig. 4 is a sectional view taken along arrow B in Fig. 3, and Fig. 5 is another embodiment. This is a partial detailed sectional view of FIG. 3. 6th
The figure shows a sectional view taken along arrow C in FIG. 5, and FIG. 7 shows a sectional view taken along arrow D in FIG.

しかして、本実施例は超LSIなどミクロン級の半導体
素子の製造工程に適用されるSORをX線源とする露光
装置であって、■はX軸ガイド、2はX軸テーブル、3
は断面矩形のy軸ガイド、4はy軸ガイド用サポート、
5は補償用エアシリンダ、6はy軸テーブル、7ばy軸
テーブル6の下面に取付けられたりニアモータ、8はベ
ース15の上面に取付けられたりニアモータで、これら
のりニアモータ7.8はy軸テーブル6のアクチュエー
タとして動作する。9は、適宜の圧力空気口より圧縮空
気が供給されて、X軸ガイド3とy軸テーブル6との間
に形成された静圧空気層を示す。
Therefore, this embodiment is an exposure apparatus using an SOR as an X-ray source, which is applied to the manufacturing process of micron-level semiconductor devices such as VLSIs, in which 2 is an X-axis guide, 2 is an X-axis table, and 3
is a y-axis guide with a rectangular cross section, 4 is a support for the y-axis guide,
5 is a compensation air cylinder, 6 is a y-axis table, 7 is a near motor attached to the bottom surface of the y-axis table 6, and 8 is a near motor attached to the top surface of the base 15; these near motors 7 and 8 are attached to the y-axis table. 6 actuator. 9 indicates a static air layer formed between the X-axis guide 3 and the Y-axis table 6 by supplying compressed air from an appropriate pressure air port.

そして、補償用エアシリンダ5は次のように構成されて
いる。すなわち、10はy軸テーブル側の永久磁石、1
1はシリンダチューブ12と永久磁石10との間に形成
されたエアギャップ、13はピストン14側の永久磁石
、16はピストン14の上下両端で外周に向けて複数個
穿設された噴出孔であって、圧力空気供給管20と連通
している。
The compensation air cylinder 5 is constructed as follows. That is, 10 is the permanent magnet on the y-axis table side, 1
1 is an air gap formed between the cylinder tube 12 and the permanent magnet 10, 13 is a permanent magnet on the side of the piston 14, and 16 is a plurality of injection holes bored toward the outer circumference at both the upper and lower ends of the piston 14. and communicates with the pressurized air supply pipe 20.

17は排気口でピストン14の上側部位の作動室22を
大気に連通させている。18は作動室22へ圧縮空気を
供給する圧力空気供給口、19は静圧空気層、21はヨ
ークを示す。
Reference numeral 17 denotes an exhaust port which communicates the working chamber 22 in the upper part of the piston 14 with the atmosphere. 18 is a pressure air supply port that supplies compressed air to the working chamber 22, 19 is a static pressure air layer, and 21 is a yoke.

本実施例は以上の構成となっているので、その動作は次
のようにして行われる。すなわち、X軸テーブル2は、
■対のy軸テ〜プル6間を、X軸ガイドlに組込まれた
りニアモータ(図示せず)により、水平(X軸)方向に
駆動され、位置決めが行われる。
Since this embodiment has the above configuration, its operation is performed as follows. That is, the X-axis table 2 is
(2) Positioning is performed between the pair of y-axis tables and pulls 6 by driving in the horizontal (X-axis) direction by a near motor (not shown) built into the X-axis guide 1 or by a near motor (not shown).

また、1対のy軸テーブル6.6は、これらテーブル6
の下面およびベース15の上面に設けられたリニアモー
タ7,8により、垂直(y軸)方向器こ駆動され、位置
決めが行われる。
Also, the pair of y-axis tables 6.6 are
Linear motors 7 and 8 provided on the lower surface of the base 15 and the upper surface of the base 15 drive the base 15 in the vertical (y-axis) direction to perform positioning.

ここにおいて、以下、1対のy軸テーブル6の片側につ
いてのみ説明するが、シリンダチューブ12の内面とピ
ストン14の外周との間隙には、圧力空気供給管20よ
り圧縮空気が噴出孔16を介して供給され、静圧空気N
19を形成すると同時に、作動室22へ供給される圧縮
空気のシール作用をも行う。したがって、ピストン14
の摺動抵抗およびシール抵抗を大幅に軽減し、後述のバ
ランス精度に寄与している。
Here, only one side of the pair of y-axis tables 6 will be described below, but compressed air is supplied from the pressure air supply pipe 20 through the jet hole 16 into the gap between the inner surface of the cylinder tube 12 and the outer periphery of the piston 14. is supplied with static pressure air N
19 and at the same time, it also performs a sealing action for the compressed air supplied to the working chamber 22. Therefore, the piston 14
This greatly reduces the sliding resistance and sealing resistance, contributing to the balance accuracy described below.

ピストンI4とy軸テーブル6とは永久磁石10.13
により磁気的に連結されており、X軸テーブル2の重量
プラスy軸テーブル6.6の重量に見合う支持・作動力
を、作動室22に常時一定圧の圧縮空気を供給して、上
向きに作用させておき、y軸テーブル6をリニアモータ
9.8によって上向きまたは下向きに駆動すると、上下
いずれの駆動においてもリニアモータ7.8には同一の
駆動力でよく、位置決め制御が高精度に、かつ高速に行
われる。
Piston I4 and y-axis table 6 are permanent magnets 10.13
The supporting and operating force corresponding to the weight of the X-axis table 2 plus the weight of the Y-axis table 6.6 is applied upward by constantly supplying compressed air at a constant pressure to the working chamber 22. If the y-axis table 6 is driven upward or downward by the linear motor 9.8, the same driving force is required for the linear motor 7.8 regardless of whether it is driven up or down, and positioning control can be performed with high precision and Done fast.

なお、本実施例では、1対のピストン14に静荷重の1
/2の力をそれぞれ発生させていることから、X軸テー
ブル2のX軸上の位置により、1対のシリンダチューブ
12における、それぞれのピストン14に分配される静
荷重は変化するので、X軸テーブル2の位置を検出して
、その位置に応じた各シリンダチューブ12の作動室2
2の圧縮空気の圧力を変化させてもよい、また、本明細
書中の圧縮空気は不活性ガスも含まれるものとする。
In this embodiment, a static load of 1 is applied to the pair of pistons 14.
/2 force respectively, the static load distributed to each piston 14 in the pair of cylinder tubes 12 changes depending on the position of the X-axis table 2 on the X-axis. The position of the table 2 is detected and the working chamber 2 of each cylinder tube 12 is adjusted according to the position.
The pressure of the compressed air in step 2 may be changed, and compressed air in this specification also includes inert gas.

次に、本発明の他の実施例を説明すれば、第5図から第
7図において、この実施例では前述の実施例のX軸ガイ
ド3を省略し、その代り、シリンダチューブ12の外周
とy軸テーブル6の内周との間へ、圧縮空気を圧力空気
供給管23より分岐して複数の半径方向より供給し、静
圧空気層19を形成している。
Next, another embodiment of the present invention will be described. In FIGS. 5 to 7, in this embodiment, the X-axis guide 3 of the previous embodiment is omitted, and instead, the outer circumference of the cylinder tube 12 is Compressed air is branched from a pressure air supply pipe 23 and supplied from a plurality of radial directions between the inner circumference of the y-axis table 6 and a static air layer 19 is formed.

〔発明の効果〕〔Effect of the invention〕

本発明では次のような優れた効果が期待できる。 The following excellent effects can be expected from the present invention.

すなわち、X軸テーブルおよびy軸テーブルの各重量と
バランスさせる補償用エアシリンダを設けたので、y軸
テーブルを駆動するアクチュエータは、従来のカウンタ
ウェイト方式と違い、駆動力が一定で、かつ容量小とす
ることから、y軸テーブル軸の位置合せ制御が外乱要因
なく、高速で、かつ高精度にできる。
In other words, since a compensating air cylinder is provided to balance the respective weights of the X-axis table and the y-axis table, the actuator that drives the y-axis table has a constant driving force and a small capacity, unlike the conventional counterweight method. Therefore, the positioning control of the y-axis table axis can be performed at high speed and with high accuracy without any disturbance factors.

しかも、補償用エアシリンダのピストンとy軸テーブル
とを、磁石を介して、非接触的に連結したので、つまり
ロッドレスシリンダとしたので、ピストンとy軸テーブ
ルとのつなぎ部材が大幅に簡略化できる。
Moreover, since the piston of the compensation air cylinder and the y-axis table are connected non-contactly via a magnet, in other words, it is a rodless cylinder, the connecting member between the piston and the y-axis table is greatly simplified. can.

加えて、前記位置決め制御に好都合なピストンには逆に
振動等短所が惹起されるが、ピストンのもつ振動等の外
乱要因はy軸テーブルには伝達されず、無振動化を形成
し、位置決め精度に支障を与えることがない。
In addition, although the piston, which is convenient for positioning control, has disadvantages such as vibration, the piston's disturbance factors such as vibration are not transmitted to the y-axis table, creating a vibration-free state and improving positioning accuracy. It will not cause any hindrance.

更に、従来のカウンタウェイト方式で生じていた、鋼製
ベルト等の圧縮方向作用時における剛さを低下させる問
題は生じない。
Furthermore, the problem of reducing the stiffness of a steel belt or the like when acting in a compressive direction, which occurs with conventional counterweight systems, does not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の正面図、第2図は第1図のA
矢視断面図、第3図は第1図の一部詳細断面図、第4図
は第3図のB矢視断面図、第5図は他の実施例の一部詳
細断面図で第3図に相当する。第6図は第5図のC矢視
断面図、第7図は第5図のD矢視断面図を示す。 2・・・X軸テーブル、5・・・補償用エアシリンダ、
6・・・y軸テーブル、7.8・・・リニアモータ、1
0゜13・・・磁石。 業4図 fs7図 14     1ソ
Figure 1 is a front view of an embodiment of the present invention, and Figure 2 is A of Figure 1.
3 is a partially detailed sectional view of FIG. 1, FIG. 4 is a partially detailed sectional view of FIG. Corresponds to the figure. 6 is a sectional view taken along arrow C in FIG. 5, and FIG. 7 is a sectional view taken along arrow D in FIG. 2...X-axis table, 5...Compensation air cylinder,
6...y-axis table, 7.8...linear motor, 1
0°13...Magnet. Figure 4 fs7 Figure 14 1

Claims (1)

【特許請求の範囲】[Claims] (1)SORのX線光源から分離され、かつ垂直タイプ
のx軸テーブルを垂直タイプのy軸テーブルに水平方向
に移動自在に架設したX線露光装置において、 前記y軸テーブルを垂直方向に移動して位置決めするた
めのアクチュエータと、 前記x軸テーブルおよびy軸テーブルの重量とバランス
させるための補償用エアシリンダと、該補償用エアシリ
ンダのピストンおよびy軸テーブルにそれぞれ設けられ
、かつ該補償用エアシリンダと該y軸テーブルとを非接
触的に連結するための磁石と、 からなる半導体素子製造用X線露光装置。
(1) In an X-ray exposure apparatus that is separated from the SOR X-ray light source and in which a vertical type x-axis table is installed on a vertical type y-axis table so as to be movable in the horizontal direction, the y-axis table is moved in the vertical direction. an actuator for positioning the x-axis table and the y-axis table; a compensating air cylinder for balancing the weights of the x-axis table and the y-axis table; An X-ray exposure apparatus for manufacturing semiconductor devices, comprising: a magnet for connecting an air cylinder and the y-axis table in a non-contact manner.
JP63003110A 1988-01-12 1988-01-12 X ray aligner for manufacturing semiconductor element Pending JPH01181522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63003110A JPH01181522A (en) 1988-01-12 1988-01-12 X ray aligner for manufacturing semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63003110A JPH01181522A (en) 1988-01-12 1988-01-12 X ray aligner for manufacturing semiconductor element

Publications (1)

Publication Number Publication Date
JPH01181522A true JPH01181522A (en) 1989-07-19

Family

ID=11548211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63003110A Pending JPH01181522A (en) 1988-01-12 1988-01-12 X ray aligner for manufacturing semiconductor element

Country Status (1)

Country Link
JP (1) JPH01181522A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177617A (en) * 1989-12-06 1991-08-01 Sumitomo Heavy Ind Ltd Vertical movable bearing system and vertical movable stage system using the same
JPH09262727A (en) * 1996-03-29 1997-10-07 Mori Seiki Co Ltd Machine tool
JP2007134729A (en) * 2000-06-02 2007-05-31 Asml Netherlands Bv Lithographic projection apparatus, supporting assembly, and method of manufacturing same
JP2007278422A (en) * 2006-04-07 2007-10-25 Koganei Corp Magnet type rodless cylinder
US7578228B2 (en) 2004-12-22 2009-08-25 Fanuc Ltd Air balance structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177617A (en) * 1989-12-06 1991-08-01 Sumitomo Heavy Ind Ltd Vertical movable bearing system and vertical movable stage system using the same
JPH09262727A (en) * 1996-03-29 1997-10-07 Mori Seiki Co Ltd Machine tool
JP2007134729A (en) * 2000-06-02 2007-05-31 Asml Netherlands Bv Lithographic projection apparatus, supporting assembly, and method of manufacturing same
JP4512081B2 (en) * 2000-06-02 2010-07-28 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic projection apparatus, support assembly, and device manufacturing method
US7578228B2 (en) 2004-12-22 2009-08-25 Fanuc Ltd Air balance structure
JP2007278422A (en) * 2006-04-07 2007-10-25 Koganei Corp Magnet type rodless cylinder

Similar Documents

Publication Publication Date Title
KR100436323B1 (en) Stage apparatus and exposure apparatus provided with the stage apparatus
US7573225B2 (en) Electromagnetic alignment and scanning apparatus
KR100522886B1 (en) Supporting device with gas bearing
KR102169388B1 (en) Suction apparatus, carry-in method, conveyance system, light exposure device, and device production method
US6674085B2 (en) Gas-actuated stages including reaction-force-canceling mechanisms for use in charged-particle-beam microlithography systems
JP6638774B2 (en) Exposure method and exposure apparatus, device manufacturing method, and flat panel display manufacturing method
US5881987A (en) Vibration damping apparatus
US20030173556A1 (en) Compensating for cable drag forces in high precision stages
JP2003197519A (en) Exposure system and exposure method
JPH10503890A (en) Positioning device with article table not subject to vibration
KR20010030903A (en) Projection exposure apparatus
KR20020092796A (en) Stage apparatus and exposure apparatus
KR20190117811A (en) Exposure apparatus and device manufacturing method
US20050189901A1 (en) Stage devices and exposure systems comprising same
JP5849955B2 (en) Mobile device, exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method
KR100516689B1 (en) Driving apparatus, exposure apparatus, and device manufacturing method
JPH01181522A (en) X ray aligner for manufacturing semiconductor element
JP2004134682A (en) Gas cylinder, stage apparatus, and aligner
JP2007247704A (en) Fluid bearing, fluid bearing, stage system and aligner
KR102493253B1 (en) Stage apparatus, lithographic apparatus, control unit and method
JP3890127B2 (en) Stage apparatus, exposure apparatus using the same, and device manufacturing method
JPH0517876Y2 (en)
JP2865369B2 (en) Magnetic suction gas floating type pad
JPWO2008093617A1 (en) Stage apparatus and exposure apparatus
JP2021081548A (en) Stage device