JPH01181513A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus

Info

Publication number
JPH01181513A
JPH01181513A JP454588A JP454588A JPH01181513A JP H01181513 A JPH01181513 A JP H01181513A JP 454588 A JP454588 A JP 454588A JP 454588 A JP454588 A JP 454588A JP H01181513 A JPH01181513 A JP H01181513A
Authority
JP
Japan
Prior art keywords
electrodes
discharge
electrode
reaction vessel
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP454588A
Other languages
Japanese (ja)
Other versions
JPH07118463B2 (en
Inventor
Masayoshi Murata
正義 村田
Takashi Yamamoto
山本 鷹司
Shozo Kaneko
祥三 金子
Joji Ichinari
市成 譲二
Jiro Takada
二郎 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP454588A priority Critical patent/JPH07118463B2/en
Publication of JPH01181513A publication Critical patent/JPH01181513A/en
Publication of JPH07118463B2 publication Critical patent/JPH07118463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable a film of a large area to be formed using a high-frequency power supply by forming a pair of electrodes for discharge by aligning a plurality of column bodied with a circular or elliptic sectional area. CONSTITUTION:With mesh electrodes 12 and 13 for generating glow discharge plasma, two stages of electrodes in parallel mesh shape wherein columns are arranged are piled up and are laid out so that the column part member may not overlap each other when viewed from one surface. It allows the surface area to be extended for several times as compared with the conventional parallel plain plate electrode and electrostatic capacity between opposing electrodes becomes extremely small to allow discharge impedance to be increased. As a result, voltage effect becomes extremely small, voltage distribution is eliminated, an electrode with a length which is several times longer than that of parallel plain plate electrode can be used, and amorphous thin film with a large area can be produced.

Description

【発明の詳細な説明】 本発明は、太陽電池、燃料電池、薄膜半導体。[Detailed description of the invention] The present invention relates to solar cells, fuel cells, and thin film semiconductors.

電子写真感光体及び光センサなどの各種電子デバイスに
使用される大面積薄膜の製造に適したプラズマCVD装
置に関するものである。
The present invention relates to a plasma CVD apparatus suitable for manufacturing large-area thin films used in various electronic devices such as electrophotographic photoreceptors and optical sensors.

[従来の技術] 第12図は従来より用いられている大面積薄膜製造装置
の構成を示す断面図であり、その技術的手段は例えば特
願昭61−106314号等に掲載されているように公
知の技術である。図中1は反応容器であり、この中には
グロー放電プラズマを発生させるための電極2,3が平
行に配置されている。4は低周波電源であり、例えば6
0Hzの商用周波数の電力を上記電極2.3に供給する
ものとなっている。なお上記低周波電源4としては直流
や高周波数の電源であってもよい。コイル5は上記反応
容器1を囲繞する如く巻装されており、交流電源6から
交流電力を供給される。7は反応ガス導入管であり、図
示しないボンベに連通し、モノシランとアルゴンの混合
ガスを上記反応容器1に供給するものである。排気孔8
は、真空ポンプ9に連通しており、反応容器1内のガス
を排気するものである。
[Prior Art] Fig. 12 is a cross-sectional view showing the configuration of a conventionally used large-area thin film manufacturing apparatus, and its technical means are disclosed, for example, in Japanese Patent Application No. 106314/1983. This is a known technique. In the figure, reference numeral 1 denotes a reaction vessel, in which electrodes 2 and 3 for generating glow discharge plasma are arranged in parallel. 4 is a low frequency power supply, for example 6
Power at a commercial frequency of 0 Hz is supplied to the electrode 2.3. Note that the low frequency power source 4 may be a direct current or high frequency power source. The coil 5 is wound so as to surround the reaction vessel 1, and is supplied with AC power from an AC power source 6. Reference numeral 7 denotes a reaction gas introduction pipe, which communicates with a cylinder (not shown) and supplies a mixed gas of monosilane and argon to the reaction vessel 1. Exhaust hole 8
is in communication with the vacuum pump 9, and is used to exhaust the gas in the reaction vessel 1.

さて、薄膜製造に際しては基板10を図示のように電極
2.3の面と直交する姿勢で、かつ電極2.3が形成す
る放電空間の外側に適宜な手段で支持する。そして真空
ポンプ9を駆動して反応容器1内の排気を行なった後、
反応ガス導入管7からモノシランとアルゴンの混合ガス
を供給する。
Now, when manufacturing a thin film, the substrate 10 is supported by appropriate means in a posture perpendicular to the plane of the electrode 2.3 and outside the discharge space formed by the electrode 2.3, as shown in the figure. After driving the vacuum pump 9 to exhaust the inside of the reaction vessel 1,
A mixed gas of monosilane and argon is supplied from the reaction gas introduction pipe 7.

反応容器】内に充満させた混合ガスの圧力を0.05な
いし0.5Torrに保ち、低周波電源4から電極2,
3に電圧を印加すると、グロー放電プラズマが発生する
。一方、コイル5には例えば100Hzの交流電圧を印
加し、電極2.3間に発生する電界Eと直交する方向の
磁界Bを発生させる。この磁界における磁束密度は10
ガウス程度で良い。
[Reaction container] The pressure of the mixed gas filled in the reaction vessel is maintained at 0.05 to 0.5 Torr, and the low frequency power source 4 is connected to the electrode 2,
When voltage is applied to 3, glow discharge plasma is generated. On the other hand, an AC voltage of, for example, 100 Hz is applied to the coil 5 to generate a magnetic field B in a direction perpendicular to the electric field E generated between the electrodes 2 and 3. The magnetic flux density in this magnetic field is 10
Gauss is fine.

反応ガス導入管7から供給されたガスのうちモノシラン
ガスは、電極2.3の間に生じるグロー放電プラズマに
よってラジカルStに分解され、基板10の表面に付着
して薄膜を形成する。このとき、アルゴンイオンなどの
荷電粒子は、電極2゜3間で電界Eによるクーロン力F
IWqEと、ローレンツ力F2−q (VllB)とに
よっていわゆるE−Bドリフト運動を起こす。尚Vは荷
電粒子の速度である。
Among the gases supplied from the reactive gas introduction tube 7, monosilane gas is decomposed into radicals St by the glow discharge plasma generated between the electrodes 2.3, and adheres to the surface of the substrate 10 to form a thin film. At this time, charged particles such as argon ions are affected by the Coulomb force F due to the electric field E between the electrodes 2.
A so-called E-B drift motion is caused by IWqE and Lorentz force F2-q (VllB). Note that V is the velocity of charged particles.

かくして荷電粒子はE−Bドリフトにより初速を与えら
れた状態で、電極2.3と直交する方向に飛び出し、基
板10に向けて飛んでいく。しかし電極2.3間に生じ
る電界の影響が小さい放電空間では、コイル6により生
じた磁界Bによるサイクロトロン運動により、Larm
or軌道を描いて飛んでいく。従ってアルボイオンなど
の荷電粒子が基板10を直撃することは少ない。
In this way, the charged particles fly in a direction perpendicular to the electrode 2.3 and fly toward the substrate 10 while being given an initial velocity by the E-B drift. However, in the discharge space where the influence of the electric field generated between the electrodes 2 and 3 is small, the Larm
It flies in an orbit. Therefore, charged particles such as albo ions rarely hit the substrate 10 directly.

一方、電気的に中性であるラジカルSiは磁界Bの影響
を受けず、上記荷電粒子群の軌道からそれて基板10に
至り、その表面に非晶質薄膜を形成する。上の時、ラジ
カルSiはLa rmo r軌道を飛んでゆく荷電粒°
子と衝突するため、電極2゜3の前方だけでなく、左あ
るいは右に広がった形で非晶質薄膜が形成される。しか
も磁界Bを交流電源6により変動させているので、基板
10の表面に非晶質薄膜を均一に形成することが可能と
なる。なお電極2.3の長さは、反応容器1の長さの許
す限り長くしても同等問題がないので、基板10が長尺
ものであっても、その表面に均一な非晶質薄膜を形成す
ることが可能となる。
On the other hand, radical Si, which is electrically neutral, is not affected by the magnetic field B, deviates from the trajectory of the charged particle group, reaches the substrate 10, and forms an amorphous thin film on the surface thereof. In the above case, radical Si is a charged particle flying in La rmo r orbit.
Because of the collision with the particles, an amorphous thin film is formed not only in front of the electrode 2°3 but also in a form that spreads to the left or right. Furthermore, since the magnetic field B is varied by the AC power source 6, it is possible to uniformly form an amorphous thin film on the surface of the substrate 10. Note that the length of the electrode 2.3 can be made as long as the length of the reaction vessel 1 allows without any problem, so even if the substrate 10 is long, it is possible to form a uniform amorphous thin film on its surface. It becomes possible to form.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来の装置では、グロー放電プラズマを発生させ
る電極間の放電電界Eと直交する方向に磁界Bを発生さ
せることにより、大面積の成膜を容易に可能としている
。しかしながら次のような問題がある。
In the conventional apparatus described above, by generating a magnetic field B in a direction perpendicular to a discharge electric field E between electrodes that generates glow discharge plasma, it is possible to easily form a film over a large area. However, there are the following problems.

■大面積の成膜を行なう場合、電極として長尺のものを
用いる必要がある。長尺の電極を用いて安定したプラズ
マを発生させるには、その°電源の周波数は可能な限り
低い方が容易であるため、数10Hz〜数100 k 
Hzの電源が用いられている。
■When forming a film over a large area, it is necessary to use a long electrode. In order to generate stable plasma using a long electrode, it is easier to keep the frequency of the power source as low as possible, so it is easier to generate stable plasma using a power source with a frequency of several tens of Hz to several hundred kilograms.
A Hz power source is used.

しかし周波数が低くなり半周期の間のイオン移動距離が
電極間隔を越えるような条件の下では、直流放電の場合
と同様に、プラズマを維持するためにイオン衝突によっ
て陰極より放出された二次電子が本質的な役割を担うこ
とになる。そのため電極に膜が付着して絶縁されると、
その部分では放電が起こらないようになる。従ってこの
場合は電極表面を常にクリーンに保つ必要がある。その
ため電極を頻繁に交換したり、あるいは電極を頻繁に掃
除したり等の繁雑な作業が必要であり、コスト高の要因
の一つとなっている。
However, under conditions where the frequency is low and the ion travel distance during a half cycle exceeds the electrode spacing, secondary electrons are emitted from the cathode by ion collisions to maintain the plasma, just as in the case of DC discharge. will play an essential role. Therefore, when a film is attached to the electrode and insulated,
No discharge will occur in that area. Therefore, in this case, it is necessary to keep the electrode surface clean at all times. Therefore, complicated operations such as frequent replacement of the electrodes or frequent cleaning of the electrodes are required, which is one of the causes of high costs.

■上記■の欠点を補うために、プラズマ発生電源に例え
ば13.56MHzの高周波電源を用いると、放電維持
に対する電極放出二次電子は本質的なものでなくなり、
電極上に膜等の絶縁物が存在していても、電極間にはグ
ロー放電が形成される。
■If a high frequency power source of, for example, 13.56 MHz is used as the plasma generation power source to compensate for the drawback of (■) above, the secondary electrons emitted from the electrodes will no longer be essential for sustaining the discharge.
Even if an insulating material such as a film is present on the electrodes, a glow discharge is formed between the electrodes.

しかしながら長尺の電極を用いる場合は、高周波による
表皮効果により電流の大部分が表面(約0.0111I
I)を流れることになるため、電気抵抗が増加すること
になる。例えば電極の長さが約1m以上になると、電極
上に電位分布が現われて−様なプラズマが発生しなくな
る。すなわち分布定数回路で考えると、第13図に委す
様になる。すなわち電極の単位長さ当りの抵抗Rが放電
部分のインピーダンスZI+Z2・・・、Znに比べて
無視できないほど大きくなってくると、電極内に電位分
布が現われる。なおXは電極の長さ方向の距離を示して
いる。従って高周波電源を用いる場合は、大面積の成膜
を行なうことは非常に困難であり、実際上これまでは実
現できなかった。
However, when using long electrodes, most of the current is transferred to the surface (approximately 0.0111I) due to the skin effect caused by high frequency.
I), the electrical resistance will increase. For example, when the length of the electrode is about 1 m or more, a potential distribution appears on the electrode and -like plasma is no longer generated. In other words, when considered in terms of a distributed constant circuit, it becomes as shown in FIG. That is, when the resistance R per unit length of the electrode becomes so large that it cannot be ignored compared to the impedance ZI+Z2..., Zn of the discharge portion, a potential distribution appears within the electrode. Note that X indicates the distance in the length direction of the electrode. Therefore, when using a high frequency power source, it is extremely difficult to form a film over a large area, and this has not been practically possible until now.

[課題を解決するための手段] 本発明は上記課題を解決し目的を達成するために次のよ
うな手段を講じた。すなわち、反応容器と、この反応容
器内に反応ガスを減圧して導入する手段と、−1−記反
応容器内に相対して収容された一対の放電用電極と、こ
の放電用電極にグロー放電用電圧を供給する電源と、上
記放電用電極を囲繞し当該放電用電極間に発生した電界
と直交する向きの磁界を発生させるコイルと、このコイ
ルに磁界発生用の電流を供給する交流電源とを有し、上
記放?!電界空間外に当該電界と平行に支持した基板へ
非晶質薄膜を形成するものにおいて、上記一対の放電用
電極の夫々を、断面が円形又は楕円形の複数本の柱状体
を並べて形成するようにした。
[Means for Solving the Problems] In order to solve the above problems and achieve the objects, the present invention takes the following measures. That is, a reaction vessel, a means for introducing a reaction gas into the reaction vessel under reduced pressure, a pair of discharge electrodes housed opposite each other in the reaction vessel, and a glow discharge to the discharge electrode. a coil that surrounds the discharge electrode and generates a magnetic field in a direction perpendicular to the electric field generated between the discharge electrodes; and an AC power supply that supplies current for generating the magnetic field to the coil. Has the above release? ! In a method for forming an amorphous thin film on a substrate supported outside the electric field space in parallel with the electric field, each of the pair of discharge electrodes is formed by arranging a plurality of columnar bodies each having a circular or elliptical cross section. I made it.

[作用] 上段手段を講じたことにより次のような作用を呈する。[Effect] By taking the above measures, the following effects are achieved.

すなわち放電用電極のそれぞれを、断面が円形または楕
円形の1隻数本の柱状体を並べて形成したので、従来の
平行平板電極に比べてその表面積が数倍程度広くなり、
かつ対向電極間の静電容量が著しく小さくなり、放電イ
ンピーダンスが増大する。その結果、電圧効果が著しく
小さくなり、電圧分布がなくなり、平行平板電極に比べ
て数倍程度の長さを有する電極を用い得、大面積の非晶
質薄膜を製造可能となる。
In other words, each discharge electrode is formed by arranging one or more columnar bodies with circular or elliptical cross sections, so the surface area is several times larger than that of conventional parallel plate electrodes.
In addition, the capacitance between the opposing electrodes becomes significantly smaller, and the discharge impedance increases. As a result, the voltage effect is significantly reduced, voltage distribution is eliminated, electrodes several times as long as parallel plate electrodes can be used, and amorphous thin films with large areas can be manufactured.

【実施例] (1)第1図は本発明の第1実施例の構成を示す断面図
である。なお第12図と同一部分には同一番号を付しで
ある。1は反応容器で、その中にはグロー放電プラズマ
を発生させるためのメツシュ電極12.13が平行に配
置されている。電極12及び13は第2図の様に円柱を
並べた平行メツシュ状の電極を、第3図のように2段に
重ね合せて形成されている。この場合、一方の面から見
て円柱部材が互いに重なり合わない状態に配置されてい
る。14は高周波電源であり、例えば13.56M七の
周波数の電源を上記メツシュ電極12.13に供給する
如く接続されている。コイル5は上記反応容器1を囲繞
する如く巻装されており、交流電源6から交流電力を供
給される。
Embodiment (1) FIG. 1 is a sectional view showing the structure of a first embodiment of the present invention. Note that the same parts as in FIG. 12 are given the same numbers. 1 is a reaction vessel in which mesh electrodes 12 and 13 for generating glow discharge plasma are arranged in parallel. The electrodes 12 and 13 are formed by stacking parallel mesh electrodes in which cylinders are arranged in two stages as shown in FIG. 3, as shown in FIG. In this case, the cylindrical members are arranged so as not to overlap each other when viewed from one side. Reference numeral 14 denotes a high frequency power source, which is connected to supply a power source with a frequency of, for example, 13.56 M7 to the mesh electrodes 12 and 13. The coil 5 is wound so as to surround the reaction vessel 1, and is supplied with AC power from an AC power source 6.

7は反応ガス導入管であり、図示しないボンベに連通し
、モノシランとアルゴンの混合ガスを上記反応容器1に
供給するものである。排気孔8は真空ポンプ9に連通し
ており、反応容器1内のガスを排気するものである。
Reference numeral 7 denotes a reaction gas introduction pipe, which communicates with a cylinder (not shown) and supplies a mixed gas of monosilane and argon to the reaction vessel 1. The exhaust hole 8 communicates with a vacuum pump 9 to exhaust the gas inside the reaction vessel 1.

さて薄膜製造に際しては、基板10を第4図に示すよう
に、メツシュ電極12.13の面と平行な姿勢に適宜な
手段で支持する。そして真空ポンプ9を駆動して反応容
器1内の排気を行なった後、反応ガス導入管7からモノ
シランとアルゴンの混合ガスを供給する。上記混合ガス
を反応容器1内に充満させてその圧力を0.05乃至0
.5Torrに保ち、高周波電源14から電極12゜1
3に電圧を印加すると、メツシュ電極12゜13間にグ
ロー放電プラズマが発生する。一方、コイル5には例え
ば100 Hzの交流電圧を印加し、電極12.13間
に発生する電界Eと平行な方向の磁界Bを発生させる。
When manufacturing a thin film, the substrate 10 is supported by appropriate means in a position parallel to the planes of the mesh electrodes 12, 13, as shown in FIG. After the vacuum pump 9 is driven to evacuate the inside of the reaction vessel 1, a mixed gas of monosilane and argon is supplied from the reaction gas introduction pipe 7. The reaction vessel 1 is filled with the above mixed gas and its pressure is set to 0.05 to 0.
.. Maintain the temperature at 5 Torr, and connect the electrode 12°1 from the high frequency power source 14.
When a voltage is applied to the mesh electrodes 12 and 13, glow discharge plasma is generated between the mesh electrodes 12 and 13. On the other hand, an AC voltage of, for example, 100 Hz is applied to the coil 5 to generate a magnetic field B in a direction parallel to the electric field E generated between the electrodes 12 and 13.

この磁界における磁束密度は10ガウス程度で良い。The magnetic flux density in this magnetic field may be about 10 Gauss.

反応ガス導入管7から供給されたガスのうちモノシラン
ガスは、メツシュ電極12.13の間に生じるグロー放
電プラズマにより、ラジカルSiに分解され、基板10
の表面に付着して薄膜を形成する。このとき、アルゴン
イオンなどの荷電粒子は、メツシュ電極12.13間で
電界Eによるクーロン力F、−qEと、ローシンツカF
2禦q(V −B)とによって、いわゆるEXBドリフ
ト運動を起こす。なお、■は荷電粒子の速度である。
Among the gases supplied from the reaction gas introduction pipe 7, monosilane gas is decomposed into radical Si by the glow discharge plasma generated between the mesh electrodes 12 and 13, and the monosilane gas is decomposed into radical Si.
It adheres to the surface of and forms a thin film. At this time, charged particles such as argon ions are generated between the mesh electrodes 12 and 13 by a Coulomb force F, -qE due to the electric field E and a low force F.
2 q(V - B) causes a so-called EXB drift movement. Note that ■ is the speed of charged particles.

かくして荷電粒子はEXBXリドトにより、メツシュ電
極12.13と平行な方向に移動し、反応ガスを撹拌す
る働きをする。メツシュ電極12゜13間に生じる電界
の影響が小さい放電空間の外側では、コイル5により生
じた磁界Bによるサイクロトロン運動によりLarmo
r軌道を描いて飛んでいく。従ってアルゴンイオンなど
の荷電粒子が基板10を直撃することは少ない。
The charged particles thus move in a direction parallel to the mesh electrodes 12, 13 by the EXBX lid, and serve to stir the reaction gas. Outside the discharge space, where the influence of the electric field generated between the mesh electrodes 12 and 13 is small, the Larmo
It flies in an r orbit. Therefore, charged particles such as argon ions rarely hit the substrate 10 directly.

一方、電気的に中性であるラジカルSiは磁界Bの影響
を受けず、上記荷電粒子群の軌道よりそれて基板10に
至り、その表面に非晶質膜を形成する。この時ラジカル
SiはLarmor軌道を飛んで行く荷電粒子と衝突す
るため、電極12゜13の前方だけでなく、左あるいは
右に広がった形で非晶質薄膜が形成される。しかも磁界
Bを変動させているので、基板10の表面には非晶質薄
膜を均一に形成させることが可能となる。
On the other hand, the electrically neutral radicals Si are not affected by the magnetic field B, deviate from the trajectory of the charged particle group, reach the substrate 10, and form an amorphous film on its surface. At this time, the radical Si collides with the charged particles traveling in the Larmor orbit, so that an amorphous thin film is formed not only in front of the electrodes 12 and 13 but also spread to the left or right. Moreover, since the magnetic field B is varied, it is possible to uniformly form an amorphous thin film on the surface of the substrate 10.

このように本実施例によれば、プラズマ発生電源に高周
波例えばIM)lz乃至50MHzの電源を用い、電極
として第2図に示すような円柱を並べた平行メツシュ状
の電極を第3図のように重ねて用いている。したがって
平行平板電極に比べて表面積が約3.14倍だけ広くな
り、かつ静電容量が著しく小さくなり、第13図に示し
た放電インピーダンスZが大きくなる。その結果電圧降
下が著しく小さくなり、電圧分布がなくなり、平行平板
電極に比べて約3倍の長さの電極を用いることができ、
大面積の非晶質薄膜を製造可能となる。
As described above, according to this embodiment, a high frequency power source (for example, IM)1z to 50 MHz is used as the plasma generation power source, and parallel mesh-like electrodes in which cylinders are arranged as shown in FIG. 2 are used as the electrodes, as shown in FIG. 3. It is used over and over again. Therefore, the surface area becomes about 3.14 times larger than that of parallel plate electrodes, the capacitance becomes significantly smaller, and the discharge impedance Z shown in FIG. 13 becomes larger. As a result, the voltage drop is significantly reduced, voltage distribution is eliminated, and electrodes approximately three times as long as parallel plate electrodes can be used.
It becomes possible to manufacture large-area amorphous thin films.

(2)第5図は本発明の第2実施例の構成を示す断面図
である。なお第1図に示す第1実施例と同一部分には同
一符号を付し、説明は省略する。
(2) FIG. 5 is a sectional view showing the configuration of a second embodiment of the present invention. Note that the same parts as in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted.

本実施例が前記第1実施例と異なる点は、電極として第
6図にその詳細を示すように、第1実施例と同様の円柱
を2列に並べたメツシュ状の電極22.23を基板10
に対して直角に並べて設けた点である。かくして本実施
例においては平行平板電極に比べて2段の電極22.2
3を側面から見て重ならないようギリギリの状態とした
場合、表面積が約3614倍広くなり、かつ静電容量が
著しく小さくなり、第13図に示した放電インピーダン
スZが大きくなる。従って第1実施例と同様に従来の平
行平板電極に比べて電圧降下が著しく小さくなり、電圧
分布がなくなり、平行平板電極に比べると約3倍の長さ
の電極を用いることができ、大面積の非晶質、薄膜を製
造できる。
The difference between this embodiment and the first embodiment is that, as shown in detail in FIG. 10
These points are arranged at right angles to the Thus, in this embodiment, two stages of electrodes 22.2 are used compared to parallel plate electrodes.
3, when viewed from the side, the surface area becomes approximately 3614 times larger, the capacitance becomes significantly smaller, and the discharge impedance Z shown in FIG. 13 increases. Therefore, as in the first embodiment, the voltage drop is significantly smaller than that of conventional parallel plate electrodes, there is no voltage distribution, and electrodes approximately three times as long as parallel plate electrodes can be used, resulting in a large surface area. Amorphous and thin films can be manufactured.

(3)第7図は本発明の第3実施例の構成を示す断面図
である。本実施例が前記第1実施例と異なる点は、電極
として、電気抵抗が小さくかつ対向電極間の静電容量の
小さい構造、すなわち第8図及び第9図に示す構造の電
極を、基板10に対して平行に配設した点である。第8
図に示すように電極32は電力供給板30aで一端で連
結され、絶縁支持台31a、31bにて支持された構造
となっており、電極33は電力供給板30bで一端を連
結され他端部位を絶縁支持台31a、31bで支持され
た構造となっている。なお第9図は第8図の断面図であ
る。なお電極32.33はいずれも断面が円形をなす棒
状体からなっている。
(3) FIG. 7 is a sectional view showing the configuration of a third embodiment of the present invention. The difference between this embodiment and the first embodiment is that the electrodes have a structure of low electrical resistance and small capacitance between opposing electrodes, that is, electrodes having the structures shown in FIGS. 8 and 9 are used on the substrate 10. This is a point placed parallel to the 8th
As shown in the figure, the electrode 32 is connected at one end to a power supply plate 30a and supported by insulating supports 31a and 31b, and the electrode 33 is connected at one end to a power supply plate 30b and at the other end. is supported by insulating support stands 31a and 31b. Note that FIG. 9 is a sectional view of FIG. 8. Note that the electrodes 32 and 33 are both rod-shaped bodies with circular cross sections.

本実施例においては、電極32.33の長さ方向の電気
抵抗が放電インピーダンスに比べ゛て著しく小さいので
、従来の手段に比べて基板10が長尺なものであっても
その表面に均一な非晶質薄膜を形成することが可能とな
る。
In this embodiment, since the electric resistance in the length direction of the electrodes 32, 33 is significantly smaller than the discharge impedance, even if the substrate 10 is long, it can be uniformly distributed on its surface compared to conventional means. It becomes possible to form an amorphous thin film.

(4)第10図は本発明の第4実施例を示す断面図であ
る。本実施例が前記第1実施例と異なる点は、電極とし
て従来の平行平板電極に代えて、電気抵抗が小さくかつ
対向電極間の静電容量の小さい電極42.43を用いた
点である。上記電極42.43は第11図に示すように
、円形断面あるいは楕円断面を有する複数個の棒状電極
を基板形断面を有する電極の表面積は、平行平板電極に
比べると、静電容量が同じ場合には、約3.14倍広い
ので、高周波電力の電気抵抗は約3倍少なくなり、電極
内に現われる電位分布が著しく低減される。したがって
本実施例においても前記第1実施例と同様の作用効果を
奏し得る。
(4) FIG. 10 is a sectional view showing a fourth embodiment of the present invention. This embodiment differs from the first embodiment in that electrodes 42 and 43 having low electric resistance and low capacitance between opposing electrodes are used instead of the conventional parallel plate electrodes. As shown in Fig. 11, the electrodes 42 and 43 are composed of a plurality of rod-shaped electrodes with a circular or elliptical cross section.Compared with a parallel plate electrode, the surface area of an electrode with a substrate-shaped cross section is larger than that of a parallel plate electrode when the capacitance is the same. is about 3.14 times wider, so the electrical resistance of the high-frequency power is about 3 times less, and the potential distribution appearing in the electrode is significantly reduced. Therefore, this embodiment can also achieve the same effects as those of the first embodiment.

なお本発明は上述した実施例に限定されるものでなく、
本発明の要旨を逸脱しない範囲で種々変形実施可能であ
るのは勿論である。
Note that the present invention is not limited to the above-mentioned embodiments,
Of course, various modifications can be made without departing from the spirit of the invention.

[発明の効果] 本発明によれば、放電用電極のそれぞれを、断面円形ま
たは楕円形の複数本の柱状体を並べて形成したので、従
来の平行平板電極に比べてその表面積が数倍程度広くな
り、かつ対向電極間の静電容量が著しく小さくなり、は
うでniンピーダンスが増大する。その結果、電圧降下
が著しく小さくなり、電圧分布がなくなり、平行平板電
極に比べて数倍程度の長さを有する電極を用い得、大面
積の非晶質薄膜を製造できるプラズマCVD装置を提供
できる。
[Effects of the Invention] According to the present invention, each of the discharge electrodes is formed by arranging a plurality of columnar bodies with a circular or elliptical cross section, so the surface area is several times larger than that of a conventional parallel plate electrode. The capacitance between the opposing electrodes becomes significantly smaller, and the ni impedance increases due to the crawling. As a result, the voltage drop is significantly reduced, voltage distribution is eliminated, electrodes several times as long as parallel plate electrodes can be used, and a plasma CVD apparatus capable of producing a large-area amorphous thin film can be provided. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明に係る第1実施例を示す図で、
第1図は装置の断面図、第2図は電極の平面図、第3図
は第2図の■−■矢視断面図、第4図は第1図の電極部
拡大図である。第5図は本発明の第2実施例を示す装置
の断面図、第6図は同実施例の電極部拡大図である。第
7図は本発明の第3実施例を示す装置の断面図、第8図
は同実施例の電極の斜視図、第9図は同実施例の電極部
拡大図である。第10図は本発明の第4実施例を示す装
置の断面図、第11図は同実施例の電極部拡大図である
。第12図は従来例を示す装置の断面図、第13図は同
従来例の欠点を説明するための図である。 1・・・反応容器、2.3・・・電極、4・・・低周波
電源、5・・・コイル、6・・・交流m[,7・・・反
応ガス導入管、8・・・排気孔、9・・・真空ポンプ、
10・・・基板、12゜13.22.23,32,33
.42.43・・・放電用電極、14・・・高周波電源
。 出願人代理人 弁理士 鈴江武彦 第1図 oooooooooo〜12(13) oooooooooo。 第3因 第4区 第5図 1゜ 第6図 ■〜9 第7図 第8図 O■ 第9!l 第10図 ■B 第11図
1 to 4 are diagrams showing a first embodiment according to the present invention,
FIG. 1 is a sectional view of the device, FIG. 2 is a plan view of the electrode, FIG. 3 is a sectional view taken along the line ■--■ in FIG. 2, and FIG. 4 is an enlarged view of the electrode portion in FIG. 1. FIG. 5 is a sectional view of a device showing a second embodiment of the present invention, and FIG. 6 is an enlarged view of the electrode portion of the same embodiment. FIG. 7 is a sectional view of a device showing a third embodiment of the present invention, FIG. 8 is a perspective view of an electrode of the same embodiment, and FIG. 9 is an enlarged view of an electrode portion of the same embodiment. FIG. 10 is a sectional view of a device showing a fourth embodiment of the present invention, and FIG. 11 is an enlarged view of the electrode portion of the same embodiment. FIG. 12 is a sectional view of a conventional device, and FIG. 13 is a diagram for explaining the drawbacks of the conventional device. DESCRIPTION OF SYMBOLS 1... Reaction container, 2.3... Electrode, 4... Low frequency power supply, 5... Coil, 6... AC m[, 7... Reaction gas introduction tube, 8... Exhaust hole, 9...vacuum pump,
10... Substrate, 12°13.22.23,32,33
.. 42.43...Electrode for discharge, 14...High frequency power supply. Applicant's agent Patent attorney Takehiko Suzue Figure 1 ooooooooo~12 (13) ooooooooooo. 3rd cause 4th ward Figure 5 1゜ Figure 6 ■ ~ 9 Figure 7 Figure 8 O ■ 9! l Figure 10■B Figure 11

Claims (1)

【特許請求の範囲】[Claims]  反応容器と、この反応容器内に反応ガスを減圧して導
入する手段と、上記反応容器内に相対して収容された一
対の放電用電極と、この放電用電極にグロー放電用電圧
を供給する電源と、上記放電用電極を囲繞し当該放電用
電極間に発生した電界と直交する向きの磁界を発生させ
るコイルと、このコイルに磁界発生用の電流を供給する
交流電源とを有し、上記放電電界空間外に当該電界と平
行に支持した基板へ非晶質薄膜を形成するものにおいて
、上記一対の放電用電極の夫々を、断面が円形又は楕円
形の複数本の柱状体を並べて形成したことを特徴とする
プラズマCVD装置。
A reaction vessel, a means for introducing a reaction gas into the reaction vessel under reduced pressure, a pair of discharge electrodes housed opposite each other in the reaction vessel, and supplying a glow discharge voltage to the discharge electrodes. A power supply, a coil that surrounds the discharge electrode and generates a magnetic field in a direction perpendicular to the electric field generated between the discharge electrodes, and an AC power supply that supplies a current for generating the magnetic field to the coil, For forming an amorphous thin film on a substrate supported outside the discharge electric field space in parallel with the electric field, each of the pair of discharge electrodes is formed by arranging a plurality of columnar bodies each having a circular or elliptical cross section. A plasma CVD apparatus characterized by:
JP454588A 1988-01-12 1988-01-12 Plasma CVD equipment Expired - Fee Related JPH07118463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP454588A JPH07118463B2 (en) 1988-01-12 1988-01-12 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP454588A JPH07118463B2 (en) 1988-01-12 1988-01-12 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH01181513A true JPH01181513A (en) 1989-07-19
JPH07118463B2 JPH07118463B2 (en) 1995-12-18

Family

ID=11587018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP454588A Expired - Fee Related JPH07118463B2 (en) 1988-01-12 1988-01-12 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JPH07118463B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405447A (en) * 1990-05-15 1995-04-11 Mitsubishi Jukogyo Kabushiki Kaisha Plasma CVD apparatus
US6189485B1 (en) 1998-06-25 2001-02-20 Anelva Corporation Plasma CVD apparatus suitable for manufacturing solar cell and the like
WO2003077294A1 (en) * 2002-03-14 2003-09-18 Tokyo Electron Limited Plasma processor
US20140083977A1 (en) * 2012-09-26 2014-03-27 Kabushiki Kaisha Toshiba Plasma processing apparatus and plasma processing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405447A (en) * 1990-05-15 1995-04-11 Mitsubishi Jukogyo Kabushiki Kaisha Plasma CVD apparatus
US6189485B1 (en) 1998-06-25 2001-02-20 Anelva Corporation Plasma CVD apparatus suitable for manufacturing solar cell and the like
WO2003077294A1 (en) * 2002-03-14 2003-09-18 Tokyo Electron Limited Plasma processor
US20140083977A1 (en) * 2012-09-26 2014-03-27 Kabushiki Kaisha Toshiba Plasma processing apparatus and plasma processing method
US10381198B2 (en) * 2012-09-26 2019-08-13 Toshiba Memory Corporation Plasma processing apparatus and plasma processing method

Also Published As

Publication number Publication date
JPH07118463B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
US6849857B2 (en) Beam processing apparatus
EP0574100B1 (en) Plasma CVD method and apparatus therefor
US11651937B2 (en) Method of low-temperature plasma generation, method of an electrically conductive or ferromagnetic tube coating using pulsed plasma and corresponding devices
JP2785442B2 (en) Plasma CVD equipment
JPH04236781A (en) Plasma cvd device
JPH0541705B2 (en)
JPH01181513A (en) Plasma cvd apparatus
JPH04120277A (en) Plasma cvd device
KR910002819B1 (en) Forming method and device of amorphous thin film
JP2018056115A (en) Static eliminator
JPH0760798B2 (en) Method and apparatus for forming amorphous thin film
JP3095565B2 (en) Plasma chemical vapor deposition equipment
JP2007277638A (en) Apparatus and method for treating surface of base material
JPH0576549B2 (en)
JPH0697657B2 (en) Amorphous thin film forming equipment
CN211128368U (en) Device for reducing ignition of ion source gas supply pipeline and ion source hydrogen pipeline
JPH0745540A (en) Chemical plasma evaporating device
JPH10241899A (en) Plasma treatment device
JPH05299680A (en) Plasma cvd method and its device
JPH01230782A (en) Plasma cvd device
JPH0760797B2 (en) Amorphous thin film forming equipment
JPH0751750B2 (en) Film forming equipment
JP3309435B2 (en) Ion beam deposition system
JPH05311447A (en) Plasma cvd method and its device
KR101732712B1 (en) Apparatus and method for plasma enhanced chemical vapor deposition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees