JPH01181044A - Air conditioning device - Google Patents

Air conditioning device

Info

Publication number
JPH01181044A
JPH01181044A JP63005057A JP505788A JPH01181044A JP H01181044 A JPH01181044 A JP H01181044A JP 63005057 A JP63005057 A JP 63005057A JP 505788 A JP505788 A JP 505788A JP H01181044 A JPH01181044 A JP H01181044A
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
heat exchanger
pressure
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63005057A
Other languages
Japanese (ja)
Other versions
JP2611297B2 (en
Inventor
Mari Sada
真理 佐田
Kazuo Yonemoto
和生 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP63005057A priority Critical patent/JP2611297B2/en
Publication of JPH01181044A publication Critical patent/JPH01181044A/en
Application granted granted Critical
Publication of JP2611297B2 publication Critical patent/JP2611297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent lowering of a high pressure at a low outside air temperature time to maintain sir conditioning function, by a method wherein a flow rate regulating mechanism is located in a bypass passage for controlling a heating overload, and when, during cooling operation, an outside air temperature is decreased, the flow rate regulating mechanism is opened to bypass delivery gas to the liquid pipe side. CONSTITUTION:Delivery gas is condensed by an outdoor heat exchanger 3, and after it is vaporized by an indoor heat exchanger 7, it is returned to s compressor 1 to perform cooling operation. A bypass passage 11 for controlling a heating overload to force delivery gas to bypass to the liquid pipe 9b side around the gas pipe 9a side is provided, and a second flow rate regulating mechanism 13 is located in the bypass passage 11. When a refrigerant pressure detected by a pressure state detecting means P1 is reduced to a value lower than a given value, the delivery gas is forced to bypass through the bypass passage 11 to the liquid pipe 9b side by means of an opening control means 15. Meanwhile, since first and second flow rate regulating mechanisms 4 and 13 are regulated so that a refrigerant flow rate of the outdoor heat exchanger 3 is throttled to a low value, a high pressure is prevented from lowering due to heat exchange of the outdoor heat exchanger 3 to control a refrigerant pressure so that it is brought into a specified state, and cooling operation at a low outside air temperature time is practicable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、暖房過負荷制御用バイパス路を備えた空気調
和装置に関し、特1ご低外気温度時の運転機能の向上対
策に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air conditioner equipped with a heating overload control bypass path, and particularly relates to measures for improving the operating function at low outside temperatures.

(従来の技術) 従来より、空気調和装置の冷房運転時、外気温度が大き
く低下すると高圧の低下を生じ、その結果、冷媒流量の
減少による容量不足、液管で冷媒が蒸発したフラッシュ
ガスによる減圧機構の作動不良等が生じ、運転が不可能
になる虞れがあるという問題があった。
(Conventional technology) Conventionally, during cooling operation of an air conditioner, when the outside temperature drops significantly, a high pressure drop occurs, resulting in a capacity shortage due to a decrease in refrigerant flow rate, and depressurization due to flash gas when refrigerant evaporates in liquid pipes. There was a problem in that there was a risk that the mechanism would malfunction and become impossible to operate.

かかる問題を防止するものとして、例えば実開昭52−
152158号公報に開示される空気調和装置は知られ
ている。すなわち、第9図に示す如く、圧縮機(a)、
室外熱交換器(凝縮器)(b)、レシーバ(C)、減圧
機構(d)および室内熱交換器(蒸発器)(e)を冷媒
配管(f)で接続した冷媒回路(g)において、上記レ
シーバ(c)入口に流fl調節機能を有する三方弁(h
)を介設して、該三方弁(h)により、冷媒回路(g)
の室外熱交換器(b)からの冷媒流量を絞って、室外熱
交換器(b)に冷媒を貯溜する一方、ガス管側から液管
側に直接冷媒をバイパスさせることにより、高圧の低下
を防止して高圧一定制御を行おうとするものである。
To prevent this problem, for example,
An air conditioner disclosed in Japanese Patent No. 152158 is known. That is, as shown in FIG. 9, the compressor (a),
In a refrigerant circuit (g) in which an outdoor heat exchanger (condenser) (b), a receiver (C), a pressure reduction mechanism (d), and an indoor heat exchanger (evaporator) (e) are connected by refrigerant piping (f), A three-way valve (h) with a flow fl adjustment function at the inlet of the receiver (c)
), the refrigerant circuit (g) is opened by the three-way valve (h).
By restricting the refrigerant flow rate from the outdoor heat exchanger (b) and storing the refrigerant in the outdoor heat exchanger (b), the refrigerant is directly bypassed from the gas pipe side to the liquid pipe side, thereby reducing the high pressure. The aim is to prevent this and perform high pressure constant control.

(発明が解決しようとする問題点) 上記公報のものを利用すれば、液管における圧力低下が
生じないため、空調容量の不足、フラッシュガスの発生
等の問題を有効に防止することができる。
(Problems to be Solved by the Invention) If the above-mentioned publication is used, no pressure drop occurs in the liquid pipe, so problems such as insufficient air conditioning capacity and generation of flash gas can be effectively prevented.

一方、上記従来のものを冷暖両用の空気調和装置に応用
した場合には、冷房運転用にしか使用できないにもかか
わらず、このような流量調節機能を有する三方弁(h)
を備えることは、装置全体のコストアップを招くという
問題がある。
On the other hand, when the above-mentioned conventional valve is applied to an air conditioner for both cooling and heating, a three-way valve (h) having such a flow rate adjustment function is used, even though it can only be used for cooling operation.
However, there is a problem in that the provision of the device increases the cost of the entire device.

本発明は斯かる点に鑑み、また、通常冷暖両用の空気調
和装置では、暖房運転時における高圧の過上昇を防止す
るための暖房過負荷制御用バイパス路が設けられている
ことに着目してなされたものであり、該暖房過負荷制御
用バイパス路を冷房運転時の圧カ一定制御に利用するこ
とにより、低外気温度時における高圧の低下を防止して
、装置の空調機能を維持することにある。
In view of the above, the present invention focuses on the fact that a heating/cooling air conditioner is usually provided with a heating overload control bypass path to prevent an excessive rise in high pressure during heating operation. By using the heating overload control bypass path for constant pressure control during cooling operation, a drop in high pressure is prevented when the outside temperature is low, and the air conditioning function of the device is maintained. It is in.

(問題点を解決するための手段) 上記目的を達成するため本発明の解決手段は、第1図に
示すように、圧縮機(1)、室外熱交換器(3)、第1
流量調節機構(4)、減圧機構(8)および室内熱交換
器(7)を接続してなる冷媒回路(10)と、吐出ガス
をガス管(9a)から液管(9b)側にバイパスするた
めの暖房過負荷制御用バイパス路(11)とを備えた空
気調和装置を前提とし、上記バイパス路(11)に配置
された第2流量調節機構(13)と、冷媒の圧力状態を
検出する圧力状態検出手段(P1)と、該圧力検出手段
(P1)で検出される冷媒圧力が所定値以下のときには
、上記バイパス路(11)から冷媒を液管(9b)側に
バイパスさせる一方、上記室外熱交換器(3)の冷媒流
量を絞ることで、冷媒の圧力状態が一定になるように上
記第1.第2流量調節機構(4)、  (13)の開度
を調節する開度制御手段(15)とを設ける構成とした
ものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes a compressor (1), an outdoor heat exchanger (3), a first
A refrigerant circuit (10) that connects a flow rate adjustment mechanism (4), a pressure reduction mechanism (8), and an indoor heat exchanger (7), and bypasses the discharged gas from the gas pipe (9a) to the liquid pipe (9b) side. A second flow rate adjustment mechanism (13) arranged in the bypass passage (11) and a pressure state of the refrigerant are detected. When the pressure state detection means (P1) and the refrigerant pressure detected by the pressure detection means (P1) are below a predetermined value, the refrigerant is bypassed from the bypass path (11) to the liquid pipe (9b) side, and the By restricting the refrigerant flow rate of the outdoor heat exchanger (3), the pressure state of the refrigerant is kept constant. The opening control means (15) for adjusting the opening degrees of the second flow rate adjustment mechanisms (4) and (13) is provided.

(作用) 以上の構成により、本発明では、空気調和装置の冷房運
転時、主冷媒回路(10)において、吐出ガスが室外熱
交換器(3)で凝縮され、減圧機構(8)による減圧を
受けて室内熱交換器(7)で蒸発して圧縮機(1)に戻
るという冷媒循環により冷房運転が行われる。
(Function) With the above configuration, in the present invention, during the cooling operation of the air conditioner, the discharge gas is condensed in the outdoor heat exchanger (3) in the main refrigerant circuit (10), and the pressure is reduced by the pressure reduction mechanism (8). Cooling operation is performed by circulating refrigerant in which the refrigerant is received, evaporated in the indoor heat exchanger (7), and returned to the compressor (1).

その場合、吐出ガスをガス管(9a)側から液管(9b
)側にバイパスする暖房過負荷制御用バイパス路(11
)が設けられ、該バイパス路(11)に第2流量調節機
構(13)が設けられていて、圧力状態検出手段(P1
)で検出される冷媒圧力が所定値以下に低下した場合に
は、開度制御手段(15)により、バイパス路(11)
から吐出ガスを液管(9b)側にバイパスさせる一方、
室外熱交換器(3)の冷媒流量を小さく絞るように、第
1流量調節機構(4)と第2流量調節機構(13)とが
調節されるので、室外熱交換器(3)の熱交換による高
圧の低下が防止されて、冷媒の圧力状態が一定になるよ
うに制御され得る。よって、暖房過負荷制御用バイパス
路(11)を利用した簡易な構成でもって、低外気温度
時の冷房運転を可能にすることができる。
In that case, the discharged gas is transferred from the gas pipe (9a) side to the liquid pipe (9b).
) side bypass path for heating overload control (11
), a second flow rate adjustment mechanism (13) is provided in the bypass passage (11), and a pressure state detection means (P1
), when the refrigerant pressure detected in the bypass passage (11) decreases below a predetermined value,
While bypassing the discharged gas from to the liquid pipe (9b) side,
Since the first flow rate adjustment mechanism (4) and the second flow rate adjustment mechanism (13) are adjusted to reduce the refrigerant flow rate of the outdoor heat exchanger (3), the heat exchange of the outdoor heat exchanger (3) is This prevents a drop in the high pressure due to the refrigerant, and the pressure state of the refrigerant can be controlled to be constant. Therefore, with a simple configuration using the heating overload control bypass path (11), it is possible to perform cooling operation at low outside air temperatures.

(実施例) 以下、本発明の実施例について、第1図〜第8図に基づ
き説明する。
(Example) Examples of the present invention will be described below with reference to FIGS. 1 to 8.

第1図は本発明の第1実施例に係る空気調和装置の全体
構成を示し、1台の室外ユニット(A)に2台の室内ユ
ニット(B)、(C)が接続されたいわゆるマルチ形の
構成をしている。
FIG. 1 shows the overall configuration of an air conditioner according to a first embodiment of the present invention, which is a so-called multi-type air conditioner in which two indoor units (B) and (C) are connected to one outdoor unit (A). It has the following configuration.

上記室外ユニット(A)には、圧縮機(1)と、冷房運
転時には図中実線のごとく暖房運転時には図中破線のご
とく切換わる四路切換弁(2)と、冷房運転時には凝縮
器として、暖房運転時には蒸発器として機能する室外熱
交換器(3)と、冷房運転時には冷媒流量を調節する第
1流量調節機構として機能すると共に暖房運転時には冷
媒の減圧を行う第1電動膨張弁(4)と、凝縮された液
冷媒を貯蔵するためのレシーバ(5)と、吸入ガス中の
液冷媒を分離するためのアキュムレータ(6)とが主要
機器として配置されている。また、上記室内ユニット(
B)、  (C)は同一構成であって、それぞれ冷房運
転時には蒸発器として、暖房運転時には凝縮器として機
能する室内熱交換器(7)と、冷房運転時には冷媒を減
圧する減圧機構としての自動膨張弁(8)とを備えてい
る。そして、上記各機器(1)〜(8)は冷媒配管(9
)により冷媒の流通可能に接続されていて、室外空気と
の熱交換により得た熱を室内に供給するいわゆるヒート
ポンプ機能を有する主冷媒回路(10)が構成されてい
る。
The outdoor unit (A) includes a compressor (1), a four-way switching valve (2) that switches as shown by the solid line in the figure during cooling operation and as a broken line in the figure during heating operation, and a condenser during cooling operation. An outdoor heat exchanger (3) that functions as an evaporator during heating operation, and a first electric expansion valve (4) that functions as a first flow rate adjustment mechanism that adjusts the refrigerant flow rate during cooling operation and reduces the pressure of the refrigerant during heating operation. A receiver (5) for storing the condensed liquid refrigerant, and an accumulator (6) for separating the liquid refrigerant from the suction gas are arranged as main equipment. In addition, the above indoor unit (
B) and (C) have the same configuration, and each has an indoor heat exchanger (7) that functions as an evaporator during cooling operation and a condenser during heating operation, and an automatic decompression mechanism that reduces the pressure of the refrigerant during cooling operation. It is equipped with an expansion valve (8). Each of the above-mentioned devices (1) to (8) is connected to refrigerant piping (9).
), the main refrigerant circuit (10) is connected to allow refrigerant flow, and has a so-called heat pump function that supplies heat obtained through heat exchange with outdoor air indoors.

そして、本発明の特徴として、上記室外ユニット(A)
において、圧縮機(1)の常に吐出側となるガス管(9
a)から上記第1電動膨張弁(4)とレシーバ(5)と
の間の液管(9b)までバイパス路(11)が設けられ
ていて、該バイパス路(11)は暖房運転時、高圧が一
定値以上になったときに、主冷媒回路(10)の冷媒を
バイパスする暖房過負荷制御用バイパス路としての機能
を有する。上記バイパス路(11)には、ガス管(9a
)側から順に上記室外熱交換器(3)と並列に配置され
た補助熱交換器(12)と、バイパス路(11)中の冷
媒の流量を調節する第2流量調節機構としての第2電動
膨張弁(13)とが介設されている。
As a feature of the present invention, the outdoor unit (A)
, the gas pipe (9) which is always on the discharge side of the compressor (1)
A bypass path (11) is provided from a) to the liquid pipe (9b) between the first electric expansion valve (4) and the receiver (5), and the bypass path (11) is connected to high pressure during heating operation. It has a function as a heating overload control bypass path that bypasses the refrigerant in the main refrigerant circuit (10) when the refrigerant reaches a certain value or more. The bypass path (11) includes a gas pipe (9a
) side, an auxiliary heat exchanger (12) arranged in parallel with the outdoor heat exchanger (3), and a second electric motor as a second flow rate adjustment mechanism that adjusts the flow rate of the refrigerant in the bypass path (11). An expansion valve (13) is provided.

また、空気調和装置には、装置全体の運転を制御するコ
ントロールユニット(15)と、冷房運転時には吐出側
に、暖房運転時には吸入側になるガス管(9a)には、
冷房運転時に凝縮圧力相当飽和温度Tc(以下、高圧と
する)を検出する圧力状態検出手段としての圧力センサ
(P1)が設置されていて、該圧力センサ(P1)とコ
ントロールユニット(15)とは信号線によって接続さ
れている。ここで、圧力状態検出手段として上記圧力セ
ンサ(P1)の代わりに温度センサを配置して、冷媒の
凝縮温度からその温度に相当する飽和圧力を求めること
も可能である。しかし、その場合、温度センサの取付は
位置によっては、吐出ガス温度あるいは過冷却された液
冷媒の温度を検知することとなり、検出値に誤差を生じ
得ることから、圧力センサ(P1)としたものである。
The air conditioner also includes a control unit (15) that controls the operation of the entire device, and a gas pipe (9a) that is on the discharge side during cooling operation and on the intake side during heating operation.
A pressure sensor (P1) is installed as a pressure state detection means for detecting a condensing pressure equivalent saturation temperature Tc (hereinafter referred to as high pressure) during cooling operation, and the pressure sensor (P1) and the control unit (15) are Connected by signal line. Here, it is also possible to arrange a temperature sensor in place of the pressure sensor (P1) as the pressure state detection means and obtain the saturation pressure corresponding to the condensation temperature of the refrigerant. However, in that case, depending on the position of the temperature sensor, the temperature sensor may detect the discharge gas temperature or the temperature of the supercooled liquid refrigerant, which may cause an error in the detected value, so the pressure sensor (P1) is used. It is.

そして、コントロールユニット(15)により、上記第
1.第2電動膨張弁(4)、(13)の開度が以下のよ
うに制御される。すなわち、冷房運転時、上記温度セン
サ(TH)で検出される吸込空気温度が所定値以下のと
きには、第2図のフローチャートに示すように、ステッ
プS1でサンプリング時間が経過するのを待って、ステ
ップS2で上記圧力センサ(P1)で検出した高圧Tc
を入力し、ステップS3で第1電動膨張弁(4)の開度
Pを決定する。
Then, the control unit (15) controls the first. The opening degrees of the second electric expansion valves (4) and (13) are controlled as follows. That is, during cooling operation, when the intake air temperature detected by the temperature sensor (TH) is below a predetermined value, as shown in the flow chart of FIG. 2, wait for the sampling time to elapse in step S1, and then step High pressure Tc detected by the pressure sensor (P1) in S2
is input, and the opening degree P of the first electric expansion valve (4) is determined in step S3.

第3図は高圧Tcと目標開度PRとの関係を示し、Tc
−Te1(例えば32℃程度の値)のときには全開、T
c−Tc2(例えば35℃程度の値)のときには全開と
して、その間で高圧Tcの増加に対して目標開度PRが
リニアに増大するように定められている。
Figure 3 shows the relationship between high pressure Tc and target opening PR, and shows the relationship between high pressure Tc and target opening PR.
- When Te1 (for example, a value of about 32℃), fully open, T
When c-Tc2 (for example, a value of about 35° C.), the opening is fully opened, and the target opening PR is set to increase linearly as the high pressure Tc increases during that time.

そして、上記により目標開度PRを決定すると、ステッ
プS4で、目標開度P9と現在開度Pcとの偏差ΔPを
算出し、第1電動膨張弁(4)に制御信号ΔPを出力す
る。
After determining the target opening PR as described above, in step S4, a deviation ΔP between the target opening P9 and the current opening Pc is calculated, and a control signal ΔP is output to the first electric expansion valve (4).

なお、上記高圧制御の代わりに蒸発圧力相当飽和温度T
e(以下、低圧とする)を検出し、該低圧を一定に保持
する低圧一定制御を行ってもよい。
In addition, instead of the above-mentioned high pressure control, the evaporation pressure equivalent saturation temperature T
e (hereinafter referred to as low pressure) may be detected and low pressure constant control may be performed to maintain the low pressure constant.

その場合には、第4図のフローチャートに示すように、
ステップS+’でサンプリング時間が経過するのを待っ
て、ステップS2′で低圧Teを入力し、ステップ83
′で、第5図の蒸発温度Teと目標開度PRとの関係式
にしたがって目標開度PRを決定する(この場合には、
TeがTe1(−3℃程度)で全閉に、TeがTe2(
0℃程度)で全開になるように定められている)。ただ
し、この場合には、吸入側に圧力センサ(P1)が配置
されることになる。
In that case, as shown in the flowchart in Figure 4,
Wait for the sampling time to elapse in step S+', input the low pressure Te in step S2', and step 83
', the target opening PR is determined according to the relational expression between the evaporation temperature Te and the target opening PR shown in FIG.
Te is fully closed at Te1 (approximately -3℃), and Te is fully closed at Te2 (about -3℃).
It is set to fully open at around 0°C). However, in this case, the pressure sensor (P1) will be placed on the suction side.

よって、上記コントロールユニット(15)により、圧
力センサ(圧力状態検出手段)(Pi)で検出される冷
媒圧力が所定値以下のときには、バイパス路(11)か
ら冷媒を液管(9b)側にバイパスさせる一方、室外熱
交換器(3)の冷媒流量を絞ることで、冷媒の圧力状態
が一定になるように上記第1.第2流量調節機構(4)
、  (13)の開度を調節する開度制御手段としての
機能を有するものである。
Therefore, when the refrigerant pressure detected by the pressure sensor (pressure state detection means) (Pi) is below a predetermined value, the control unit (15) bypasses the refrigerant from the bypass path (11) to the liquid pipe (9b) side. On the other hand, by throttling the refrigerant flow rate of the outdoor heat exchanger (3), the pressure state of the refrigerant becomes constant. Second flow rate adjustment mechanism (4)
, (13) has a function as an opening degree control means for adjusting the opening degree.

また、上記空気調和装置の暖房運転時には、四路切換弁
(2)が図中破線側に切換わり、通常第2電動膨張弁(
13)が閉じた状態で運転が行われ、吐出ガスが各室内
熱交換器(7)、  (7)で凝縮されたのち室外熱交
換器(3)で蒸発して圧縮機(1)に戻る。その場合、
各室内ユニット(B)、  (C)における室内負荷が
小さく、室外熱交換器(3)の過負荷状態が生じて、高
圧が上昇したときには、上記バイパス路(11)の第2
電動膨張弁(13)が徐々に開いて、補助熱交換器(1
2)での凝縮による負荷の調節いわゆる暖房過負荷制御
を行うようになされている。
Also, during heating operation of the air conditioner, the four-way switching valve (2) switches to the side shown by the broken line in the figure, and normally the second electric expansion valve (
13) is closed, and the discharged gas is condensed in each indoor heat exchanger (7), (7), evaporated in the outdoor heat exchanger (3), and returned to the compressor (1). . In that case,
When the indoor load in each of the indoor units (B) and (C) is small and the outdoor heat exchanger (3) is overloaded and the high pressure rises, the second
The electric expansion valve (13) gradually opens and the auxiliary heat exchanger (1
In 2), the load is adjusted by condensation, so-called heating overload control.

したがって、上記実施例では、外気温度が低下してそれ
に伴い高圧が低下しようとするが、第2電動膨張弁(1
3)が全開に保持されていて、バイパス路(11)から
の冷媒の流入があるために、高圧の低下が阻止される。
Therefore, in the above embodiment, although the outside air temperature decreases and the high pressure tends to decrease accordingly, the second electric expansion valve (1
3) is kept fully open and refrigerant flows in from the bypass passage (11), thereby preventing a drop in high pressure.

その結果、第6図(イ)に示すように、外気温度の低下
に対して、第1電動膨張弁(4)の開度を図中全開側か
ら全閉側に絞っていくことにより、高圧Tcを一定の値
T’c。
As a result, as shown in Figure 6 (a), the opening degree of the first electric expansion valve (4) is reduced from the fully open side to the fully closed side as shown in the figure in response to a drop in outside air temperature. Tc is a constant value T'c.

(図中破線で示す直線)に保持することができるのであ
る。そして、上記のように高圧一定制御を行っている間
、低圧Teは第6図(ロ)に示すように、全開側でやや
上昇する曲線(図中破線で示す)に沿った変化を示し、
適切な変化範囲に収束している。なお、第6図(イ)、
(ロ)中、各実線は第1電動膨張弁(4)の全開から全
閉までの各−窓開度に対応した外気温度に対する高圧の
変化特性を示している。また、2つの一点鎖線で示す直
線は高圧一定制御を行うための上限線Tc−Tcu(又
はTe57Teu)と下限線Tc−Te1(又はTe−
Te1)である。
(the straight line indicated by the broken line in the figure). While the high pressure constant control is being performed as described above, the low pressure Te shows a change along the curve (indicated by the broken line in the figure) that slightly rises on the fully open side, as shown in FIG. 6 (b).
The change has converged to an appropriate range. Furthermore, Figure 6 (a),
(B) In the middle, each solid line shows the change characteristics of high pressure with respect to the outside air temperature corresponding to each window opening degree from fully open to fully closed the first electric expansion valve (4). In addition, the straight lines shown by the two dotted lines are the upper limit line Tc-Tcu (or Te57Teu) and the lower limit line Tc-Te1 (or Te-
Te1).

その場合、上記補助熱交換器(12)による熱交換量は
室外熱交換器(3)における熱交換量に比べ、同じ冷媒
流量について小さく設定されているので、バイパスする
冷媒によって、室内熱交換器(7)、  (7)側との
容量バランスが崩れることはない。
In that case, the amount of heat exchanged by the auxiliary heat exchanger (12) is set smaller than the amount of heat exchanged by the outdoor heat exchanger (3) for the same refrigerant flow rate. (7), The capacity balance with the (7) side will not be disrupted.

なお、低圧一定制御を行う場合には、第7図(ロ)に示
すように、Te−Teaの直線(同図破線で示す直線)
に沿って第1電動膨張弁(4)を全開から全閉まで変化
させることにより、第7図(ロ)に示すごとく高圧Tc
を同図Te−Teoの曲線に沿って変化させることがで
き、その過低下を防止することができるのである。
In addition, when performing low pressure constant control, as shown in Figure 7 (b), the Te-Tea straight line (the straight line shown by the broken line in the figure)
By changing the first electric expansion valve (4) from fully open to fully closed along
can be changed along the Te-Teo curve in the figure, and an excessive drop can be prevented.

また、上記実施例ではバイパス路(11)に電動膨張弁
(13)を設けて暖房過負荷制御の機能を持たせたが、
既設の暖房過負荷制御用バイパス路をそのまま利用する
こともできる。第8図はそのような第2実施例に係る空
気調和装置の構成を示し、バイパス路(11)の補助熱
交換器(12)の液管(9b)側には、高圧が所定値以
上のときに開く吐出圧力調節弁(15)と、液管(9b
)側からの冷媒の逆流を防ぐ逆止弁(16)と、キャピ
ラリーチューブ(17)とが順次設けられているととも
に、それら各機器(15)〜(17)とは並列に電磁弁
(13’)が設けられている。
In addition, in the above embodiment, an electric expansion valve (13) was provided in the bypass path (11) to provide a heating overload control function.
The existing heating overload control bypass path can also be used as is. FIG. 8 shows the configuration of an air conditioner according to the second embodiment, in which a high pressure of a predetermined value or higher is installed on the liquid pipe (9b) side of the auxiliary heat exchanger (12) of the bypass path (11). The discharge pressure control valve (15), which opens when
) A check valve (16) to prevent backflow of refrigerant from the side and a capillary tube (17) are provided in sequence, and a solenoid valve (13' ) is provided.

その他の構成は上記第1実施例と同じである。The other configurations are the same as those of the first embodiment.

本例においても、上記第1実施例と同様に、低外気温度
時には、上記電磁弁(13’)を開いて吐出ガスを液管
(9b)側にバイパスすることにより、高圧の過低下を
有効に防止することができる。
In this example, as in the first example, when the outside temperature is low, the electromagnetic valve (13') is opened to bypass the discharged gas to the liquid pipe (9b), thereby effectively preventing an excessive drop in high pressure. can be prevented.

(発明の効果) 以上説明したように、本発明の空気調和装置によれば、
室外熱交換器とは並列に吐出管と液管との間に設けられ
た暖房過負荷制御用バイパス路を利用して、該バイパス
路に流量調節機構を介設し、冷房運転時、外気温度が大
きく低下したときには、流量調節機構を開いて、吐出ガ
スを液管側にバイパスするようにしたので、室外熱交換
器側の冷媒流量調節により高圧を一定に制御することが
でき、よって、暖房過負荷制御用バイパス路を利用した
簡易な構成でもって、外気温度の低下による高圧の過低
下を防止して、低外気温度時における冷房運転を可能に
することができる。
(Effects of the Invention) As explained above, according to the air conditioner of the present invention,
A heating overload control bypass path is provided between the discharge pipe and the liquid pipe in parallel with the outdoor heat exchanger, and a flow rate adjustment mechanism is installed in the bypass path to adjust the outside air temperature during cooling operation. When the refrigerant decreases significantly, the flow rate adjustment mechanism is opened and the discharged gas is bypassed to the liquid pipe side, so the high pressure can be controlled to a constant level by adjusting the refrigerant flow rate on the outdoor heat exchanger side. With a simple configuration that utilizes the overload control bypass path, it is possible to prevent an excessive drop in high pressure due to a drop in outside air temperature, and to enable cooling operation at low outside air temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は本発明の第1実施例を示し、第1図は
その全体構成図、第2図は高圧一定制御を示すフローチ
ャート図、第3図はそのときの高圧に対する電動膨張弁
の開度特性図、第4図は低圧一定制御を示すフローチャ
ート図、第5図はそのときの低圧に対する電動膨張弁の
開度特性図、第6図(イ)は高圧一定制御時の外気温度
の変化に対する高圧と電動膨張弁開度の変化特性図、第
6図(ロ)はそのときの外気温度の変化に対する低圧と
電動膨張弁開度の変化特性図、第7図(イ)、 (ロ)
は低圧一定制御時の第6図(イ)、(ロ)相当図である
。第8図は第2実施例の構成を示す図である。また、第
9図は従来の装置の構成を示す図である。 (1)・・・圧縮機、(3)・・・室外熱交換器、(4
)・・・第1電動膨張弁(第1流量調節機構)、(7)
・・・室内熱交換器、(8)・・・自動膨張弁(減圧機
構)、(9a)・・・ガス管、(9b)・・・液管、(
10)・・・主冷媒回路、(11)・・・暖房過負荷制
御用ノくイパス路、(12)・・・補助熱交換器、(1
3)・・・第2電動膨張弁(第2流量調節機構)、(1
5)・・・コントロールユニット(開度制御手段)、(
P1)・・・圧力センサ(圧力状態検出手段)。 特 許 出 願 人  ダイキン工業株式会社 ・′1
(′□′ 代  理  人    弁理士 前 1) 弘 ・溶2
図 第5図 1et 、、、、)182 i ・13図 第4図 第7図 γト晟5品J叉  −一一一一 第6図 外λ温&− 第9図 第8図
1 to 7 show a first embodiment of the present invention, FIG. 1 is an overall configuration diagram thereof, FIG. 2 is a flowchart showing constant high pressure control, and FIG. 3 is an electric expansion for high pressure at that time. Figure 4 is a flowchart showing constant low pressure control; Figure 5 is a characteristic diagram of the opening of the electric expansion valve for low pressure at that time; Figure 6 (a) is the outside air during constant high pressure control. A characteristic diagram of changes in high pressure and electric expansion valve opening degree with respect to changes in temperature, Figure 6 (B) is a characteristic diagram of changes in low pressure and electric expansion valve opening degree with respect to changes in outside temperature at that time, Figure 7 (A), (B)
6A and 6B are diagrams corresponding to FIGS. 6A and 6B during constant low pressure control. FIG. 8 is a diagram showing the configuration of the second embodiment. Further, FIG. 9 is a diagram showing the configuration of a conventional device. (1)...Compressor, (3)...Outdoor heat exchanger, (4
)...first electric expansion valve (first flow rate adjustment mechanism), (7)
... Indoor heat exchanger, (8) ... Automatic expansion valve (pressure reduction mechanism), (9a) ... Gas pipe, (9b) ... Liquid pipe, (
10) Main refrigerant circuit, (11) Heating overload control loop path, (12) Auxiliary heat exchanger, (1
3)...Second electric expansion valve (second flow rate adjustment mechanism), (1
5)...Control unit (opening control means), (
P1)...Pressure sensor (pressure state detection means). Patent applicant: Daikin Industries, Ltd. ・'1
('□' Agent Patent Attorney 1) Hiroshi/Soru 2
Fig. 5 Fig. 1et,,,,) 182 i ・13 Fig. 4 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮機(1)、室外熱交換器(3)、第1流量調
節機構(4)、減圧機構(8)および室内熱交換器(7
)を接続してなる冷媒回路(10)と、吐出ガスをガス
管(9a)から液管(9b)側にバイパスするための暖
房過負荷制御用バイパス路(11)とを備えるとともに
、該バイパス路(11)に配置された第2流量調節機構
(13)と、冷媒の圧力状態を検出する圧力状態検出手
段(P1)と、該圧力状態検出手段(P1)で検出され
る冷媒の圧力が所定値以下になると、上記バイパス路(
11)から冷媒を液管(9b)側にバイパスさせる一方
、上記室外熱交換器(3)の冷媒流量を絞ることで、冷
媒の圧力状態が一定になるように上記第1、第2流量調
節機構(4)、(13)の開度を調節する開度制御手段
(15)とを備えてなる空気調和装置。
(1) Compressor (1), outdoor heat exchanger (3), first flow rate adjustment mechanism (4), pressure reduction mechanism (8), and indoor heat exchanger (7)
), and a heating overload control bypass path (11) for bypassing discharged gas from the gas pipe (9a) to the liquid pipe (9b) side, and the bypass A second flow rate adjustment mechanism (13) disposed in the passage (11), a pressure state detection means (P1) for detecting the pressure state of the refrigerant, and a pressure state detection means (P1) for detecting the refrigerant pressure detected by the pressure state detection means (P1). When the value falls below a predetermined value, the bypass path (
By bypassing the refrigerant from 11) to the liquid pipe (9b) side, and throttling the refrigerant flow rate of the outdoor heat exchanger (3), the first and second flow rates are adjusted so that the pressure state of the refrigerant becomes constant. An air conditioner comprising an opening degree control means (15) that adjusts the opening degrees of the mechanisms (4) and (13).
JP63005057A 1988-01-12 1988-01-12 Air conditioner Expired - Lifetime JP2611297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63005057A JP2611297B2 (en) 1988-01-12 1988-01-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63005057A JP2611297B2 (en) 1988-01-12 1988-01-12 Air conditioner

Publications (2)

Publication Number Publication Date
JPH01181044A true JPH01181044A (en) 1989-07-19
JP2611297B2 JP2611297B2 (en) 1997-05-21

Family

ID=11600771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63005057A Expired - Lifetime JP2611297B2 (en) 1988-01-12 1988-01-12 Air conditioner

Country Status (1)

Country Link
JP (1) JP2611297B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107894045A (en) * 2017-11-03 2018-04-10 广东美的暖通设备有限公司 Throttling control method, device and the air conditioner of air-conditioning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4735250U (en) * 1971-05-11 1972-12-19
JPS56117058A (en) * 1980-02-19 1981-09-14 Matsushita Electric Ind Co Ltd Refrigeration circuit for air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4735250U (en) * 1971-05-11 1972-12-19
JPS56117058A (en) * 1980-02-19 1981-09-14 Matsushita Electric Ind Co Ltd Refrigeration circuit for air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107894045A (en) * 2017-11-03 2018-04-10 广东美的暖通设备有限公司 Throttling control method, device and the air conditioner of air-conditioning system

Also Published As

Publication number Publication date
JP2611297B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
US10527322B2 (en) Air conditioner
US6701732B2 (en) Air conditioner
EP1862745A2 (en) Air conditioner
JP3322684B2 (en) Air conditioner
US6742348B2 (en) Method for controlling linear expansion valve of heat-pump type air conditioning system using multi-compressors
GB2533042A (en) Air conditioner
JPH10238880A (en) Multiple heat pump type air conditioner
JPH04340046A (en) Operation control device of air conditioner
JPH1114177A (en) Air conditioner
JPH01181044A (en) Air conditioning device
GB2533041A (en) Air conditioner
JP3149625B2 (en) Operation control device for air conditioner
JPH10185343A (en) Refrigerating equipment
JP4176677B2 (en) Air conditioner
KR100696712B1 (en) System and method for protecting compressor of multi air-conditioner
KR100748982B1 (en) Air conditioner and Control method of the same
KR100812780B1 (en) Heat-pump having inverter-type compressor for preventing heating overload and control method of the same
JP3059886B2 (en) Refrigeration equipment
JP2703070B2 (en) Multi refrigeration cycle
JP2689025B2 (en) Multi-room air conditioner
JP2976905B2 (en) Air conditioner
JPH04222354A (en) Operation controller for refrigerating equipment
JP2008151401A (en) Air conditioner
JPH03158664A (en) Air conditioner
JPS60248972A (en) Heat pump type air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term