JPH01179908A - Method for uniformizing intensity distribution of laser beam - Google Patents

Method for uniformizing intensity distribution of laser beam

Info

Publication number
JPH01179908A
JPH01179908A JP63002622A JP262288A JPH01179908A JP H01179908 A JPH01179908 A JP H01179908A JP 63002622 A JP63002622 A JP 63002622A JP 262288 A JP262288 A JP 262288A JP H01179908 A JPH01179908 A JP H01179908A
Authority
JP
Japan
Prior art keywords
interference fringe
intensity distribution
laser
pulse
uniformizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63002622A
Other languages
Japanese (ja)
Inventor
Ryoichi Mukai
良一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63002622A priority Critical patent/JPH01179908A/en
Publication of JPH01179908A publication Critical patent/JPH01179908A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent generation of speckle noises by moving the beam position on the irradiation surface of a sample back and forth within a specific range at the time of uniformizing a light intensity distribution by using an integrator lens. CONSTITUTION:The beam position on the irradiation surface of the sample 3 is moved back and forth in the range of >=1/2 the interference fringe intervals or integral multiple of the interference fringe intervals at the time of uniformizing the light intensity distribution of laser light 11 by using the integrating lens 12. This moving speed is set at about the speed at which the beam position moves at the length of <=1/2 the interference fringe intervals in the time from a pulse to a pulse. For example, the pulse width of the laser to be used at the time of projecting the pulse laser light at 0.2mum interference fringe intervals and 100Hz number of repetitions is 15ns. The irradiation per shot is executed in the state of stopping the moving part and the amplitude is set at 0.1mum and the moving speed at 10mum/sec. The speckle noises which are of a problem in application to coherent light are thereby removed.

Description

【発明の詳細な説明】 〔概要〕 インテグレータレンズを用いて光強度分布を均一化する
際に、照射面でのビーム位置またはこのレンズを往復運
動させて、スペックルノイズの発生を防止することによ
るレーザビームの強度分布を均一化する方法に関し、 インテグレータレンズを用いるレーザ光の出力光の強度
分布を均一化する方法において、従来のスペックルノイ
ズの発生を防止する方法を提供することを目的とし、 インテグレータレンズを用いてレーザ光の光強度分布を
均一化する方法において、試料の照射面上でのビーム位
置を干渉縞間隔の1/2以上または干渉縞間隔の整数倍
の範囲で往復移動させることを特徴とするレーザビーム
の強度分布を均一化する方法を含み構成する。
[Detailed Description of the Invention] [Summary] When uniformizing the light intensity distribution using an integrator lens, the generation of speckle noise is prevented by reciprocating the beam position on the irradiation surface or this lens. Regarding a method of uniformizing the intensity distribution of a laser beam, the purpose of this invention is to provide a method of preventing the generation of conventional speckle noise in a method of uniformizing the intensity distribution of the output light of a laser beam using an integrator lens, In a method of uniformizing the light intensity distribution of laser light using an integrator lens, the beam position on the irradiation surface of the sample is moved back and forth within a range of 1/2 or more of the interference fringe interval or an integral multiple of the interference fringe interval. The present invention includes a method for uniformizing the intensity distribution of a laser beam, characterized by:

(産業上の利用分野〕 本発明は、インテグレータレンズを用いて光強度分布を
均一化する際に、照射面でのビーム位置またはこのレン
ズを往復運動させて、スペックルノイズの発生を防止す
ることによるレーザビームの強度分布を均一化する方法
に関する。
(Industrial Application Field) The present invention is directed to preventing the generation of speckle noise by reciprocating the beam position on the irradiation surface or the lens when uniformizing the light intensity distribution using an integrator lens. This invention relates to a method for uniformizing the intensity distribution of a laser beam.

〔従来の技術〕[Conventional technology]

例えば基板上にシリコン(Si)を成膜する技術、すな
わちジシラン(Si2)Is )をエキシマレーザ(A
rF +アルゴンフロライド: 193 nm)のレー
ザによって光分解してシリコンを基板上に成長させるレ
ーザ気相成長(CVD )法が知られている。このよう
なレーザCVD法では、出力光の強度分布を均一化する
ことが求められる。第3図はエキシマレーザ出力光の強
度分布図で、横軸にビー ム幅、縦軸に出力光の強度を
とるが、実際に得られる出力分布は線AまたはBに示す
如くビーム幅全体にわたって不均一な強度分布を示す。
For example, a technique for depositing silicon (Si) on a substrate, i.e. disilane (Si2)Is), is used with an excimer laser (A
A laser vapor deposition (CVD) method is known in which silicon is grown on a substrate by photolysis using a rF + argon fluoride (193 nm) laser. In such a laser CVD method, it is required to make the intensity distribution of output light uniform. Figure 3 is a diagram showing the intensity distribution of excimer laser output light, with the horizontal axis representing the beam width and the vertical axis representing the intensity of the output light.Actually, the output distribution obtained is over the entire beam width, as shown by line A or B. Shows non-uniform intensity distribution.

第4図を参照すると、レーザ光21は基板22に対して
垂直方向に照射され、他方基板22に対してはSi 1
16が吹き付けられ、基板の上でSi2H6がレーザ光
によって分解してシリコンが基板22上に堆積するので
あるが、レーザ光21が基板22に照射したときに、基
板22上には例えば第3図に示した強度の不均一性に対
応した干渉縞23が第5図に示される如くに作られる。
Referring to FIG. 4, the laser beam 21 is irradiated perpendicularly to the substrate 22, and the Si 1
16 is sprayed onto the substrate, Si2H6 is decomposed by the laser beam on the substrate, and silicon is deposited on the substrate 22. When the substrate 22 is irradiated with the laser beam 21, for example, as shown in FIG. Interference fringes 23 corresponding to the non-uniformity of intensity shown in FIG. 5 are created as shown in FIG.

そうなると、基板22上に成長したシリコン膜24を断
面で示す第6図を参照すると、干渉縞間隔に対応して不
均一な凹凸をもったシリコン膜24が形成される。これ
は、レーザ光の強度がシリコンの成長レート(速度)に
影響するからである。そこで、シリコン膜24が均一に
成長するように、第3図に点線Cで示す如き出力光の均
一な強度分布を得ることが求められる。
In this case, referring to FIG. 6, which shows a cross section of the silicon film 24 grown on the substrate 22, the silicon film 24 is formed with non-uniform irregularities corresponding to the interference fringe spacing. This is because the intensity of the laser light affects the growth rate of silicon. Therefore, in order to uniformly grow the silicon film 24, it is required to obtain a uniform intensity distribution of the output light as shown by the dotted line C in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、レーザ装置の動作状態を制御してその出力光の
強度分布を均一化することはきわめて難しい。このため
、通常は出力光を光学的な手段により均一化する方法が
用いられ、その一つにインテグレータレンズを用いる方
法がある。第7図はインテグレータレンズを説明するた
めの図で、図中、31はインテグレータレンズ、32は
入射するレーザビーム、33は出射するレーザビーム、
XとXoはそれぞれ入射、出射するレーザビームの拡が
り、yとy′それぞれ入射、出射するレーザビームの強
度(任意単位)を示す。この方法では、レーザビームを
分割して投影し、重ね合せて均一化するため、コヒーレ
ントなレーザ光の場合には、分割されたレーザ光の干渉
によってスペックルノイズを発生させる問題がある。
However, it is extremely difficult to control the operating state of a laser device to make the intensity distribution of its output light uniform. For this reason, a method is usually used in which the output light is made uniform by optical means, one of which is a method using an integrator lens. FIG. 7 is a diagram for explaining the integrator lens, in which 31 is an integrator lens, 32 is an incident laser beam, 33 is an output laser beam,
X and Xo represent the spread of the incident and emitted laser beams, respectively, and y and y' represent the intensities (arbitrary units) of the incident and emitted laser beams, respectively. In this method, the laser beams are divided, projected, and superimposed to make them uniform. Therefore, in the case of coherent laser beams, there is a problem in that speckle noise is generated due to interference between the divided laser beams.

そこで本発明は、インテグレータレンズを用いるレーザ
光の出力光の強度分布を均一化する方法において、従来
のスペックルノイズの発生を防止する方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method of preventing the generation of speckle noise in a method of uniformizing the intensity distribution of output light of a laser beam using an integrator lens.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、インテグレータレンズを用いてレーザ光
の光強度分布を均一化する方法において、試料の照射面
上でのビーム位置を干渉縞間隔の1/2以上または干渉
縞間隔の整数倍の範囲で往復移動させることを特徴とす
るレーザビームの強度分布を均一化する方法によって解
決される。
The above problem is that in the method of making the light intensity distribution of laser light uniform using an integrator lens, the beam position on the irradiated surface of the sample is set to a range of 1/2 or more of the interference fringe interval or an integral multiple of the interference fringe interval. This problem is solved by a method of uniformizing the intensity distribution of a laser beam, which is characterized by moving the laser beam back and forth.

〔作用〕[Effect]

スペックルノイズとは干渉縞である。この縞の間隔は数
μ糟以下のオーダのものである。したがって、本発明で
は照射面上でのビーム位置を干渉縞間隔の1/2以上ま
たは整数倍の範囲で往復移動させることによってスペッ
クルノイズの発生を防止した。また他の方法では、イン
チグレータレ、ンズを往復運動させて干渉縞の強弱部の
位置を変えてスペックルノイズの発生を防止した。
Speckle noise is interference fringes. The spacing between these stripes is on the order of several micrometers or less. Therefore, in the present invention, the generation of speckle noise is prevented by reciprocating the beam position on the irradiation surface within a range of 1/2 or more or an integral multiple of the interference fringe interval. In another method, speckle noise was prevented by reciprocating the inch gray lens to change the positions of the strong and weak parts of the interference fringes.

〔実施例〕〔Example〕

以下、本発明を図示の実施例により具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to illustrated embodiments.

第1図は本発明実施例の図で、同図(a)に示される例
では、照射面上でのビーム位置を干渉縞間隔の半分以上
の範囲で往復移動させる。第1図(a)において、11
はパルスレーザ光、12はインテグレータレンズ、13
は試料(例えば基板)を示し、この例では、試料13を
矢印の示す如くに往復運動させることにより、試料面上
でのビーム位置を往復移動させるものである。
FIG. 1 is a diagram of an embodiment of the present invention. In the example shown in FIG. 1(a), the beam position on the irradiation surface is reciprocated within a range of more than half the interference fringe interval. In FIG. 1(a), 11
is a pulsed laser beam, 12 is an integrator lens, 13 is
indicates a sample (for example, a substrate), and in this example, by reciprocating the sample 13 as indicated by the arrow, the beam position on the sample surface is reciprocated.

第1図tb>に示す例では、インテグレータレンズ12
そのものを矢印の示す如くに往復運動させることによっ
て試料13上でのビーム位置を干渉縞間隔の半分以上の
範囲で往復移動させるのである。
In the example shown in FIG. 1tb>, the integrator lens 12
By reciprocating the beam as shown by the arrow, the beam position on the sample 13 is reciprocated within a range of more than half the interference fringe interval.

試料13またはインテグレータレンズ12を往復運動さ
せる際の振幅は、干渉縞間隔の1/2以上とする。この
移動速度は、パルスからパルスへの時間に干渉縞間隔の
1/2以下の長さを移動する程度のものとする。具体例
として、干渉縞間隔は0.2μ−とし、繰返し数100
Hzでパルスレーザ光を照射したとき、使用したレーザ
のパルス幅は15nsであるる、1シヨツト毎の照射は
移動部を停止した状態で行った。すなわち、 振幅:0.1.1711 移動速度: 0.1 / (1/100 ’)”’ 1
0IJra / sec とした。このような移動は、圧電素子を用いて実行した
The amplitude when reciprocating the sample 13 or the integrator lens 12 is set to be 1/2 or more of the interference fringe spacing. This moving speed is such that the length of the interference fringe interval is less than 1/2 in the time from pulse to pulse. As a specific example, the interference fringe spacing is 0.2 μ-, and the number of repetitions is 100.
When irradiating with pulsed laser light at Hz, the pulse width of the laser used was 15 ns, and each shot was irradiated with the moving part stopped. That is, Amplitude: 0.1.1711 Traveling speed: 0.1 / (1/100')"' 1
0IJra/sec. Such movement was performed using piezoelectric elements.

第2図(alと山)は本発明実施例の概略図で、図中、
11aはレーザ光源で、同図(a)の例では光源11a
からのレーザ光11をインテグレータレンズ12に通し
、次いでチャンバ14の窓を通してステージ16上の試
料13に照射するが、ステージ16は、1対の同期せし
められる圧電素子17.17によって前記した如くに移
動する。
FIG. 2 (al and mountains) is a schematic diagram of an embodiment of the present invention, and in the figure,
11a is a laser light source, and in the example shown in FIG.
The laser beam 11 from the laser is passed through the integrator lens 12 and then through the window of the chamber 14 to irradiate the sample 13 on the stage 16, which is moved as described above by a pair of synchronized piezoelectric elements 17.17. do.

同図(blには、インテグレータレンズ12を移動させ
る例を示し、同レンズ12は一方側で圧電素子17に連
結され、他方側では固定されたばね18に連結され、圧
電素子はパルス発振器19に接続されている。
The figure (bl) shows an example of moving the integrator lens 12, which is connected to a piezoelectric element 17 on one side and a fixed spring 18 on the other side, and the piezoelectric element is connected to a pulse oscillator 19. has been done.

図示の装置を用いる実験で、従来問題となったスペック
ルノイズを除去しうろことが確認された。
In experiments using the illustrated device, it was confirmed that speckle noise, which has been a problem in the past, can be removed.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明にれば、インテグレータレンズを用
いて光強度分布を均一化する際に、コヒーレント光への
通用で特に問題となるスペックルノイズを除去でき、レ
ーザ出力光の均一化した強度分布が得られる効果がある
As described above, according to the present invention, when uniformizing the light intensity distribution using an integrator lens, speckle noise, which is a particular problem when applied to coherent light, can be removed, and the intensity of the laser output light is made uniform. This has the effect of providing distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)と(b)は本発明実施例の図、第2図(a
)と(b)は本発明実施例の概略図、第3図はエキシマ
レーザの出力光の強度分布図、第4図はレーザ照射の正
面図、 第5図は基板に照射されたレーザ光を示す平面図、 第6図は基板上に成長したシリコン膜の断面図、第7図
はインテグレータレンズを説明する図である。 図中、 11と21はレーザ光、 11aはレーザ光源、 12はインテグレータレンズ、 13は試料、 14はチャンバ、 15は窓、 16はステージ、 17は圧電素子、 18はばね、 19はパルス発振器、 22は基板、 23は干渉縞、 24はシリコン膜 を示す。 特許出願人   富士通株式会社 代理人弁理士  久木元   彰 15  λ 榛朗爽静jda酷、1        16  ステー
シー第2゜        17 ル5ty1Blt−
rs エキシマレ−v1覆鯰77し儒[Δヒ甲m第3図 レーr限身寸―正、ill>ロコ 第4図 11       第6図
Figures 1 (a) and (b) are diagrams of an embodiment of the present invention, and Figure 2 (a)
) and (b) are schematic diagrams of embodiments of the present invention, Figure 3 is an intensity distribution diagram of the output light of the excimer laser, Figure 4 is a front view of laser irradiation, and Figure 5 is a diagram of the laser beam irradiated onto the substrate. FIG. 6 is a cross-sectional view of a silicon film grown on a substrate, and FIG. 7 is a diagram illustrating an integrator lens. In the figure, 11 and 21 are laser beams, 11a is a laser light source, 12 is an integrator lens, 13 is a sample, 14 is a chamber, 15 is a window, 16 is a stage, 17 is a piezoelectric element, 18 is a spring, 19 is a pulse oscillator, 22 is a substrate, 23 is an interference fringe, and 24 is a silicon film. Patent Applicant Fujitsu Ltd. Representative Patent Attorney Akira Kukimoto15
rs excimale-v1 cover catfish 77 shiyu [Δhikom figure 3 ray r limited body size - correct, ill> loco figure 4 figure 11 figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)インテグレータレンズ(12)を用いてレーザ光
(11)の光強度分布を均一化する方法において、試料
(13)の照射面上でのビーム位置を干渉縞間隔の1/
2以上または干渉縞間隔の整数倍の範囲で往復移動させ
ることを特徴とするレーザビームの強度分布を均一化す
る方法。
(1) In a method of uniformizing the light intensity distribution of the laser beam (11) using an integrator lens (12), the beam position on the irradiation surface of the sample (13) is adjusted to 1/1/2 of the interference fringe interval.
A method for making the intensity distribution of a laser beam uniform, characterized by moving the laser beam back and forth within a range of 2 or more or an integral multiple of the interference fringe interval.
(2)インテグレータレンズ(12)を干渉縞間隔の1
/2以上または干渉縞間隔の整数倍の範囲で往復移動さ
せる特許請求の範囲第1項記載の方法。
(2) Set the integrator lens (12) to 1 of the interference fringe interval.
2. The method according to claim 1, wherein the reciprocating movement is performed in a range of /2 or more or an integral multiple of the interference fringe interval.
(3)パルスレーザを使用し、照射は移動試料(13)
を停止させて行い、パルスからパルスへの時間内にd/
2n(ただし、dは干渉縞間隔、nは整数)の距離を移
動させる特許請求の範囲第1項記載の方法。
(3) Use a pulsed laser and irradiate the moving sample (13)
d/d within the pulse-to-pulse time.
2. The method according to claim 1, wherein the method moves a distance of 2n (where d is the interference fringe interval and n is an integer).
(4)パルスレーザを使用し、d/2nt(ただし、t
はパルスからパルスへの時間)の定速移動を行って該レ
ーザを照射する特許請求の範囲第1項記載の方法。
(4) Using a pulsed laser, d/2nt (however, t
2. The method according to claim 1, wherein the laser is irradiated by moving at a constant speed (time from pulse to pulse).
JP63002622A 1988-01-11 1988-01-11 Method for uniformizing intensity distribution of laser beam Pending JPH01179908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63002622A JPH01179908A (en) 1988-01-11 1988-01-11 Method for uniformizing intensity distribution of laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63002622A JPH01179908A (en) 1988-01-11 1988-01-11 Method for uniformizing intensity distribution of laser beam

Publications (1)

Publication Number Publication Date
JPH01179908A true JPH01179908A (en) 1989-07-18

Family

ID=11534504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63002622A Pending JPH01179908A (en) 1988-01-11 1988-01-11 Method for uniformizing intensity distribution of laser beam

Country Status (1)

Country Link
JP (1) JPH01179908A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109460A (en) * 2003-09-09 2005-04-21 Semiconductor Energy Lab Co Ltd Laser irradiation equipment, method of irradiating laser, and method of manufacturing semiconductor device
JP2006287183A (en) * 2005-03-10 2006-10-19 Ishikawajima Harima Heavy Ind Co Ltd Laser irradiation equipment of laser annealing device
US7969532B2 (en) 2005-11-15 2011-06-28 Panasonic Corporation Surface illuminator and liquid crystal display using same
JP2013138241A (en) * 2008-01-07 2013-07-11 Ihi Corp Laser annealing method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565940A (en) * 1978-11-13 1980-05-17 Matsushita Electric Ind Co Ltd Laser image display device
JPS61212816A (en) * 1985-03-18 1986-09-20 Canon Inc Lighting equipment
JPS61279822A (en) * 1985-06-05 1986-12-10 Canon Inc Illuminating optical system
JPS62124521A (en) * 1985-11-25 1987-06-05 Canon Inc Lighting optical system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565940A (en) * 1978-11-13 1980-05-17 Matsushita Electric Ind Co Ltd Laser image display device
JPS61212816A (en) * 1985-03-18 1986-09-20 Canon Inc Lighting equipment
JPS61279822A (en) * 1985-06-05 1986-12-10 Canon Inc Illuminating optical system
JPS62124521A (en) * 1985-11-25 1987-06-05 Canon Inc Lighting optical system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109460A (en) * 2003-09-09 2005-04-21 Semiconductor Energy Lab Co Ltd Laser irradiation equipment, method of irradiating laser, and method of manufacturing semiconductor device
JP2006287183A (en) * 2005-03-10 2006-10-19 Ishikawajima Harima Heavy Ind Co Ltd Laser irradiation equipment of laser annealing device
US7969532B2 (en) 2005-11-15 2011-06-28 Panasonic Corporation Surface illuminator and liquid crystal display using same
JP2013138241A (en) * 2008-01-07 2013-07-11 Ihi Corp Laser annealing method and device
JP2013138242A (en) * 2008-01-07 2013-07-11 Ihi Corp Laser annealing method and device

Similar Documents

Publication Publication Date Title
US5725914A (en) Process and apparatus for producing a functional structure of a semiconductor component
JP4086932B2 (en) Laser irradiation apparatus and laser processing method
US5672211A (en) Apparatus for depositing a thin layer on a substrate by laser pulse vapor deposition
US5360764A (en) Method of fabricating laser controlled nanolithography
US5847812A (en) Projection exposure system and method
KR20030045082A (en) Deposition of thin films by laser ablation
JPH06220635A (en) Method and device for attaching different materials to substrate
JPH01179908A (en) Method for uniformizing intensity distribution of laser beam
JP3969197B2 (en) Laser irradiation device
JPS60206019A (en) Method and device for forming layer by light decomposing andprecipitating
US5372837A (en) Method of manufacturing thin film EL device utilizing a shutter
JP2006110587A (en) Laser interference machining method and device
ES473869A1 (en) A method for defining the spatial location of object surface points.
JPH05255842A (en) Laser sputtering device
JPH0438833B2 (en)
JPS63235912A (en) Optical device
DE60327505D1 (en) Shielded system with a high atomic density metallically coated housing coated by flame spraying
JPH09248686A (en) Laser beam transfer machining device and method therefor
Iwai et al. Monolayer growth and direct writing of GaAs by pulsed laser metalorganic vapor phase epitaxy
CA1046586A (en) Stabilization of laser output
US4839196A (en) Photochemical film-forming method
Kawasaki et al. Site Control of Ga Droplet Array on CaF 2 by Surface Modification Using a Focused Electron Beam
JP4189523B2 (en) Plasma microundulator device
JPS5992523A (en) Method for crystal growth
JPS6066429A (en) Photoelectron image reduced projection type electron beam exposure method