JPH01179454A - Heterojunction semiconductor device and manufacture thereof - Google Patents

Heterojunction semiconductor device and manufacture thereof

Info

Publication number
JPH01179454A
JPH01179454A JP148288A JP148288A JPH01179454A JP H01179454 A JPH01179454 A JP H01179454A JP 148288 A JP148288 A JP 148288A JP 148288 A JP148288 A JP 148288A JP H01179454 A JPH01179454 A JP H01179454A
Authority
JP
Japan
Prior art keywords
emitter
semiconductor
layer
resistance
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP148288A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsumoto
比呂志 松本
Naoki Kasai
直記 笠井
Nobuhiro Endo
遠藤 伸裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP148288A priority Critical patent/JPH01179454A/en
Publication of JPH01179454A publication Critical patent/JPH01179454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To lessen extremely the sheet resistance between an emitter wiring and to realize a high emitter efficiency, a high carrier speed and a high collector breakdown strength by a method wherein the emitter, which needs a buried wiring, is backed by a low-resistance Si layer. CONSTITUTION:A heterojunction semiconductor device is constituted into a structure; wherein a high concentration emitter (GaP epitaxial layer) comes into contact with a high-concentration base layer 10 and moreover, an impurity distribution in the base is decreased steeply from the side of the emitter 2 toward the side of a collector region 5; and a high emitter injection efficiency, a low base resistance, a high-speed carrier traveling and a high collector breakdown strength are satisfied simultaneously. Moreover, as the emitter is also used by backing the high-concentration GaP epitaxial layer 2 by a low-resistance Si layer 13, this contact resistance and the sheet resistance between the emitter and a metallic wiring (third oxide film) 12 are also very small. As the layer 2 is located on a high-resistance Si substrate 1, an emitter capacitance can be also lessened sufficiently, it is effective for the high-speed operation of a device and moreover, the device is low in cost as consisting of Si.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体デバイス及びその製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

高速のスイッチング動作が可能なバイポーラトランジス
タにおいてはエミッタ効率を向上させるためにエミッタ
・ベース間の接合に、エミッタ側においてベース側にお
けるより禁制帯幅が大きいヘテロ接合を用いる、いわゆ
るヘテロバイポーラトランジスタが提案されている。ヘ
テロバイポーラトランジスタにおいて、高速動作を指向
するには、エミッタから注入される小数キャリアをいわ
ゆるホットキャリアの状態でベース領域内で走行させる
ことが有効であり、そのためにエミッタ・ベース接合は
アブラプト接合にする必要がある。
In bipolar transistors capable of high-speed switching operations, a so-called hetero-bipolar transistor has been proposed, which uses a heterojunction with a wider forbidden band width on the emitter side than on the base side for the emitter-base junction in order to improve emitter efficiency. ing. In hetero bipolar transistors, in order to achieve high-speed operation, it is effective to make the minority carriers injected from the emitter travel in the base region in the state of so-called hot carriers, and for this purpose, the emitter-base junction is made an ablative junction. There is a need.

さらに、エミッタ・ベース間のバンドオフセットを利用
してエミッタ注入効率を向上させ、同時にベース抵抗を
低下させることができる。
Furthermore, the emitter-base band offset can be used to improve emitter injection efficiency and reduce base resistance at the same time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、高速動作に必要な高エミッタ電流を得るために
はエミッタの不純物濃度もベースと同様に高くする必要
があり、高濃度のエミッタと高濃度のベースとがアブラ
プト接合していることになる。従って、もし、エミッタ
・ベース間の境界に高い密度の界面準位が存在している
と、この界面準位を介したバンド間トンネル再結合電流
が増加し、予測はどのエミッタ注入効率を実現できない
However, in order to obtain the high emitter current necessary for high-speed operation, the impurity concentration of the emitter needs to be as high as that of the base, and the highly doped emitter and the highly doped base form an ablative junction. Therefore, if a high density of interface states exists at the emitter-base boundary, the interband tunnel recombination current through this interface state will increase, and the predicted emitter injection efficiency cannot be achieved. .

実際、従来のへテロバイポーラトランジスタではへテロ
エピタキシャル成長時のへテロ界面での格子定数の不整
合や熱膨張係数の相違によってミスフィツト転位が発生
し、これがキャリアのバンド間トンネル再結合中心とな
っており、デバイス特性に悪影響が及ぶという問題があ
った。また、確かに単独デバイスとしては従来のホモの
バイポーラトランジスタより高性能であるが、ヘテロバ
イポーラトランジスタを集積回路に応用した場合、ホモ
のバイポーラトランジスタと同様の寄生素子効果を減ら
す努力をしない限り、回路遅延の観点では目ざましい改
良が期待できないという問題点もあった。
In fact, in conventional hetero-bipolar transistors, misfit dislocations occur due to mismatch in lattice constants and differences in thermal expansion coefficients at the hetero interface during heteroepitaxial growth, and these become centers of interband tunnel recombination of carriers. , there was a problem that device characteristics were adversely affected. Also, although it is true that as a single device it has higher performance than a conventional homogeneous bipolar transistor, when a heterogeneous bipolar transistor is applied to an integrated circuit, unless efforts are made to reduce the parasitic element effects similar to homogeneous bipolar transistors, the circuit There was also the problem that no significant improvement could be expected from a delay perspective.

本発明の目的はへテロバイポーラトランジスタのかかる
欠点を克服し、高速動作が可能で、かつ、寄生素子効果
も抑えることが可能なデバイス構造及びかかる構造のデ
バイスを実現する製造方法を提供することにある。
An object of the present invention is to overcome such drawbacks of hetero bipolar transistors, to provide a device structure that is capable of high-speed operation, and can suppress parasitic element effects, and a manufacturing method for realizing a device with such a structure. be.

〔問題点を解決するための手段〕[Means for solving problems]

半導体よりなる高抵抗半導体基板上に形成された該基板
と反対の伝導型の高濃度領域と、前記高濃度領域上に形
成され、前記第一の半導体より禁制帯幅の広い第二の半
導体よりなり前記高濃度領域と同じ伝導型の高濃度領域
のエミッタ層と、前記エミッタ層上に形成され、前記第
二の半導体より禁制帯幅の狭い第三の半導体よりなり前
記エミッタ層と反対の伝導型でかつ前記エミッタ領域と
の界面から離れる方向に向かって急峻に濃度の減少する
高濃度領域よりなるベース層と、前記ベース層上に形成
され、一定の不純物分布よりなる前記ベース層と反対の
伝導型の半導体によるコレクタ層と、かつ前記コレクタ
層上に窓のあいた絶縁層を介してコレクタ層に接するコ
レクタ電極配線層とを有することを特徴とするヘテロ接
合バイポーラトランジスタである。
a high-concentration region of a conductivity type opposite to that of the substrate formed on a high-resistance semiconductor substrate made of a semiconductor; and a second semiconductor formed on the high-concentration region and having a wider forbidden band width than the first semiconductor. an emitter layer of a high concentration region having the same conductivity type as the high concentration region, and a third semiconductor formed on the emitter layer and having a narrower forbidden band width than the second semiconductor, and having conductivity opposite to that of the emitter layer. a base layer formed of a high concentration region whose concentration decreases sharply in a direction away from the interface with the emitter region; and a base layer opposite to the base layer formed on the base layer and having a constant impurity distribution. The present invention is a heterojunction bipolar transistor characterized by having a collector layer made of a conductive semiconductor, and a collector electrode wiring layer that is in contact with the collector layer through an insulating layer having a window on the collector layer.

また、本発明の半導体装置の製造方法は、禁制帯幅の狭
い第一の半導体よりなる高抵抗半導体基板上に、基板と
反対の伝導型の高濃度領域を形成し、さらに、前記第一
の半導体より禁制帯幅の広い第二の半導体よりなり前記
高濃度領域と同じ伝導型の高濃度不純物を有するエミッ
タ領域をヘテロエピタキシャル成長する工程と、一方、
前記第二の半導体より禁制帯幅の狭い第三の半導体基板
に、素子分離トレンチ溝を形成し、溝内の下方途中まで
を第一の酸化膜で埋め、高加速イオン注入法により前記
第二の半導体の高濃度エピタキシャル領域と同じ伝導型
を実現する不純物を分布の最深部の端が前記素子間分離
溝の酸化膜の底より深く、かつ、最浅部の端が前記素子
間分離層の底より浅くなるように注入し、CVD法によ
って第一のポリシリコンを堆積し、イオン注入法による
前記第二の半導体の高濃度エピタキシャル領域と異なる
伝導型を実現する不純物のイオン注入と熱処理により前
記ポリシリコン層に不純物をドープし、CVD法によっ
て第二の酸化膜をその上部が溝上部より低くなるような
膜厚で堆積し、CVD法によって第二のポリシリコンを
全面堆積し1選択研磨法によって前記第二のポリシリコ
ンを全面除去するとともに表面を平坦化する工程と、前
記第一の半導体基板と、前記第三の半導体基板を貼り合
せる工程と、選択研磨法によって前記第三の半導体基板
を前記第一の酸化膜との界面まで選択研磨することによ
って除去し、 CVD法によって第三の酸化膜を形成し
、リソグラフィ工程によってコンタクトホールを形成し
、電極配線層を形成し、リソグラフィ工程によって電極
配線を形成する工程とを含むことを特徴とするヘテロ接
合バイポーラトランジスタの製造方法である。
Further, in the method for manufacturing a semiconductor device of the present invention, a high concentration region of a conductivity type opposite to that of the substrate is formed on a high resistance semiconductor substrate made of a first semiconductor having a narrow bandgap; a step of heteroepitaxially growing an emitter region made of a second semiconductor having a wider forbidden band width than the semiconductor and having a high concentration impurity of the same conductivity type as the high concentration region;
An element isolation trench groove is formed in a third semiconductor substrate having a narrower forbidden band width than the second semiconductor substrate, the trench is filled halfway down with a first oxide film, and the second semiconductor substrate is formed by high-acceleration ion implantation. The end of the deepest part of the impurity distribution to achieve the same conductivity type as the high concentration epitaxial region of the semiconductor is deeper than the bottom of the oxide film of the element isolation trench, and the end of the shallowest part is of the element isolation layer. The first polysilicon is implanted to be shallower than the bottom, and the first polysilicon is deposited by the CVD method, and the first polysilicon is implanted by ion implantation to realize a conductivity type different from that of the high concentration epitaxial region of the second semiconductor, and the second semiconductor is ion-implanted and heat treated. The polysilicon layer is doped with impurities, a second oxide film is deposited using the CVD method to a thickness such that its top is lower than the top of the trench, the second polysilicon is deposited on the entire surface using the CVD method, and one-selective polishing is performed. a step of completely removing the second polysilicon and flattening the surface, a step of bonding the first semiconductor substrate and the third semiconductor substrate, and a step of removing the third semiconductor substrate by a selective polishing method. A third oxide film is formed by a CVD method, a contact hole is formed by a lithography process, an electrode wiring layer is formed, and a third oxide film is removed by a lithography process. 1. A method for manufacturing a heterojunction bipolar transistor, comprising a step of forming electrode wiring.

〔作用〕[Effect]

次に、本発明の構造の半導体デバイスの構造上の原理を
説明する。本発明のへテロバイポーラトランジスタは、
第3図のように、高濃度エミッタと高濃度ベースとが接
しており、かつエミッタ側からコレクタ側に向かってベ
ース内不純物分布が急峻に減少しており、高エミッタ注
入効率、低ペース抵抗、高速キャリア走行、高コレクタ
耐圧を同時に満たすことができる。前二者はベースのエ
ミッタ端における濃度が高いことが、また後二者はベー
スのコレクタ端における濃度が低いことが寄与している
。また、本発明のへテロバイポーラトランジスタは基板
側がエミッタ、表面側がコレクタであり、コレクタ上部
で直接電極配線層との接触を行っているので、エミッタ
トップ型のへテロバイポーラトランジスタで高速動作を
阻害していたコレクタ・基板間の容量が除去でき、かつ
、エミッタはエミッタと同じ伝導型でかつ禁制帯幅の狭
い低抵抗層に接し、さらにその先は、高抵抗基板となっ
ているので、エミッタ基板容量及びエミッタの基板内埋
め込み配線層抵抗ともに非常に小さく、ヘテロバイポー
ラトランジスタの高速性を集積回路の中で十分に発揮す
ることがセきる。
Next, the structural principle of the semiconductor device having the structure of the present invention will be explained. The hetero bipolar transistor of the present invention is
As shown in Fig. 3, the high concentration emitter and the high concentration base are in contact with each other, and the impurity distribution in the base decreases sharply from the emitter side to the collector side, resulting in high emitter injection efficiency, low paste resistance, High-speed carrier running and high collector voltage resistance can be satisfied at the same time. The former two are contributed by the high concentration at the emitter end of the base, and the latter two are contributed by the low concentration at the collector end of the base. In addition, the hetero bipolar transistor of the present invention has an emitter on the substrate side and a collector on the surface side, and the upper part of the collector is in direct contact with the electrode wiring layer, so the high speed operation of the emitter top type hetero bipolar transistor is inhibited. In addition, the emitter is in contact with a low resistance layer that has the same conductivity type as the emitter and has a narrow forbidden band width, and beyond that is a high resistance substrate, so the emitter substrate can be removed. Both the capacitance and the embedded wiring layer resistance of the emitter in the substrate are extremely small, and the high speed performance of the hetero bipolar transistor can be fully utilized in an integrated circuit.

次に、本発明のへテロバイポーラトランジスタの製造方
法の原理について説明する。従来のへテロエピタキシャ
ル成長法を基本にして、コレクタトップ型のへテロバイ
ポーラトランジスタを形成する場合に、ベース層とコレ
クタ層との2層を成長させなければならず、ヘテロ成長
膜厚がかなり厚いものとなってしまい、さらに不純物の
型を途中で2回、変更しなければならないこともあって
Next, the principle of the method for manufacturing a hetero bipolar transistor of the present invention will be explained. When forming a collector top type hetero bipolar transistor based on the conventional hetero epitaxial growth method, it is necessary to grow two layers, a base layer and a collector layer, and the thickness of the hetero growth film is quite thick. This resulted in the impurity type having to be changed twice during the process.

その間の不純物の再分布や結晶性の低下など、結晶成長
上の困難さがある。このような、要求を満足できるヘテ
ロ成長法としてはMBE法しかないが、これはスループ
ット、製造コストの面で問題がある。また、特にSi系
のへテロバイポーラトランジスタでは、格子定数の近い
ヘテロエミッタ材料がGaP L/かないこともあって
、なかなか良好なヘテロ界面が実現できないという問題
もある。本発明の製造方法の特徴の一つは、ヘテロ接合
の実現のためにヘテロエピタキシャル成長法を、高抵抗
基板上の低抵抗層とエミッタ層との間の接合を形成する
ために用いている点である。ヘテロエピタキシャル成長
法では、歪超格子よりなるバッファ層をヘテロ界面に設
けるなどして、ヘテロの不整合性を界面に集中し、その
代わりに、上部のエピタキシャル層内での結晶性向上を
はかることが有効な手段として用いられるが、同方法は
、ヘテロ界面の良し悪しがデバイス特性に敏感に反映す
るヘテロバイポーラトランジスタには用いることができ
ないが、本発明における上述のへテロ成長は、界面の性
能を問題視する必要のないところで用いているため、上
述のバッファ層形成を用いたヘテロ成長法を用いること
ができ、エミッタ表面の結晶性を良好にすることができ
る。エミッタと、コレクタ・ベース領域を異なる種類の
半導体基板上で別個に製造し、両者の表面を平坦化した
後に、貼り合せ技術を用いている。もう一つの特徴は、
ヘテロバイポーラトランジスタ集積回路の高速動作を阻
害するコレクタ・基板容量を皆無にするため、このよう
な貼り合せの後、本来不要であるコレクタ側の半導体基
板を除去している点である。
There are difficulties in crystal growth, such as redistribution of impurities and a decrease in crystallinity. The only hetero-growth method that can satisfy such requirements is the MBE method, but this method has problems in terms of throughput and manufacturing cost. In addition, particularly in Si-based hetero bipolar transistors, there is also the problem that it is difficult to realize a good hetero interface because the hetero emitter material with a similar lattice constant is not GaP L/. One of the features of the manufacturing method of the present invention is that a heteroepitaxial growth method is used to form a junction between a low resistance layer and an emitter layer on a high resistance substrate to realize a heterojunction. be. In the heteroepitaxial growth method, by providing a buffer layer made of a strained superlattice at the hetero interface, it is possible to concentrate the hetero mismatch at the interface and instead improve the crystallinity within the upper epitaxial layer. Although this method is used as an effective means, it cannot be used for hetero bipolar transistors where the quality of the hetero interface is sensitively reflected in the device characteristics. Since it is used in a place where there is no need to view it as a problem, the hetero-growth method using the above-mentioned buffer layer formation can be used, and the crystallinity of the emitter surface can be improved. The emitter and the collector/base region are manufactured separately on different types of semiconductor substrates, and after the surfaces of both are planarized, a bonding technique is used. Another feature is
After such bonding, the semiconductor substrate on the collector side, which is originally unnecessary, is removed in order to completely eliminate the collector/substrate capacitance that impedes high-speed operation of the hetero-bipolar transistor integrated circuit.

このような製造方法により、本発明の構造の半導体デバ
イスを確実に実現することができる。
By such a manufacturing method, a semiconductor device having the structure of the present invention can be reliably realized.

〔実施例〕〔Example〕

以下、第2図(a)〜(2)の一連の工程図と、第1図
の構造図を用いて、本発明を用いた半導体デバイスの構
造及び製造方法の典型的な一実施例について説明する。
Hereinafter, a typical embodiment of the structure and manufacturing method of a semiconductor device using the present invention will be explained using a series of process diagrams shown in FIGS. 2(a) to (2) and a structural diagram shown in FIG. do.

第2図(a)は面方位(100)、不純物濃度5X10
1′す、リン濃度I X 101020a”の低抵抗層
13を2500人形成し、ランプアニールの後、SL濃
度3X10”■−1の高濃度n形GaPエピタキシャル
層2を厚さ2000人形成したところである。一方、第
2図(b)のように面方位(ioo)、不純物濃度5X
1015(7)−3のp形Si基板4上に、CVD窒化
膜3を全面に2000人堆積し、さらにこれをパターニ
ングし、これをマスクとして基板4を約1000人エツ
チングして溝の形成を行い、さらにCVD窒化11u3
を500人堆積してそのままRIE法によってCVD窒
化膜3をエツチングし、いわゆるサイドウオール形成を
行って第2図(b)の構造を得る。次に、CVD窒化膜
3をマスクとしてRIE法によりさらに溝を深くし、第
2図(c)のように合計で深さ3000人の素子間分離
トレンチ溝を形成する。次に、LOGO3酸化法により
、溝側壁下部及び溝底部を約900人熱酸化して第1酸
化膜6を形成し、さらに窒化膜3を除去し、高加速イオ
ン注入法によってプロジェクションレンジが約3000
人のピーク濃度5 X 10” an−’のAsのイオ
ン注入を行い、ランプアニール法によりAsを活性化し
て。
Figure 2 (a) shows surface orientation (100) and impurity concentration 5X10.
1', 2500 layers of low resistance layer 13 with phosphorus concentration I x 101020a" were formed, and after lamp annealing, 2000 layers of high concentration n-type GaP epitaxial layer 2 with SL concentration 3 x 10" -1 was formed. be. On the other hand, as shown in Figure 2(b), the plane orientation (IOO) and the impurity concentration are 5X.
A CVD nitride film 3 was deposited on the entire surface of the p-type Si substrate 4 of 1015(7)-3 by 2000 layers, and this was further patterned, and using this as a mask, the substrate 4 was etched by about 1000 layers to form grooves. and further CVD nitriding 11u3
After depositing 500 layers, the CVD nitride film 3 is etched by the RIE method to form a so-called sidewall to obtain the structure shown in FIG. 2(b). Next, using the CVD nitride film 3 as a mask, the trench is further deepened by RIE to form element isolation trenches with a total depth of 3000 as shown in FIG. 2(c). Next, a first oxide film 6 is formed by thermally oxidizing the lower part of the trench sidewall and the trench bottom by approximately 900 people using the LOGO3 oxidation method, and the nitride film 3 is further removed, and the projection range is increased to approximately 3000 by using the high acceleration ion implantation method.
As ions were implanted at a peak concentration of 5 x 10''an-', and the As was activated by lamp annealing.

コレクタ領域5を形成し、第2図(c)の構造を得る。A collector region 5 is formed to obtain the structure shown in FIG. 2(c).

次に、 CVD法によって、ボロンドープのドープトポ
リシリコンを約900人堆積して第1ポリシリコン層9
を形成し、さらに、CVD法により酸化膜を900人堆
積して第2酸化膜8を形成し、さらに、CVD法により
、第2ポリシリコン層7を形成して第2図(d)の構造
を得る。次に1選択研磨法によって第2ポリシリコン層
7を研磨する。選択研磨法を用いているため、研磨速度
は第2酸化膜8のフィールド部における上端で極端に遅
くなり、事実上ここで研磨が終了するので、平坦な構造
を制御よく得ることができる。このとき、デバイス上で
は第2酸化膜8、第1ポリシリコン層9は完全に削り落
され、Si基板4の途中で止まっている(第2図(e)
)。次に、Si表面をランプ酸化により約400人酸化
する。このとき、島状のシリコン領域の周辺では第1ポ
リシリコン層9が露出しているので、この部分も酸化さ
れる。この部分は高濃度にドープされているので条件を
選べば、Si基板4より酸化速度の速い状況を実現でき
る。従って、次に、RIE法によって酸化膜をエッチし
て、Si基板4上では酸化膜を完全に除去し、かつ、第
1ポリシリコン層9上では酸化膜が残っているような状
況が実現できる。次に酸化膜をマスクにしてSi基板4
を約200人エツチングして溝を作り、次に選択エピタ
キシャル成長法により約200人の不純物濃度I X 
10” an−’のボロンドープのシリコンよりなるベ
ース層10を形成して、この溝を埋め戻す。このとき、
島状のシリコン領域の周辺の第1ポリシリコン層9は酸
化膜で被覆されているので、この部分では選択エピタキ
シャルシリコンは成長しない。
Next, approximately 900 boron-doped polysilicon layers are deposited by CVD to form a first polysilicon layer 9.
A second oxide film 8 is formed by depositing 900 oxide films by the CVD method, and a second polysilicon layer 7 is formed by the CVD method to obtain the structure shown in FIG. 2(d). get. Next, the second polysilicon layer 7 is polished by a single selective polishing method. Since the selective polishing method is used, the polishing rate becomes extremely slow at the upper end of the field portion of the second oxide film 8, and polishing virtually ends there, so that a flat structure can be obtained with good control. At this time, the second oxide film 8 and the first polysilicon layer 9 on the device are completely scraped off, and they stop in the middle of the Si substrate 4 (Fig. 2(e)).
). Next, the Si surface is oxidized by lamp oxidation for about 400 hours. At this time, since the first polysilicon layer 9 is exposed around the island-shaped silicon region, this portion is also oxidized. Since this portion is highly doped, if the conditions are selected, it is possible to achieve a situation where the oxidation rate is faster than that of the Si substrate 4. Therefore, next, by etching the oxide film using the RIE method, a situation can be realized in which the oxide film is completely removed on the Si substrate 4 and the oxide film remains on the first polysilicon layer 9. . Next, using the oxide film as a mask, the Si substrate 4 is
The impurity concentration I
A base layer 10 made of boron-doped silicon of 10"an-' is formed to backfill the trench. At this time,
Since the first polysilicon layer 9 around the island-shaped silicon region is covered with an oxide film, selective epitaxial silicon does not grow in this portion.

ベース層10と第1ポリシリコン層9は酸化膜端部の下
の部分で電気的に接触している。選択エピタキシャル成
長は平坦性よく行われるのでシリコン基板表面はこのと
きほとんど平坦である。次に、Si基板4とGaPエピ
タキシャル層2をのせた高抵抗SL基板1を面内軸方向
を一致させながら熱接着法によって貼り合せ、第2図(
f)の構造を得る。次に、再び選択研磨法によってSi
基板4を下側から化膜6の下部がストッパとなって研磨
が止まる(第2図(2))。コレクタ領域5のAs濃度
ピークの位置を予め、第1酸化膜6の上部に一致させて
いるので研磨後、コレクタ領域5の最高濃度の部分が露
出する。次に、基板の上下を反対にし、リソグラフィ工
程により第1酸化膜6と第1ポリシリコン層9をパター
ニングし、デバイス周辺の第1ポリシリコン層9を除去
する。次にリソグラフィ工程によりトレンチ溝を形成し
、エミッタ分離を行い1次に、CVD法により、第3酸
化膜12を約1000人形成し、コンタクトホール形成
工程及び配線形成工程により配線金属層11を形成し、
第1図に示す最終的なデバイス構造を得る。以上の工程
上、ヘテロバイポーラデバイス部作成の工程ではマスク
工程は最初の窒化膜3のパターン形成の1回だけであり
、完全にセルファラインで作成できる。
The base layer 10 and the first polysilicon layer 9 are in electrical contact at a portion below the edge of the oxide film. Since selective epitaxial growth is performed with good flatness, the surface of the silicon substrate is almost flat at this time. Next, the Si substrate 4 and the high-resistance SL substrate 1 on which the GaP epitaxial layer 2 is placed are bonded together by thermal bonding while aligning their in-plane axes, as shown in FIG.
Obtain the structure of f). Next, by selective polishing again, Si
Polishing of the substrate 4 from below is stopped by the lower part of the chemical film 6 acting as a stopper (FIG. 2 (2)). Since the peak position of the As concentration in the collector region 5 is aligned in advance with the upper part of the first oxide film 6, the highest concentration portion of the collector region 5 is exposed after polishing. Next, the substrate is turned upside down, the first oxide film 6 and the first polysilicon layer 9 are patterned by a lithography process, and the first polysilicon layer 9 around the device is removed. Next, a trench groove is formed by a lithography process, and emitter isolation is performed. Next, a third oxide film 12 is formed by a CVD method, and a wiring metal layer 11 is formed by a contact hole formation process and a wiring formation process. death,
The final device structure shown in FIG. 1 is obtained. In view of the above steps, in the step of forming the hetero bipolar device section, the mask step is only performed once for the initial pattern formation of the nitride film 3, and the device can be formed completely on a self-line.

熱接着の温度は400〜500℃程度であるのでGaP
エミッタ内及びSiベース・コレクタ内の不純物はほと
んど再分布しない。しかもSLとGaPとは格子整合性
が良いので従来のへテロエピタキシャル成長法を用いた
場合に比べて大幅に界面準位を減少させることができ、
従って、コレクタトップ構造であるにも関わらず、ベー
ス内ではエミッタ側の界面付近で濃度が最大となるよう
な不純物プロファイルを実現することができると同時に
高いエミッタ効率を得ることができる。また、コレクタ
領域5は濃度の最高点で電極を形成することができ、コ
レクタコンタクト抵抗を大幅に低減するうえに効果があ
る。ベースは真性ベース(ベース層10)も外部ベース
(第1ポリシリコン層9)も高濃度であり、両者のコン
タクトは問題ない。また、エミッタも高濃度のGaPエ
ピタキシャル層2をSi低抵抗層13で裏打ちして用い
ているので、このコンタクト抵抗及び金属配線12まで
のシート抵抗も極めて小さい。GaPエピタキシャル層
2は高抵抗のSL基板1上にあるため、エミッタ容量も
十分に小さくでき、デバイスの高速動作に効果があり、
かつ、基板がSiであるので安価である。
Since the temperature of thermal bonding is about 400 to 500℃, GaP
There is little redistribution of impurities in the emitter and in the Si-based collector. Moreover, since SL and GaP have good lattice matching, it is possible to significantly reduce the interface states compared to when using the conventional heteroepitaxial growth method.
Therefore, despite the collector top structure, it is possible to realize an impurity profile in which the concentration is maximum near the interface on the emitter side within the base, and at the same time obtain high emitter efficiency. Furthermore, an electrode can be formed in the collector region 5 at the highest concentration point, which is effective in significantly reducing collector contact resistance. Both the intrinsic base (base layer 10) and the extrinsic base (first polysilicon layer 9) are highly doped, and there is no problem in contacting them. Further, since the emitter is also used by backing the high concentration GaP epitaxial layer 2 with the Si low resistance layer 13, the contact resistance and the sheet resistance up to the metal wiring 12 are also extremely small. Since the GaP epitaxial layer 2 is on the high-resistance SL substrate 1, the emitter capacitance can be made sufficiently small, which is effective for high-speed operation of the device.
Moreover, since the substrate is made of Si, it is inexpensive.

また、GaPエピタキシャル層は基板全面に成長できれ
ばよく、GaPエピタキシャル層に関しては微細加工技
術が不必要である。また、熱接着後は、GaPは中間層
としてのみ存在するので、再び、SL工程内に持ち込む
ことができ、コンタクト形成、配線形成に汚染等の問題
もない。従って、デバイス寸法は、Siプロセスでの微
細加工技術だけで完全に決まり、高集積化に対して絶大
な効果がある。
Further, the GaP epitaxial layer only needs to be grown over the entire surface of the substrate, and microfabrication technology is not necessary for the GaP epitaxial layer. Furthermore, since GaP exists only as an intermediate layer after thermal bonding, it can be brought into the SL process again, and there are no problems such as contamination during contact formation or wiring formation. Therefore, the device dimensions are completely determined only by the microfabrication technology in the Si process, which has a great effect on high integration.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明のへテロバイポーラトランジスタに
よれば、ベース内不純物分布をエミッタ側の界面付近に
おいて高濃度とし、コレクタ側に向かって急峻に減少さ
せた構造をとることによって、高エミッタ効率、高キヤ
リア速度、高コレクタ耐圧を実現し、かつ、コレクタ・
基板間容量を全くなくシ1代わりにエミッタ・基板間容
量が新たに加わっているものの、高抵抗半導体基板上に
エミッタが形成されているため、これは十分小さく、か
つ、エミッタ・ベース・コレクタのすべての端子におい
て、低コンタクト抵抗を実現しており、また、唯−理め
込み配線の必要なエミッタも、低抵抗シリコン層で裏打
ちされているのでエミッタ配線シート抵抗も極めて小さ
くでき、超高速論理集積回路を形成する上で卓絶した効
果を発揮するものである。
As described above, according to the hetero bipolar transistor of the present invention, the impurity distribution in the base is made high in concentration near the interface on the emitter side and sharply decreases toward the collector side, thereby achieving high emitter efficiency. Achieves high carrier speed, high collector pressure resistance, and
Although there is no inter-substrate capacitance at all, an emitter-to-substrate capacitance is added instead, but since the emitter is formed on a high-resistance semiconductor substrate, this is sufficiently small and the emitter-base-collector capacitance is small. Low contact resistance has been achieved for all terminals, and the emitter, which only requires embedded wiring, is lined with a low-resistance silicon layer, so the emitter wiring sheet resistance can be extremely low, allowing ultra-high-speed logic It exhibits outstanding effects in forming integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のへテロバイポーラトランジスタの一実
施例を示す概略図、第2図(a)〜(2)は本発明のへ
テロバイポーラトランジスタの製造方法の一実施例を示
す一連の工程図、第3図は本発明の構造のへテロバイポ
ーラトランジスタの原理を示すための概念図である。
FIG. 1 is a schematic diagram showing an embodiment of the hetero bipolar transistor of the present invention, and FIGS. 2 (a) to (2) are a series of steps showing an embodiment of the method for manufacturing the hetero bipolar transistor of the present invention. 3 are conceptual diagrams showing the principle of a hetero bipolar transistor having the structure of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)禁制帯幅の狭い第一の半導体よりなる高抵抗半導
体基板上に形成された該基板と反対の伝導型の高濃度領
域と、前記高濃度領域上に形成され、前記第一の半導体
より禁制帯幅の広い第二の半導体よりなり前記高濃度領
域と同じ伝導型の高濃度領域のエミッタ層と、前記エミ
ッタ層上に形成され、前記第二の半導体より禁制帯幅の
狭い第三の半導体よりなり前記エミッタ層と反対の伝導
型でかつ前記エミッタ領域との界面から離れる方向に向
かって急峻に濃度の減少する高濃度領域よりなるベース
層と、前記ベース層上に形成され、一定の不純物分布よ
りなる前記ベース層と反対の伝導型の半導体によるコレ
クタ層と、かつ前記コレクタ層上に窓のあいた絶縁層を
介してコレクタ層に接するコレクタ電極配線層とを有す
ることを特徴とするヘテロ接合半導体装置。
(1) a high-concentration region of a conductivity type opposite to that of the substrate formed on a high-resistance semiconductor substrate made of a first semiconductor with a narrow band gap, and a high-concentration region formed on the high-concentration region and made of a first semiconductor; an emitter layer of a high concentration region made of a second semiconductor having a wider forbidden band width and having the same conductivity type as the high concentration region; and a third emitter layer formed on the emitter layer and having a narrower forbidden band width than the second semiconductor. a base layer consisting of a high concentration region having a conductivity type opposite to that of the emitter layer and whose concentration decreases sharply in a direction away from the interface with the emitter region; a collector layer made of a semiconductor of a conductivity type opposite to that of the base layer, which has an impurity distribution of Heterojunction semiconductor device.
(2)禁制帯幅の狭い第一の半導体よりなる高抵抗半導
体基板上に、基板と反対の伝導型の高濃度領域を形成し
、さらに、前記第一の半導体より禁制帯幅の広い第二の
半導体よりなり前記高濃度領域と同じ伝導型の高濃度不
純物を有するエミッタ領域をヘテロエピタキシャル成長
する工程と、一方、前記第二の半導体より禁制帯幅の狭
い第三の半導体基板に、素子分離トレンチ溝を形成し、
溝内の下方途中までを第一の酸化膜で埋め、高加速イオ
ン注入法により前記第二の半導体の高濃度エピタキシャ
ル領域と同じ伝導型を実現する不純物を分布の最深部の
端が前記素子間分離溝の酸化膜の底より深く、かつ、最
浅部の端が前記素子間分離層の底より浅くなるように注
入し、CVD法によって第一のポリシリコンを堆積し、
イオン注入法による前記第二の半導体の高濃度エピタキ
シャル領域と異なる伝導型を実現する不純物のイオン注
入と熱処理により前記ポリシリコン層に不純物をドープ
し、CVD法によって第二の酸化膜をその上部が溝上部
より低くなるような膜厚で堆積し、CVD法によって第
二のポリシリコンを全面堆積し、選択研磨法によって前
記第二のポリシリコンを全面除去するとともに表面を平
坦化する工程と、前記第一の半導体基板と、前記第三の
半導体基板を貼り合せる工程と、選択研磨法によって前
記第三の半導体基板を前記第一の酸化膜との界面まで選
択研磨することによって除去し、CVD法によって第三
の酸化膜を形成し、リソグラフィ工程によってコンタク
トホールを形成し、電極配線層を形成し、リソグラフィ
工程によって電極配線を形成する工程とを含むことを特
徴とするヘテロ接合半導体装置の製造方法。
(2) A high-concentration region of a conductivity type opposite to that of the substrate is formed on a high-resistance semiconductor substrate made of a first semiconductor with a narrow band gap, and a second semiconductor substrate with a band gap wider than that of the first semiconductor is further formed. a step of heteroepitaxially growing an emitter region made of a semiconductor and having a high concentration impurity of the same conductivity type as the high concentration region; form a groove,
The trench is filled halfway down with the first oxide film, and by high-acceleration ion implantation, an impurity that achieves the same conductivity type as the highly doped epitaxial region of the second semiconductor is implanted so that the deepest end of the distribution is between the elements. depositing first polysilicon by a CVD method by implanting the first polysilicon to be deeper than the bottom of the oxide film of the isolation trench and so that the end of the shallowest part is shallower than the bottom of the inter-element isolation layer;
The polysilicon layer is doped with an impurity by ion implantation and heat treatment to achieve a conductivity type different from that of the high-concentration epitaxial region of the second semiconductor by ion implantation, and a second oxide film is formed on the top by CVD. depositing the second polysilicon to a thickness lower than the top of the groove, depositing second polysilicon on the entire surface by CVD, removing the second polysilicon from the entire surface and flattening the surface by selective polishing; a step of bonding the first semiconductor substrate and the third semiconductor substrate, and removing the third semiconductor substrate by selectively polishing it to the interface with the first oxide film by a selective polishing method, and removing the third semiconductor substrate by a CVD method. A method for manufacturing a heterojunction semiconductor device, comprising the steps of: forming a third oxide film by a lithography process, forming a contact hole by a lithography process, forming an electrode wiring layer, and forming an electrode wiring by a lithography process. .
JP148288A 1988-01-06 1988-01-06 Heterojunction semiconductor device and manufacture thereof Pending JPH01179454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP148288A JPH01179454A (en) 1988-01-06 1988-01-06 Heterojunction semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP148288A JPH01179454A (en) 1988-01-06 1988-01-06 Heterojunction semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01179454A true JPH01179454A (en) 1989-07-17

Family

ID=11502654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP148288A Pending JPH01179454A (en) 1988-01-06 1988-01-06 Heterojunction semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01179454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315151A (en) * 1991-06-14 1994-05-24 International Business Machines Corporation Transistor structure utilizing a deposited epitaxial base region
JP2008071919A (en) * 2006-09-14 2008-03-27 Sharp Corp Light leakage preventive structure of led and display unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797665A (en) * 1980-12-10 1982-06-17 Oki Electric Ind Co Ltd Manufacture of npn transistor
JPS62232159A (en) * 1986-04-01 1987-10-12 Matsushita Electric Ind Co Ltd Heterojunction bipolar transistor and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797665A (en) * 1980-12-10 1982-06-17 Oki Electric Ind Co Ltd Manufacture of npn transistor
JPS62232159A (en) * 1986-04-01 1987-10-12 Matsushita Electric Ind Co Ltd Heterojunction bipolar transistor and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315151A (en) * 1991-06-14 1994-05-24 International Business Machines Corporation Transistor structure utilizing a deposited epitaxial base region
JP2008071919A (en) * 2006-09-14 2008-03-27 Sharp Corp Light leakage preventive structure of led and display unit

Similar Documents

Publication Publication Date Title
US5311055A (en) Trenched bipolar transistor structures
KR101115091B1 (en) Semiconductor structure with different lattice constant materials and method for forming the same
US5656514A (en) Method for making heterojunction bipolar transistor with self-aligned retrograde emitter profile
KR0169275B1 (en) Semiconductor device having trench structure for element isolating regions and fabricating method therefor
US7994017B2 (en) Method of manufacturing silicon carbide self-aligned epitaxial MOSFET for high powered device applications
JPH07201883A (en) Lateral bipolar transistor
JPH03165577A (en) Semiconductor device and its manufacture
US5089428A (en) Method for forming a germanium layer and a heterojunction bipolar transistor
EP0386413B1 (en) Complementary transistor structure and method for manufacture
KR101118649B1 (en) Bipolar Transistor And Method For Forming The Same
JPH03155137A (en) Semiconductor device and manufacture thereof
JP3024401B2 (en) Semiconductor device
JPH01179454A (en) Heterojunction semiconductor device and manufacture thereof
JP3389009B2 (en) Semiconductor device and manufacturing method thereof
JPH01179453A (en) Heterojunction semiconductor device and manufacture thereof
JPH01179452A (en) Heterojunction semiconductor device and manufacture thereof
JPH01179451A (en) Manufacture of heterojunction semiconductor device
CA1189983A (en) Semiconductor device
JP3255423B2 (en) Method for forming germanium layer
JPH0332219B2 (en)
CN118367009A (en) Trench gate type semiconductor device and method for manufacturing the same
JPS6329569A (en) Manufacture of semiconductor device and substrate thereof
JPS61258480A (en) Junction type field effect transistor manufacture thereof
JP3206514B2 (en) Semiconductor device and manufacturing method thereof
JPS6367342B2 (en)