JPH01178379A - Microwelding method - Google Patents

Microwelding method

Info

Publication number
JPH01178379A
JPH01178379A JP33528887A JP33528887A JPH01178379A JP H01178379 A JPH01178379 A JP H01178379A JP 33528887 A JP33528887 A JP 33528887A JP 33528887 A JP33528887 A JP 33528887A JP H01178379 A JPH01178379 A JP H01178379A
Authority
JP
Japan
Prior art keywords
powder
guide
base material
base metal
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33528887A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP33528887A priority Critical patent/JPH01178379A/en
Publication of JPH01178379A publication Critical patent/JPH01178379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a thick deposition layer by installing the guide penetrating a powder filling hole at the upper and lower parts on the base metal surface, pressing by a press die by inputting a raw material powder in the powder filling hole and electrifying by rotating the press die. CONSTITUTION:The guide 2 having an insulating material 2b is placed on a base metal 1, a powder 3 is put into a powder filling hole 2a, a pressing body 7 is descended as shown by an alternate long and two short dashes line (a) with the operation of a Z axial motor 9 and the powder 3 is pressed by a pressing part 7a. The pressing body 7 is electrified by impressing a pulsating voltage in the space with the base metal 1 by a pulse power source 18 with revolving the pressing body 7 and if necessary the guide 2 by actuating a motor 13. The surface of the base metal 1 and powder 3 are heated with generating discharging and a deposition layer is formed on the surface of the base metal 1 with changing the relative position to the pressing body 7 and guide 2 and base metal 1 with the operation of X axial motor 5 and Y axial motor 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属、セラミックス等でなる粉体と母材とを
接触させた状態で、通電することによって通電加熱およ
び/または放電を伴なう通電加熱を加えることにより、
少なくとも母材表面の一部に順次加熱軟化ないしは溶融
させ、前記粉体な同じく加熱軟化ないしは一部以上を溶
融させて母材表面に順次溶着被覆させるマイクロ溶接方
法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention involves electrically heating and/or discharging by applying electricity to a powder made of metal, ceramics, etc., in contact with a base material. By applying electrical heating,
The present invention relates to a micro welding method in which at least a part of the surface of a base material is sequentially softened or melted by heating, and the powder is similarly softened or partially melted by heating, and the surface of the base material is sequentially welded and coated.

(従来の技術) マイクロ溶接のうち、放電を用いたものについて説明す
ると、この方法は、従来、放電衝撃被覆とか、放電被覆
とかいわれていた技術を一部改良した技術で、前記放電
被覆法は、例えば特公昭55−6,709号公報 同5
9−35,990号公報に記載されているように、マイ
クロ溶接合金電極を母材に対して接触開離移動する方向
と直角に移動せしめつつ放電被覆するとか、または円形
状回転電極を用いて放電被覆する方法により、10〜2
0gmRmax程度、または、それ以下の表面粗さで平
坦度高く均一な厚さに放電被覆する方法である。また、
他の放電被覆法としては、例えば特公昭61−27,4
69号公報や、同59−55,363号公報等に記載の
ように、棒状電極に、中心軸に平行な軸の回りの回転を
与えつつ放電被覆することにより、表面粗さ約10 p
、 m R+sax以下で平坦度の高く均一な厚さの被
覆層を得るようにするとか、あるいは特開昭58−14
,877号公報に記載の放電被覆法を採用し得る外、例
えば棒状電極または好ましくは細い針金状電極材の複数
本を結束して棒状にした電極を母材表面とlOILm程
度、またはそれ以下、好ましくは0.5〜5gm程度の
微細間隔を形成し保持した状態で、好ましくは電極中心
軸または該軸に平行な軸の回りに回転させつつ、電極と
母材表面とを相対向方向と直角方向に所定の速度で相対
的に走査移動させながら間歇的な電圧パルスまたは間歇
的な電圧パルスを所定複数個ずつ開戦的に印加して放電
を行なわせることにより、電極先端が順次消耗するのを
母材表面に溶着被覆させる非振動型放電被覆方法により
、表面粗さの少ない被覆を得るようにする技術が該当す
るものである。
(Prior Art) Micro welding that uses electric discharge is explained. This method is a partially improved technique of conventionally known as electric discharge impact coating or electric discharge coating. , for example, Japanese Patent Publication No. 55-6,709 No. 5
As described in Japanese Patent No. 9-35,990, discharge coating is performed by moving a micro welding alloy electrode perpendicular to the direction of contact and separation movement with respect to the base metal, or by using a circular rotating electrode. 10 to 2 depending on the method of discharging
This method provides discharge coating with a surface roughness of about 0 gmRmax or less, with high flatness and uniform thickness. Also,
Other discharge coating methods include, for example, Japanese Patent Publication No. 61-27, 4
As described in Japanese Patent No. 69 and Japanese Patent No. 59-55,363, a surface roughness of about 10 p is achieved by subjecting a rod-shaped electrode to a discharge coating while subjecting it to rotation around an axis parallel to the central axis.
, m R + sax or less to obtain a coating layer with a high degree of flatness and a uniform thickness, or
In addition to being able to employ the discharge coating method described in , No. 877, for example, a rod-shaped electrode or, preferably, a rod-shaped electrode made by bundling a plurality of thin wire-shaped electrode materials, is connected to the surface of the base material by about lOILm or less. While forming and maintaining a fine interval of preferably about 0.5 to 5 gm, the electrode and the surface of the base material are rotated at right angles to the direction in which they face each other, preferably while rotating around the center axis of the electrode or an axis parallel to the axis. By applying an intermittent voltage pulse or a predetermined plurality of intermittent voltage pulses while relatively scanning in the direction at a predetermined speed, the electrode tip is gradually worn out. This technique involves obtaining a coating with less surface roughness by a non-vibrating discharge coating method in which the surface of a base material is welded and coated.

なお、被覆材には、棒状電極や粉体状の他、例えば特願
昭61−80.794号 同61−86,808号 お
よび同61−86,809号に記載した、軸方向と直角
方向の断面が同軸状に多層状、または一方向に平行多層
状、あるいは中心を通る交叉した1本以上の線によって
分割された結束または結合用の字状や放射状の分割結束
または結合した放電被覆電極を用いるものも有効であり
、さらに1本または複数本の結合電極、または結合電極
の一部またはそれぞれを合金組成と所定の関係を有する
合金材に予め造っておいて用いるようにすることができ
る。また、放電電源としても、コンデンサ利用のものの
他、電圧パルスのパルス幅、パルス間休止幅、および放
電電流振幅、あるいはさらに電圧パルス数等の選択設定
が自在な電子スイッチオン・オフ方式の電圧パルス電源
、例えば特公昭46−28,163号公報、同46−2
8,612号公報とか、特公昭58−13゜623号公
報、同59−4:1,989号公報等々に記載のものを
利用し得るものである。
In addition to rod-shaped electrodes and powder-like coating materials, for example, the covering material may be used in the direction perpendicular to the axial direction as described in Japanese Patent Application No. 61-80.794, No. 61-86,808 and No. 61-86,809. A discharge coated electrode whose cross section is coaxially multi-layered, parallel to one direction multi-layered, or divided by one or more intersecting lines passing through the center for bundling or bonding. It is also effective to use one or more bonding electrodes, or a part or each of the bonding electrodes can be made in advance of an alloy material having a predetermined relationship with the alloy composition. . In addition to using a capacitor as a discharge power source, we also use an electronic switch on/off type voltage pulse that allows you to freely select and set the pulse width of the voltage pulse, the pause width between pulses, the discharge current amplitude, and the number of voltage pulses. Power supply, for example, Japanese Patent Publication No. 46-28,163, No. 46-2
Those described in Japanese Patent Publication No. 8,612, Japanese Patent Publication No. 58-13゜623, Japanese Patent Publication No. 59-4:1,989, etc. can be used.

(発明か解決しようとする問題点) しかし、この従来技術によると、母材と電極等の異種物
質混合あるいは拡散からなる溶着層(被覆層)は、まず
電極や母材の熱による軟化塑性変形、加圧および熱拡散
そして溶融段階と混合あるいは拡散過程からなり、比較
的薄い拡散や溶融を含む溶着層(被覆層)を形成する場
合には電極等の移動速度を上げても異種物質が比較的均
一に混合あるいは拡散された溶着層を形成することが可
能であるが、より厚い溶着層を形成しようとする場合に
は、十分な混合、拡散が行なわれず、溶着層の形成厚さ
は最大50ILm程度であり、厚い溶着層を形成するこ
とが困難であるという問題点があった。
(Problem to be solved by the invention) However, according to this prior art, the welding layer (coating layer) consisting of a mixture or diffusion of different materials such as the base material and the electrode is first formed by softening and plastic deformation due to heat of the electrode and the base material. , pressurization, thermal diffusion, and melting steps, and a mixing or diffusion process.When forming a relatively thin welding layer (coating layer) that includes diffusion and melting, dissimilar materials can be compared even if the moving speed of the electrode, etc. is increased. It is possible to form a weld layer that is uniformly mixed or diffused, but when attempting to form a thicker weld layer, sufficient mixing and diffusion may not be achieved, and the thickness of the weld layer may be at its maximum. There was a problem that it was difficult to form a thick welding layer.

(問題点を解決するための手段) 本発明は、この問題点を解決し、厚い溶着層の形成を回
部とするマイクロ溶接方法を提供するため、上下に粉体
充填穴を貫設したガイドを、母材表面に絶縁材を介して
設置し、前記粉体充填穴に原料粉末を入れ、前記ガイド
の粉体充填穴に押圧部を挿入する押圧型により前記粉体
な押圧し、かつ該押圧型を回転させ、前記押圧型および
前記ガイドの少なくともいずれかと母材との間に通電す
ることにより熱を発生させ、母材表面に原料粉体と母材
からなる溶着層を形成することを特徴とする。
(Means for Solving the Problem) The present invention solves this problem and provides a micro welding method in which a thick welding layer is formed as a turning part. is installed on the surface of the base material via an insulating material, the raw material powder is put into the powder filling hole, and the powder is pressed by a pressing die that inserts a pressing part into the powder filling hole of the guide. The pressing mold is rotated and electricity is applied between at least one of the pressing mold and the guide and the base material to generate heat, thereby forming a welding layer made of the raw material powder and the base material on the surface of the base material. Features.

また、ガイドに設ける粉体充填穴を上部拡大形とし、前
記押圧型の押圧部の形状をこの粉体充填穴に合致する形
状にすることにより、圧力集中して粉体な加圧でき、高
圧をかけて作業が行なえる。
In addition, by making the powder filling hole provided in the guide enlarged at the top and by making the shape of the pressing part of the pressing mold match the powder filling hole, pressure can be concentrated and the powder can be pressed, resulting in high pressure. Work can be done by applying

(実施例) 以下本発明の実施例を図面により説明する。図面は本発
明によるマイクロ溶接方法の一実施例を示す図であり、
1は導電性を有する母材、2は導電性粉体3を充填する
粉体充填穴2aを有するガイドてあり、下面に母材lに
対して接触する耐熱絶縁板2bを有する。前記粉体充填
穴2aはガイド2の中心に貫設された円形状をなし、か
つ上方が拡大された形状をなす。また、前記絶縁板2b
は、前記粉体充填穴2aに連通した開口部を宥する。4
はX軸モータ5およびY軸モータ6により移動される加
工テーブルであり、その上に前記母材lをセットする。
(Example) Examples of the present invention will be described below with reference to the drawings. The drawings are diagrams showing an embodiment of the micro welding method according to the present invention,
Reference numeral 1 denotes a conductive base material, 2 a guide having a powder filling hole 2a filled with conductive powder 3, and a heat-resistant insulating plate 2b in contact with the base material 1 on the lower surface. The powder filling hole 2a has a circular shape extending through the center of the guide 2, and is enlarged upward. Further, the insulating plate 2b
cleans the opening communicating with the powder filling hole 2a. 4
is a processing table moved by an X-axis motor 5 and a Y-axis motor 6, on which the base material I is set.

7は前記ガイド2の粉体充填穴za内の粉体3を押圧す
る押圧型であり、該押圧型7は前記粉体充填穴2aに合
致する形状の押圧部7a、すなわち、下方が漸次小径と
なるような形状を有している。該押圧型7は、は下記の
機構により回転自在にかつ上下動自在に設置される。
Reference numeral 7 denotes a pressing die that presses the powder 3 in the powder filling hole za of the guide 2, and the pressing die 7 has a pressing part 7a having a shape that matches the powder filling hole 2a, that is, the lower part has a gradually smaller diameter. It has a shape such that The press die 7 is installed rotatably and movably up and down by the following mechanism.

すなわち、加工ヘット8には、Z軸モータ9により例え
ば送りねじ機構lOおよび回り止め機構11を介して上
下動軸12を取付け、該上下動軸12に、旋回モータ1
3により歯車機構14を介して旋回されるように旋回盤
15を取付け、該旋回盤15に絶縁材16を介して前記
押圧型7を取付け、該押圧型7により粉体3を所定の圧
力で母材1表面に押圧保持するようになっている。
That is, a vertically moving shaft 12 is attached to the machining head 8 by a Z-axis motor 9 via, for example, a feed screw mechanism lO and a rotation stopper mechanism 11, and a swing motor 1 is attached to the vertically moving shaft 12.
3, a turning table 15 is mounted so as to be rotated via a gear mechanism 14, and the pressing die 7 is attached to the turning table 15 via an insulating material 16, and the pressing die 7 presses the powder 3 at a predetermined pressure. It is pressed and held onto the surface of the base material 1.

18は前記母材lに出力端子の一端を接続し、他端を接
触子19を介して接続した前述したパルス性ないしは脈
動性電源であり、該電源18の出力特性、前記X軸、Y
軸モータ6.2軸モータ9および旋回モータ13は、N
C装置20によって制御される構成を有する。
Reference numeral 18 denotes the above-mentioned pulsed or pulsating power source having one end of its output terminal connected to the base material 1 and the other end connected via a contactor 19, and the output characteristics of the power source 18, the
Axis motor 6, two-axis motor 9 and swing motor 13 are N
It has a configuration controlled by the C device 20.

このような装置を用い、マイクロ溶接を行なう際には、
母材l上に絶縁材2bを有するガイド2を載せ、粉体充
填穴2aに粉体3を入れ、2軸モータ9を作動させて押
圧体7を2点鎖線aに示すように下降させて押圧部7a
により粉体3を押圧し、旋回モータ13を作動させて押
圧体7および必要に応じガイド2を旋回させながら、パ
ルス電源18により押圧体7を母材lとの間(あるいは
ガイド2と母材lとの間、もしkは押圧体7およびガイ
ド2と母材lとの間)に例えば直流と交流を重畳させる
等した脈動性の電圧を印加して通電し、母材lの表面お
よび粉体3を必要に応じ放電を生じせしめつつ通電ジュ
ール熱により加熱し、かつX軸モータ5、Y軸モータ6
を作動させて押圧体7およびガイド2と母材lとの相対
位置を変えながら母材lの表面に溶着層を形成する。
When performing micro welding using such equipment,
The guide 2 having the insulating material 2b is placed on the base material l, the powder 3 is put into the powder filling hole 2a, and the two-axis motor 9 is operated to lower the pressing body 7 as shown by the two-dot chain line a. Pressing part 7a
The powder 3 is pressed by the powder 3, the rotation motor 13 is operated to rotate the pressing body 7 and the guide 2 as necessary, and the pulse power source 18 is used to move the pressing body 7 between the base material 1 (or between the guide 2 and the base material If k is between the press body 7 and the guide 2 and the base material l), a pulsating voltage such as direct current and alternating current is applied to the surface of the base material l and powder. The body 3 is heated by energizing Joule heat while generating electric discharge as necessary, and the X-axis motor 5 and Y-axis motor 6
A welding layer is formed on the surface of the base material 1 while changing the relative positions of the base material 1 and the pressing body 7 and the guide 2.

このように、粉体3を母材lに押圧した状態で加熱軟化
、さらに一部具上を溶融させ、かつ回転させれば、粉体
3の一部は固形のままで母材lの加熱軟化または一部以
上の溶融部分の底部まで到達して溶融するという動作が
繰返えされ、粉体3を溶着層の深部にまで+1分に混合
、拡散させることがてき、電源18により比較的大きな
電力で通電して加熱させることにより、1mm以上(i
ts〜5mm)の溶着層を容易に形成することができる
In this way, if the powder 3 is heated and softened while being pressed against the base material L, and then a part of the tool is melted and rotated, part of the powder 3 remains solid while heating the base material L. The operation of softening or reaching the bottom of a part or more of the melted part and melting is repeated, and the powder 3 can be mixed and diffused deep into the welding layer in +1 minute, and the power supply 18 can relatively By applying electricity with a large amount of electricity and heating it, it is possible to
A welding layer with a thickness of ts~5 mm can be easily formed.

また、本実施例で示したように、粉体充填穴2aか次第
に下方が絞られた形状とすることにより、加圧状態にお
いては、粉体3に圧力集中がなされ、高圧がかけられる
ので、効率良く所定高密度の溶着層の形成が行なえる。
Furthermore, as shown in this embodiment, by forming the powder filling hole 2a into a shape that is gradually constricted at the bottom, pressure is concentrated on the powder 3 in the pressurized state, and high pressure is applied. A welding layer with a predetermined high density can be efficiently formed.

なお粉体3は押圧体7やガイド2と同じ材質のものであ
ってもよい。
Note that the powder 3 may be made of the same material as the pressing body 7 and the guide 2.

上記例は、粉体3が導電材である場合について説明した
が、粉体3が導電材と非導電材でなり全体として導電性
を有する場合、あるいは高抵抗体や絶縁性の場合にも押
圧体またはガイド2と母材1間に僅少量の粉体な介して
通電することにより実施できる。
The above example describes the case where the powder 3 is a conductive material, but it can also be applied when the powder 3 is made of a conductive material and a non-conductive material and has conductivity as a whole, or when it is a high-resistance material or an insulating material. This can be carried out by applying electricity between the body or guide 2 and the base material 1 through a small amount of powder.

具体例で説明すると、母材1を5sscの鋼材とし、ガ
イド2および押圧体7を鋼材とし、ガイド2の粉体充填
穴2aおよび押圧体7の最小径を5■、粉体3を加圧す
る圧力を5 kgf/cm”とし、母材lを2 am/
■inの速度で移動させ、粉体3として、TiC50%
、B、C40%、グラファイト10%(体積%)(いず
れも300メツシユの粒径)を用い、抑圧体7を350
0 rpmで回転させルト同時に、)< 7L/ ス’
7M、源18により、Ip15A、τon304s、 
 τoff 207tsて通電を行ない、これにより、
鋼材でなる母材l上に前記粉末との溶着層を1.8ms
の厚さに均一に形成可能であった。そしてこのときのビ
ッカース硬度Hvは4100であり、表面粗さは134
mR■aXとなった。
To explain with a specific example, the base material 1 is made of 5ssc steel, the guide 2 and the pressing body 7 are made of steel, the minimum diameter of the powder filling hole 2a of the guide 2 and the pressing body 7 is 5 mm, and the powder 3 is pressurized. The pressure was 5 kgf/cm", and the base material l was 2 am/
■ Move at a speed of 50% TiC as powder 3.
, B, C 40%, and graphite 10% (volume %) (all have a particle size of 300 mesh), and the suppressor 7 is made of 350
Rotate at 0 rpm and turn at the same time) <7L/S'
7M, source 18, Ip15A, τon304s,
τoff 207ts and then energize, and as a result,
A welding layer with the powder was formed on the base metal made of steel for 1.8ms.
It was possible to form the film to a uniform thickness of . The Vickers hardness Hv at this time was 4100, and the surface roughness was 134.
It became mR■aX.

なお、溶着装置全体をケースで囲み、不活性ガス供給装
置によりArガス等の不活性ガスをそのケース内に供給
して不活性ガス雰囲気で前記溶着を行なうか、あるいは
装置を真空吸引装置として真空雰囲気で溶着を行なうこ
とにより、溶着層の窒化や酸化を防止することかできる
The entire welding device is surrounded by a case, and an inert gas such as Ar gas is supplied into the case by an inert gas supply device to perform the welding in an inert gas atmosphere, or the device is used as a vacuum suction device to perform the welding. By performing welding in an atmosphere, nitridation and oxidation of the welded layer can be prevented.

さらに、反応ガスあるいは液体供給装置を設置し、母材
lの表面に単独あるいは粉体3と共に供給して反応させ
るようにすることも可能である。
Furthermore, it is also possible to install a reaction gas or liquid supply device and supply the reaction gas or liquid to the surface of the base material 1 alone or together with the powder 3 to cause a reaction.

なおJ実施例と異なり、X軸モータ58よびY軸モータ
6により加工へラド8を水平方向に動かし、ガイド2を
押圧体7と同一または逆向きに回転させつつ溶着を行な
うとか、加工テーブル4側を旋回モータによって回転さ
せる構成としてもよい。
Note that, unlike the J embodiment, the welding is performed while moving the ladle 8 horizontally during processing using the X-axis motor 58 and the Y-axis motor 6, and rotating the guide 2 in the same or opposite direction as the pressing body 7, or by rotating the processing table 4. It is also possible to have a configuration in which the side is rotated by a turning motor.

また、粉体3に対する加圧の方法としては、油圧シリン
ダな軸12先端に取付けて旋回盤15を支持する構成と
して用いることもできる。
Further, as a method of pressurizing the powder 3, it is also possible to use a configuration in which a hydraulic cylinder is attached to the tip of the shaft 12 to support the turning table 15.

また、本発明は、母材lに形成する溶着層として、耐摩
耗層、耐熱層、耐蝕層の形成のみならず、超電導材、磁
石、セラミックス、半導体、低摩耗材、活性センサ、磁
歪材、電歪材の形成に用いられる。また、−たん母材l
上に溶着層を形成した後、その溶着層を剥離し、これを
粉砕して適宜形状に成形するようにしてもよい。
In addition, the present invention is applicable not only to the formation of a wear-resistant layer, a heat-resistant layer, and a corrosion-resistant layer as a welding layer formed on the base material l, but also to superconducting materials, magnets, ceramics, semiconductors, low-wear materials, active sensors, magnetostrictive materials, etc. Used to form electrostrictive materials. Also, -tan base material l
After forming a welding layer thereon, the welding layer may be peeled off, and then crushed and molded into an appropriate shape.

また、本発明により溶−Rlfjとして形成できる物質
例としては、下記のもの等があげられる。
Furthermore, examples of substances that can be formed as molten Rlfj according to the present invention include the following.

炭化物: T I C、A l 4 C3、Z r C
、Hf C。
Carbide: T I C, A l 4 C3, Z r C
, HfC.

VC,Ta−C系、NbC,SiC,Mo2C54C ホウ化物:Mo−B系、T i −B系、ZrB2、V
−B系、Ta−B系、W−B系、Nb−B系、Hf、B
、MgBs 窒化物:Mg3Nz 、HfN、Si3N4゜VN、T
iN、NbN、Ta−N系、CrN、ScN、AuN、
YN、PrN、ZrN、BN珪化物:Mo−5i系、T
i−5i系、Zr−5i系、NbSi、、CrSi、W
Si2、aSi2 カルコゲン化合* : M g S 、 M o S 
2 、 W S 2、T i S2 、ZrS2.Mo
Se2 、WSe*、TaSe2 、TiSe2.Zr
Se2.NbSe。
VC, Ta-C system, NbC, SiC, Mo2C54C Boride: Mo-B system, Ti-B system, ZrB2, V
-B system, Ta-B system, W-B system, Nb-B system, Hf, B
, MgBs nitride: Mg3Nz , HfN, Si3N4°VN, T
iN, NbN, Ta-N system, CrN, ScN, AuN,
YN, PrN, ZrN, BN silicide: Mo-5i system, T
i-5i series, Zr-5i series, NbSi, CrSi, W
Si2, aSi2 chalcogen compound*: M g S , M o S
2, W S 2, T i S2, ZrS2. Mo
Se2, WSe*, TaSe2, TiSe2. Zr
Se2. NbSe.

水素化′PR: SmH2,DyH,,5cH2、Ti
−H系、Hfl(g 、ZrHz 、NdH2アルミニ
ウム合金:N1AJ1、CaA!;L、Ge−A文系、
Nb−A文系、CoA文、M o A l、WAJI。
Hydrogenation'PR: SmH2, DyH,,5cH2, Ti
-H system, Hfl(g, ZrHz, NdH2 aluminum alloy: N1AJ1, CaA!; L, Ge-A system,
Nb-A Literature, CoA Literature, M o A l, WAJI.

また、固溶体として、TiB2−MoB2゜TaC−T
aB、ZrB−CrB2.WS2−NbS2.ZrC−
ZrN、TiB2−MOB2、TiCWC,Nbx Z
r+−x Cy Nz 、Nb−C−NbN、TiB−
CrB2.MoS2−Nb等か形成できる。
In addition, as a solid solution, TiB2-MoB2゜TaC-T
aB, ZrB-CrB2. WS2-NbS2. ZrC-
ZrN, TiB2-MOB2, TiCWC, Nbx Z
r+-x Cy Nz, Nb-C-NbN, TiB-
CrB2. MoS2-Nb etc. can be formed.

また、各種機能材料として、下記のようなものか形成で
きる。
In addition, the following materials can be formed as various functional materials.

半導体メタライゼイション Ag−5b/GaP、A文/SiO□、Si磁性材 B
 r B i / S U S鋼ゼーベック材 Zn5
b/Cr 17−N i 8ステンレス鋼 ネサガラス抵抗体 SnO□/Si、5io2赤外検出
 CdTe/S iO2,S iEL材 ZnS:Mn 太陽電池 G a I−x A l x A s / 
G a A s超伝導材 YBaCuO 水素吸収材 LaN 14−a A9.o−s  <H
t、−a )磁石 Nd2B14F+9.Sm2Coa
t、tfi塑性材 Ni:1AJ1 電子冷凍 PbTe、Pb5e、Fe5ia eFeS
i、C。
Semiconductor metallization Ag-5b/GaP, A pattern/SiO□, Si magnetic material B
r B i / S US steel Seebeck material Zn5
b/Cr 17-N i 8 stainless steel Nesa glass resistor SnO□/Si, 5io2 infrared detection CdTe/S iO2, Si EL material ZnS:Mn Solar cell G a I-x A l x A s /
G a As superconducting material YBaCuO Hydrogen absorbing material LaN 14-a A9. o-s <H
t, -a) Magnet Nd2B14F+9. Sm2Coa
t, tfi plastic material Ni:1AJ1 electronic refrigeration PbTe, Pb5e, Fe5ia eFeS
i,C.

コンデンサ Ta205 発熱体 LaCr0゜ PZT、PLZT また、上記の各溶着において溶着層を形成する場合は、
一般に溶融あるいは反応の際に発熱を伴なうので1発熱
と放電等による熱が共同して熱として作用する。このた
め、極めて強固にかつ平滑に溶着層を形成することがで
きる。また、粉体3は押圧型7と母材lとの間で加圧さ
れた状態で加熱されるため、摩擦熱も粉体3の加熱軟化
または溶融や母材1表面の加熱軟化または溶融に利用さ
れる。
Capacitor Ta205 Heating element LaCr0゜PZT, PLZT Also, when forming a welding layer in each of the above welding,
Generally, heat is generated during melting or reaction, so the heat generated by the first heat and the heat generated by discharge work together as heat. Therefore, it is possible to form an extremely strong and smooth welding layer. In addition, since the powder 3 is heated under pressure between the press die 7 and the base material 1, the frictional heat also causes heating softening or melting of the powder 3 and heat softening or melting of the surface of the base material 1. used.

(発明の効果) 以上述べたように、本発明においては、上下に粉体充填
穴を貫設したガイドを、母材表面に絶縁材を介して設置
し、前記粉体充填穴に原料粉末を入れ、前記ガイドの粉
体充填穴に押圧部を挿入する押圧型により前記粉体な押
圧し、かつ該押圧型を回転させ、前記押圧型および前記
ガイドの少なくともいずれかと母材との間に通電するこ
とにより熱を発生させ、母材表面に原料粉体と母材から
なる溶着層を形成するようにしたので、粉体の一部は必
要に応じ固形のままで母材の加熱軟化または溶融部分の
底部まで到達して溶融するという動作か繰返えされ、粉
体を溶着層の深部にまで十分に混合され、lam以上の
厚い溶着層を容易に形成することができる。
(Effects of the Invention) As described above, in the present invention, a guide with powder filling holes penetrating the upper and lower sides is installed on the surface of the base material via an insulating material, and raw powder is inserted into the powder filling hole. The powder is pressed by a pressing mold which inserts a pressing part into the powder filling hole of the guide, and rotates the pressing mold to apply electricity between at least one of the pressing mold and the guide and the base material. By doing so, heat is generated and a welded layer consisting of the raw material powder and the base material is formed on the surface of the base material, so that part of the powder remains solid and the base material is heated to soften or melt as required. The operation of reaching the bottom of the part and melting it is repeated, and the powder is sufficiently mixed deep into the weld layer, making it possible to easily form a weld layer thicker than lam.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明によるマイクロ溶接方法の一実施例を示す
構成図である。
The drawing is a configuration diagram showing an embodiment of the micro welding method according to the present invention.

Claims (1)

【特許請求の範囲】 1、上下に粉体充填穴を貫設したガイドを、母材表面に
絶縁材を介して設置し、前記粉体充填穴に原料粉末を入
れ、前記ガイドの粉体充填穴に押圧部を挿入する押圧型
により前記粉体を押圧し、かつ該押圧型を回転させ、前
記押圧型および前記ガイドの少なくともいずれかと母材
との間に通電することにより熱を発生させ、母材表面に
原料粉体と母材からなる溶着層を形成することを特徴と
するマイクロ溶接方法。 2、前記ガイドとして、上方が漸次拡大された粉体充填
穴を有するものを用い、かつ前記押圧型として、上方よ
り下端側が次第に縮小されたものを用いることを特徴と
する特許請求の範囲第1項記載のマイクロ溶接方法。
[Claims] 1. A guide having powder filling holes in the upper and lower sides is installed on the surface of the base material through an insulating material, raw material powder is put into the powder filling hole, and the guide is filled with powder. Pressing the powder with a pressing mold that inserts a pressing part into the hole, rotating the pressing mold, and generating heat by applying electricity between at least one of the pressing mold and the guide and a base material, A micro welding method characterized by forming a weld layer consisting of raw material powder and base metal on the surface of the base metal. 2. As the guide, a guide having a powder filling hole whose upper part is gradually enlarged is used, and as the pressing mold, a member whose lower end side is gradually reduced from the upper part is used. Micro welding method described in section.
JP33528887A 1987-12-30 1987-12-30 Microwelding method Pending JPH01178379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33528887A JPH01178379A (en) 1987-12-30 1987-12-30 Microwelding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33528887A JPH01178379A (en) 1987-12-30 1987-12-30 Microwelding method

Publications (1)

Publication Number Publication Date
JPH01178379A true JPH01178379A (en) 1989-07-14

Family

ID=18286845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33528887A Pending JPH01178379A (en) 1987-12-30 1987-12-30 Microwelding method

Country Status (1)

Country Link
JP (1) JPH01178379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046424A1 (en) * 1998-03-11 1999-09-16 Mitsubishi Denki Kabushiki Kaisha Compact electrode for discharge surface treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046424A1 (en) * 1998-03-11 1999-09-16 Mitsubishi Denki Kabushiki Kaisha Compact electrode for discharge surface treatment
US6437278B1 (en) 1998-03-11 2002-08-20 Mitsubishi Denki Kabushiki Kaisha Green compact electrode for discharge surface treatment
DE19882877B4 (en) * 1998-03-11 2005-11-03 Mitsubishi Denki K.K. Method for machining a surface of a workpiece by discharge and green compact electrode

Similar Documents

Publication Publication Date Title
EP1162022B1 (en) Electric joining method and apparatus
KR950011022A (en) Surface treatment method by electric discharge machining and its device
US3832514A (en) Device for local electric-spark layering of metals and alloys by means of rotating electrode
US5126163A (en) Method for metal ion implantation using multiple pulsed arcs
JPH0366988B2 (en)
CA2494366A1 (en) Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
US6929829B2 (en) Method and device discharging surface treatment
CN1136788A (en) Abrasive material for precision surface treatment and manufacturing method thereof
US6492611B2 (en) Method of surface treatment using electric discharge and an electrode
FR2482499A1 (en) METHOD AND APPARATUS FOR ELECTRO-EROSION MACHINING
JPH01178379A (en) Microwelding method
WO2000050194A1 (en) Method and device for discharge surface treatment
JP2774990B2 (en) Micro welding method
JP2726869B2 (en) Micro welding method
JPS63166977A (en) Electrode for discharge coating
CA1238295A (en) Method of coating ceramics and quartz crucibles with material electrically transformed into a vapor phase
JP2006213004A (en) Member for injection molding machine and film forming method
JPS62243778A (en) Electrode for coating
JPH0283119A (en) Formation of surface layer by discharge machining
US20030094443A1 (en) Plasma enhanced circuit packaging method and device
JP2008240067A (en) Discharge surface treatment method
JPS63210280A (en) Microcoating device
US20240316678A1 (en) Welded assembly and method of welding using electro-spark discharge
SU1763119A1 (en) Surfacing method
JPH04154975A (en) Surface coating method