JPH0117737B2 - - Google Patents

Info

Publication number
JPH0117737B2
JPH0117737B2 JP55151103A JP15110380A JPH0117737B2 JP H0117737 B2 JPH0117737 B2 JP H0117737B2 JP 55151103 A JP55151103 A JP 55151103A JP 15110380 A JP15110380 A JP 15110380A JP H0117737 B2 JPH0117737 B2 JP H0117737B2
Authority
JP
Japan
Prior art keywords
porous glass
heavy metals
uranium
seawater
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55151103A
Other languages
Japanese (ja)
Other versions
JPS5775139A (en
Inventor
Tsukasa Tanyama
Teizo Harima
Toshiro Yamada
Niro Nagatomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP15110380A priority Critical patent/JPS5775139A/en
Publication of JPS5775139A publication Critical patent/JPS5775139A/en
Publication of JPH0117737B2 publication Critical patent/JPH0117737B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】 本発明は吸着剤として多孔質ガラスを用いて海
水または工業排水などの水溶液から重金属を、就
中海水からウランを採取する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for extracting heavy metals from aqueous solutions such as seawater or industrial wastewater, particularly uranium from seawater, using porous glass as an adsorbent.

従来より、海水中に含まれる微量のウラン(約
3ppb)を分離する方法として種々の方法が提案
されているが、その濃度が稀薄であることから吸
着法が有望視されている。そして種々の吸着剤に
ついて吸着性の試験が行われてきたが、極めて低
い濃度領域において大きな吸着量が要求されるた
めいまだ満足なものは得られていない。海水中の
ウランの吸着剤に要求される特性としては平衡吸
着量、吸着速度、脱着速度などの基本的な吸着特
性が重要であるが、さらに吸脱着のくり返しに対
する吸着性能の持続性、海水中における化学耐久
性、海水の流れに耐える強度、海水との接触に有
利な形状の成形性、吸着剤のコストなども無視で
きない。このような観点からみても従来発表され
ている吸着剤は実用性能上満足できるものではな
かつた。
Traditionally, trace amounts of uranium (approx.
Various methods have been proposed to separate 3ppb), but the adsorption method is considered promising because its concentration is dilute. Adsorptive properties tests have been conducted on various adsorbents, but a satisfactory one has not yet been obtained because a large amount of adsorption is required in an extremely low concentration range. Basic adsorption properties such as equilibrium adsorption amount, adsorption rate, and desorption rate are important as the characteristics required for adsorbents for uranium in seawater, but in addition, the sustainability of adsorption performance against repeated adsorption and desorption, and the Chemical durability, strength to withstand the flow of seawater, formability into shapes that are advantageous for contact with seawater, and cost of the adsorbent cannot be ignored. Even from this point of view, the adsorbents that have been published so far have not been satisfactory in terms of practical performance.

本発明者らは上記の諸特性を満足する吸着剤に
関して検討を行い、硼ケイ酸ガラスを原料とする
多孔質ガラスが海水または工業廃水などの水溶液
の重金属に対する、特に海水中のウランに対して
大きな吸着能力をもち、また工業的かつ経済的に
重金属を分離する観点からも優れた特性をもつこ
とを見出し本発明に到つたものである。
The present inventors have conducted studies on adsorbents that satisfy the above characteristics, and found that porous glass made from borosilicate glass is effective against heavy metals in aqueous solutions such as seawater or industrial wastewater, and in particular against uranium in seawater. The present invention was developed based on the discovery that it has a large adsorption capacity and also has excellent properties from the viewpoint of industrially and economically separating heavy metals.

即ち、本発明は、硼ケイ酸ガラスを熱処理して
分相させた後、硼酸ナトリウムに富む相を酸を用
いて溶出させて製造した粒状、棒状、繊維状また
は管状多孔質ガラスと重金属を含む水溶液とを接
触せしめて重金属を吸着分離することにより達成
することができる。
That is, the present invention includes a granular, rod-shaped, fibrous, or tubular porous glass produced by heat-treating borosilicate glass to separate the phases, and then eluting the sodium borate-rich phase using an acid, and a heavy metal. This can be achieved by adsorbing and separating heavy metals by contacting them with an aqueous solution.

本発明において用いる多孔質ガラスは特定の組
成範囲における硼ケイ酸ガラスの分相現象を利用
して製造するものである。すなわち組成が
SiO222―75重量パーセント、B2O318―67重量パ
ーセント、Na2O2〜16重量パーセント、Al2O30
―5重量パーセントの硼ケイ酸ガラスを溶融して
成形し、500―600℃の温度で熱処理を施すと相分
離が起り、酸に可溶性の硼酸ナトリウムに富む相
とほぼ不溶性の二酸化ケイ素に富む相に分相す
る。次に酸で処理して硼酸ナトリウムに富む相を
溶出させると主として二酸化硅素より成る多孔質
ガラスが得られる。
The porous glass used in the present invention is manufactured by utilizing the phase separation phenomenon of borosilicate glass in a specific composition range. That is, the composition
SiO2 22-75% by weight , B2O3 18-67% by weight, Na2O2-16 % by weight , Al2O30
- When 5 weight percent borosilicate glass is melted and shaped and heat treated at temperatures of 500-600°C, phase separation occurs, forming a phase rich in acid-soluble sodium borate and a phase rich in nearly insoluble silicon dioxide. The phase splits into A subsequent treatment with acid to elute the sodium borate-rich phase yields a porous glass consisting primarily of silicon dioxide.

このようにして得られた多孔質ガラスはそのま
ま吸着剤として使用できるが、さらに熱処理や表
面処理を行つたものを吸着剤とすることもでき
る。例えば上記の方法で得られた多孔質ガラスを
金属化合物(例えばチタン酸)の溶液に浸漬させ
た後熱処理を行つて多孔質ガラスの表面あるいは
細孔内を改質することもできる。
The porous glass thus obtained can be used as an adsorbent as it is, but it can also be used as an adsorbent after further heat treatment or surface treatment. For example, the surface or inside of the pores of the porous glass can be modified by immersing the porous glass obtained by the above method in a solution of a metal compound (for example, titanic acid) and then performing a heat treatment.

本発明における多孔質ガラスは海水等の水溶液
との接触操作に有利な形状に成形することが容易
であり、例えば棒状、管状、粒子状、繊維状、中
空繊維状、ハニカム状などに成形できる。またこ
れらの形状の多孔質ガラスの集合体あるいは組合
わせとして種々の形状の吸着体を製造することも
できる。
The porous glass in the present invention can be easily formed into a shape that is advantageous for contact with an aqueous solution such as seawater, and can be formed into, for example, a rod shape, a tube shape, a particle shape, a fiber shape, a hollow fiber shape, a honeycomb shape, etc. Adsorbents of various shapes can also be manufactured as aggregates or combinations of porous glasses of these shapes.

本発明における多孔質ガラスはその組成と関連
して大きな細孔容積とシヤープな細孔径分布をも
ち、しかも分相条件、酸処理条件を適宜工夫する
ことにより重金属の分離に好適なその細孔径ピー
ク値を10―1000Åの範囲に調整し得る。また後述
の実施例で示すように本発明の多孔質ガラスは特
に海水中のウランに対して高い吸着率を示す。ま
た耐薬品性、耐熱性が大きく吸脱着のくり返しに
対して耐久性が大きい利点がある。また従来発表
されている吸着剤は微粉状のものが多いが本発明
の多孔質ガラスは粒状、繊維状、棒状などに自由
に成形できるので海中において大量にウランを採
取する工業生産において特に有利である。むろん
ウラン以外のCrイオン、Feイオンなどの重金属
イオンに対しても本発明は有効であることはいう
までもない。また多孔質ガラスはその形状と寸法
を選ぶと海水の流れに対して十分に耐える強度を
もつており、化学的に安定であるから海水中にお
いて長時間高い吸着性能を保持し得る。
The porous glass of the present invention has a large pore volume and a sharp pore size distribution in relation to its composition, and by appropriately devising phase separation conditions and acid treatment conditions, the pore size peak suitable for separating heavy metals can be obtained. Values can be adjusted in the range 10-1000 Å. Furthermore, as shown in the Examples below, the porous glass of the present invention exhibits a particularly high adsorption rate for uranium in seawater. It also has the advantage of being highly resistant to chemicals and heat, and highly durable against repeated adsorption and desorption. In addition, many of the adsorbents that have been published so far are in the form of fine powder, but the porous glass of the present invention can be freely formed into granules, fibers, rods, etc., so it is particularly advantageous in industrial production where large quantities of uranium are extracted from the sea. be. Needless to say, the present invention is also effective for heavy metal ions other than uranium, such as Cr ions and Fe ions. Furthermore, porous glass has enough strength to withstand the flow of seawater if its shape and dimensions are selected, and because it is chemically stable, it can maintain high adsorption performance in seawater for a long time.

このように本発明は重金属を含む水溶液より重
金属を選択的に吸着分離する排水処理工程等に広
く適用できる。例えば上記Crイオンなどの重金
属イオンを含む排水(工業排水、実験室排水、病
院排水など)と前記多孔質ガラスとを接触させて
重金属成分を多孔質ガラスに吸着させることによ
り排水を清浄化する目的に使用し得る。またウラ
ンなどの放射性重金属を含む放射性排水と前記多
孔質ガラスとを接触させて該重金属成分を多孔質
ガラスに吸着させることにより放射性排水を清浄
化することに使えることはいうまでもないが、さ
らに本発明の異なれる作用効果として上述のウラ
ンなどの放射性重金属成分を吸着せしめた後の多
孔質ガラスを焼結、均質化させて該重金属成分の
流出、流亡の危険性の全くない小容量の固形廃棄
物に形成せしめるという産業安全上のメリツトも
付随的に有しており、放射性排水の処理に貢献す
るところ極めて大である。
As described above, the present invention can be widely applied to wastewater treatment processes in which heavy metals are selectively adsorbed and separated from aqueous solutions containing heavy metals. For example, the purpose is to purify wastewater by bringing the porous glass into contact with wastewater containing heavy metal ions such as the Cr ions (industrial wastewater, laboratory wastewater, hospital wastewater, etc.) and adsorbing the heavy metal components onto the porous glass. It can be used for It goes without saying that radioactive wastewater containing radioactive heavy metals such as uranium can be brought into contact with the porous glass and the heavy metal components adsorbed onto the porous glass, which can be used to purify radioactive wastewater. As a different effect of the present invention, the porous glass after adsorbing radioactive heavy metal components such as uranium is sintered and homogenized to form a small volume solid material with no risk of the heavy metal components flowing out or being lost. It also has the added benefit of industrial safety in that it is formed into waste, making it an extremely important contribution to the treatment of radioactive wastewater.

実施例 1 SiO260.6%、Na2O9.7%、B2O326.7%、
Al2O33.0%なる組成の硼ケイ酸ガラスを加熱溶融
して管状に引き出し、外径2mm、内径1mmの細管
に成形した。この細管を560℃で40時間熱処理し
て分相させ、次に3規定の硫酸に浸漬して24時間
約100℃に保持して主として硼酸ナトリウムより
成る相を溶出させて多孔質ガラスの細管を製造し
た。このようにして得た細管を長さ15mmに切断し
て多数の短細管としこれを吸着剤試料とした。一
方ウラン10ppmの溶液を作成し、アンモニア水を
用いてPHを8.1に調整した。この溶液の100mlに対
して吸着剤試料200mgを加え室温で撹拌しつつ64
時間保持した。このとき溶液のPHは7.7であつた。
次に吸着剤試料を取り出して水洗後、硝酸でウラ
ンを抽出し、次にオキシンクロロホルムで抽出
し、さらにアルセナゾを加えた過塩素酸で逆抽
出してアルセナゾの発色により定量したとこ
ろ、ウランの吸着量は吸着剤グラムあたり3.3mg
であつた。
Example 1 SiO 2 60.6%, Na 2 O 9.7%, B 2 O 3 26.7%,
Borosilicate glass having a composition of 3.0% Al 2 O 3 was heated and melted, drawn into a tube shape, and formed into a thin tube with an outer diameter of 2 mm and an inner diameter of 1 mm. This capillary was heat-treated at 560°C for 40 hours to separate the phases, then immersed in 3N sulfuric acid and kept at about 100°C for 24 hours to elute the phase consisting mainly of sodium borate, forming a porous glass capillary. Manufactured. The thus obtained thin tubes were cut into lengths of 15 mm to obtain a number of short tubes, which were used as adsorbent samples. On the other hand, a 10 ppm uranium solution was prepared and the pH was adjusted to 8.1 using ammonia water. Add 200 mg of adsorbent sample to 100 ml of this solution and stir at room temperature for 64 hours.
Holds time. At this time, the pH of the solution was 7.7.
Next, the adsorbent sample was taken out, washed with water, uranium was extracted with nitric acid, then extracted with oxine chloroform, and then back-extracted with perchloric acid containing arsenazo, and the amount of uranium adsorbed was determined by color development of arsenazo. Amount is 3.3mg per gram of adsorbent
It was hot.

実施例 2 実施例1と同じ操作により外径2mm、内径1mm
の細管を製造し、これを長さ15mmに切断して多数
の短細管とし吸着剤試料とした。次にCr6+イオン
10ppmを含む水溶液100mlを用意し、前記吸着剤
試料1グラムを投入し室温で10時間処理しフイル
ターで別した。液のCr6+イオン濃度を原子吸
光法により測定したところ7.8ppmであり、吸着
剤グラムあたりのCr6+イオンの吸着量は0.2ミリ
グラムであつた。
Example 2 The outer diameter is 2 mm and the inner diameter is 1 mm by the same operation as in Example 1.
A thin tube was produced, which was cut into 15 mm lengths to form a number of short tubes, which were used as adsorbent samples. Then Cr 6+ ion
100 ml of an aqueous solution containing 10 ppm was prepared, and 1 gram of the above adsorbent sample was added thereto, treated at room temperature for 10 hours, and separated using a filter. The Cr 6+ ion concentration of the liquid was measured by atomic absorption spectrometry and was 7.8 ppm, and the amount of Cr 6+ ions adsorbed per gram of adsorbent was 0.2 milligrams.

Claims (1)

【特許請求の範囲】[Claims] 1 硼ケイ酸ガラスを熱処理して分相させた後、
硼酸ナトリウムに富む相を酸を用いて溶出させて
製造した粒状、棒状、繊維状または管状多孔質ガ
ラスと重金属を含む水溶液とを接触せしめて重金
属を吸着分離することを特徴とする重金属の分離
方法。
1 After heat-treating borosilicate glass to separate the phases,
A method for separating heavy metals, which comprises bringing a granular, rod-like, fibrous, or tubular porous glass produced by eluting a phase rich in sodium borate with an acid into contact with an aqueous solution containing heavy metals to adsorb and separate the heavy metals. .
JP15110380A 1980-10-27 1980-10-27 Separation of heavy metal Granted JPS5775139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15110380A JPS5775139A (en) 1980-10-27 1980-10-27 Separation of heavy metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15110380A JPS5775139A (en) 1980-10-27 1980-10-27 Separation of heavy metal

Publications (2)

Publication Number Publication Date
JPS5775139A JPS5775139A (en) 1982-05-11
JPH0117737B2 true JPH0117737B2 (en) 1989-03-31

Family

ID=15511404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15110380A Granted JPS5775139A (en) 1980-10-27 1980-10-27 Separation of heavy metal

Country Status (1)

Country Link
JP (1) JPS5775139A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106418A (en) * 1984-09-10 1986-05-24 Miyakonojiyou Kogyo Koutou Senmon Gatsukouchiyou Recovery of uranium in aqueous solution using titanate porous glass
KR101602418B1 (en) * 2012-04-06 2016-03-10 코닝정밀소재 주식회사 Substrate for oled with enhanced light extraction efficiency, method for fabricating thereof and oled having the same

Also Published As

Publication number Publication date
JPS5775139A (en) 1982-05-11

Similar Documents

Publication Publication Date Title
CA1326007C (en) Supported heteropolycyclic compounds in the separation and removal of late transition metals
Morsy et al. Adsorption of uranium from crude phosphoric acid using activated carbon
KR910004196B1 (en) Fixation of anionic materials with a complexing agent
US4687581A (en) Method of separating and purifying cations by ion exchange with regenerable porous glass
EP2527032B1 (en) Method for recovering cobalt by adsorption
JPH0117737B2 (en)
CN109011696B (en) Method for purifying insoluble impurities in molten salt
Stechynska et al. Preconcentration of Lutetium from Aqueous Solution by Transcarpathian Clinoptilolite.
EP1677907A1 (en) Process for the preparation of molecular sieve adsorbent for selective adsorption of oxygen from air
JP2001170482A (en) Active carbon, its manufacturing method and device for purifying treatment of water using the same
RU2414280C1 (en) Method of removing iodine from gas flows
Lugwisha et al. Water defluoridation capacity of Tanzanian kaolin-feldspar blend adsorbents
JPS61171535A (en) Lithium adsorbent, its preparation and recovery of lithium using said adsorbent
Roushani et al. Solid phase extraction of trace amounts of zinc and cadmium ions using perlite as a supper sorbent
JPS61293548A (en) Carbon monoxide separating and adsorbing agent
Kosmulski Selectivity of alkali metal cations adsorption on controlled porous glasses
JPH0334995B2 (en)
KR102654512B1 (en) Adsorbent for removing radionuclides and manufacturing method thereof
WO2022220226A1 (en) Radioactive iodine adsorbent, method for producing radioactive iodine adsorbent, and method for processing radioactive iodine
JPH02501367A (en) ion exchange composition
JPS5922655A (en) Gaseous ammonia removing agent
JP3289499B2 (en) Manufacturing method of adsorption material
Rai et al. Adsorption Studies of Crystal Violet on Sand
Ghaffar et al. A modified method for removal and stabilization of cesium metal in the vitrified matrix
JPH08117575A (en) Porous glass film having ultrafine pore, manufacture thereof, and highly selective gas separation film