JPH0334995B2 - - Google Patents

Info

Publication number
JPH0334995B2
JPH0334995B2 JP28598787A JP28598787A JPH0334995B2 JP H0334995 B2 JPH0334995 B2 JP H0334995B2 JP 28598787 A JP28598787 A JP 28598787A JP 28598787 A JP28598787 A JP 28598787A JP H0334995 B2 JPH0334995 B2 JP H0334995B2
Authority
JP
Japan
Prior art keywords
arsenic
coral
limestone
treated
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP28598787A
Other languages
Japanese (ja)
Other versions
JPH01127094A (en
Inventor
Shigeru Maeda
Kaoru Sudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Cement Co Ltd
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP28598787A priority Critical patent/JPH01127094A/en
Publication of JPH01127094A publication Critical patent/JPH01127094A/en
Publication of JPH0334995B2 publication Critical patent/JPH0334995B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の背景〕 技術分野 本発明は、ヒ素を含有する廃液中からヒ素を分
離、除去する方法に関するものである。 従来の技術 ヒ素は除草剤、農薬、殺虫剤、防腐剤、飼料添
加物や各種製造工程での触媒、また、医療分野等
において現在幅広く使用されている有用元素であ
る。他方、化学工場、金属精練所等からの廃液中
に化合物として存在するヒ素はその毒性が極めて
強く、今日廃液中のヒ素分による環境汚染が社会
的問題となつている。 従来、ヒ素含有廃液中のヒ素の除去法として最
も一般的に行われている方法として金属水酸化
物、特に水酸化第二鉄による共沈法がある。然し
ながら、この方法によれば多量の薬剤の添加が必
要であり、また得られた沈殿は沈降性、過性が
悪いため固液分離装置に多額の設備投資を要し、
また固液分離後の沈殿の脱水性が悪く、処理後多
量のスラツジが発生するという難点がある。 他の方法として、活性炭、活性アルミナ、金属
添着活性炭あるいはキレート樹脂等による吸着除
去法、水酸化第二鉄沈殿浮選法が検討されている
が、いずれもヒ素吸着スラツジの処理面やコスト
高になる等の点で問題があり、未だ十分に満足の
できる方法は得られていない。 〔発明の概要〕 本発明者らは、上記の様な問題点のないヒ素の
除去方法について鋭意検討を行つている過程で、
珊瑚石灰石等の特定の多孔質石灰石が予期せぬヒ
素吸着能を有することを見出し、かかる石灰石を
使用した効率的なヒ素除去方法について研究を重
ねた結果、本発明に到達した。 すなわち、本発明によるヒ素の除去方法は、ヒ
素を含有する廃液を空〓率10〜50cm3/gの多孔質
石灰石と接触せしめ、該廃液中のヒ素を該多孔質
石灰石の表面および細孔内に吸着せしめることを
特徴とするものである。本発明は、好ましい態様
として、上記多孔質石灰石に特定の処理を施すこ
とにより、ヒ素除去効率が一層向上したヒ素の除
去方法を包含するものである。 本発明のヒ素の除去方法によれば、ヒ素の吸着
した多孔質石灰石と廃液との分離(過)が容易
であり、また、かかる多孔質石灰石は国内に多量
に存在し、かつ安価なものであるので、コスト的
にもきわめて有利である。 〔発明の具体的な説明〕 多孔質石灰石 本発明でヒ素吸着剤として使用する石灰石は、
空〓率10〜50cm3/g、好ましくは15〜35cm3/gを
有する多孔質の石灰石である。ここで、空〓率の
測定には、水銀圧入ポロシメーターを使用してい
る。このような多孔質石灰石の代表的なものは、
珊瑚石灰石(以後コーラルと称する)である。い
ま鹿児島県徳之島産コーラルを例にとり、その組
成を示すと次の通りである。
[Background of the Invention] Technical Field The present invention relates to a method for separating and removing arsenic from arsenic-containing waste liquid. BACKGROUND OF THE INVENTION Arsenic is a useful element that is currently widely used in herbicides, agricultural chemicals, insecticides, preservatives, feed additives, catalysts in various manufacturing processes, and in the medical field. On the other hand, arsenic, which is present as a compound in waste liquids from chemical factories, metal smelters, etc., is extremely toxic, and environmental pollution due to arsenic content in waste liquids has become a social problem today. Conventionally, the most commonly used method for removing arsenic from arsenic-containing waste liquid is a coprecipitation method using a metal hydroxide, particularly ferric hydroxide. However, this method requires the addition of a large amount of chemicals, and the resulting precipitate has poor sedimentation and permeability, requiring a large investment in solid-liquid separation equipment.
Furthermore, the dehydration of the precipitate after solid-liquid separation is poor, and a large amount of sludge is generated after treatment. As other methods, adsorption removal methods using activated carbon, activated alumina, metal-impregnated activated carbon, or chelate resin, and ferric hydroxide precipitation flotation methods are being considered, but these methods have problems in terms of processing arsenic-adsorbing sludge and high costs. However, there are problems in the following points, and a fully satisfactory method has not yet been obtained. [Summary of the Invention] In the process of conducting intensive studies on a method for removing arsenic that does not have the above-mentioned problems, the present inventors discovered that
It was discovered that a specific porous limestone such as coral limestone has an unexpected ability to adsorb arsenic, and as a result of repeated research on an efficient arsenic removal method using such limestone, the present invention was achieved. That is, in the method for removing arsenic according to the present invention, a waste liquid containing arsenic is brought into contact with porous limestone having a porosity of 10 to 50 cm 3 /g, and arsenic in the waste liquid is removed from the surface and inside the pores of the porous limestone. It is characterized by being adsorbed to. In a preferred embodiment, the present invention includes a method for removing arsenic in which the arsenic removal efficiency is further improved by subjecting the porous limestone to a specific treatment. According to the arsenic removal method of the present invention, it is easy to separate (filter) porous limestone that has adsorbed arsenic from waste liquid, and such porous limestone exists in large quantities in Japan and is inexpensive. Therefore, it is extremely advantageous in terms of cost. [Specific description of the invention] Porous limestone The limestone used as an arsenic adsorbent in the present invention is
It is a porous limestone having a porosity of 10 to 50 cm 3 /g, preferably 15 to 35 cm 3 /g. Here, a mercury intrusion porosimeter is used to measure the void ratio. Typical examples of such porous limestone are:
It is coral limestone (hereinafter referred to as coral). Taking coral from Tokunoshima, Kagoshima Prefecture as an example, its composition is as follows.

〔実施例〕〔Example〕

以下、本発明の効果を実施例により具体的に説
明する。 実施例 1 徳之島サンゴ石灰石(コーラル)をジヨークラ
ツシヤーで粉砕した後、篩で分級し、5〜6メツ
シユ、6〜20メツシユ、20〜150メツシユ、150メ
ツシユパス、に粒度を調整した。その後、水が白
濁しなくなるまで水洗いし、最後にイオン交換水
で2度洗い、乾燥器中(100℃)で乾燥した。 ヒ素濃度として2ppmあるいは8ppmに調整し
た、ヒ酸水素二ナトリウム水溶液50mlと、上記で
粒度を調整したコーラル各40gを100ml三角フラ
ストに入れ、パラフイルムで三角フラスコをシー
ルして、10日間、室温(20〜25℃)にて放置し
た。その後、ろ過し、ろ液中のヒ素濃度をジエチ
ルジチオカルバミン酸銀法によつて定量した。 ヒ素初濃度8ppmの場合の実験結果を表1に示
す。
Hereinafter, the effects of the present invention will be specifically explained using examples. Example 1 Tokunoshima coral limestone (coral) was crushed with a dior crusher and then classified with a sieve, and the particle size was adjusted to 5 to 6 meshes, 6 to 20 meshes, 20 to 150 meshes, and 150 meshes. Thereafter, it was washed with water until the water was no longer cloudy, and finally washed twice with ion-exchanged water and dried in a dryer (100°C). Put 50 ml of an arsenic disodium arsenate aqueous solution adjusted to arsenic concentration of 2 ppm or 8 ppm and 40 g each of Coral whose particle size was adjusted above into a 100 ml Erlenmeyer flask, seal the Erlenmeyer flask with parafilm, and store at room temperature for 10 days. 20-25°C). Thereafter, it was filtered, and the arsenic concentration in the filtrate was determined by the diethyldithiocarbamate silver method. Table 1 shows the experimental results when the initial arsenic concentration was 8 ppm.

【表】 粒径が小さくなるにつれて、水相中のヒ素濃度
の低下が大きくなつている。これは、150メツシ
ユまでのコーラルの表面積が、粒径の減少ととも
に大きくなつたためと考えられる。コーラル粒径
が150メツシユ以下では、20〜150メツシユよりも
水相中のヒ素濃度が高くなつているが、これは、
コーラルの細孔径との関係とも考えられる。 実施例 2 実施例1で得られた5〜6メツシユサイズのコ
ーラルにつき、以下の様に各種処理コーラルを調
製した。 FeCl3処理コーラル コーラルを40%FeCl3・6H2O水溶液に30分間
浸し、その後、十分に水洗し、100℃で乾燥した。
この乾燥したコーラルをFeCl3処理コーラルとし
た。 MgNO3処理コーラル 50%MgNO3水溶液に30分間浸し、その後十分
に水洗し、100℃で乾燥した。 グルタルアルデヒド処理コーラル 2.5%グルタルアルデヒドに30分間浸し、その
後十分に水洗し、100℃で乾燥した。 MgNO3+Fe(OH)3処理コーラル 上記のMgNO3処理コーラルをFe(OH)3を生成
させた溶液中に30分間浸し、その後十分に水洗
し、100℃で乾燥した。 湿潤処理コーラル 蒸溜水中にて、30分煮沸し、細孔中の空気をお
い出した。その後十分に水洗し、乾燥しなかつ
た。 ノストツク固定化コーラル コーラルをノストツク藻体懸濁液に入れ、30分
間氷冷しながら、超音波洗浄機にかけた。その
後、コーラルのみを取り出し、十分に水洗後、培
養した。培養によつてコーラルにノストツクが固
定化され、これをノストツク固定化コーラルとし
た。上記により調製した各処理コーラルを用い、
実施例1と同様にヒ素の吸着実験を行つた。 結果を表2に示す。尚、対照として無処理コー
ラル(5〜6メツシユ)につき実施例1で得られ
た結果を併記した。
[Table] As the particle size becomes smaller, the arsenic concentration in the aqueous phase decreases more greatly. This is thought to be because the surface area of corals up to 150 meshes increased as the particle size decreased. When the coral particle size is 150 mesh or less, the arsenic concentration in the aqueous phase is higher than when it is between 20 and 150 mesh.
It is also thought to be related to the pore diameter of coral. Example 2 Various treated corals were prepared from the 5 to 6 mesh size coral obtained in Example 1 as follows. FeCl 3 treated coral Coral was immersed in a 40% FeCl 3 6H 2 O aqueous solution for 30 minutes, then thoroughly washed with water and dried at 100°C.
This dried coral was designated as FeCl 3 -treated coral. MgNO3 -treated corals were immersed in a 50% MgNO3 aqueous solution for 30 minutes, then thoroughly washed with water, and dried at 100°C. Glutaraldehyde-treated coral Soaked in 2.5% glutaraldehyde for 30 minutes, then thoroughly washed with water and dried at 100°C. MgNO 3 +Fe(OH) 3 -treated coral The above MgNO 3 -treated coral was immersed in a solution in which Fe(OH) 3 was generated for 30 minutes, then thoroughly washed with water, and dried at 100°C. Wet treated coral Boiled in distilled water for 30 minutes to expel the air in the pores. After that, I washed it thoroughly with water and did not dry it. Nostok-immobilized coral Coral was placed in a Nostok algae suspension and subjected to an ultrasonic cleaner while cooling on ice for 30 minutes. Thereafter, only the corals were taken out, thoroughly washed with water, and then cultured. Nostok was immobilized on the coral by culturing, and this was designated as Nostok-immobilized coral. Using each treated coral prepared above,
An arsenic adsorption experiment was conducted in the same manner as in Example 1. The results are shown in Table 2. As a control, the results obtained in Example 1 for untreated coral (5 to 6 meshes) are also shown.

【表】 表2の結果より、全ての処理コーラルは、無処
理コーラルを使用した場合よりもヒ素除去に有効
であることがわかる。特にFeCl3処理コーラルの
場合は、8.0ppmのヒ素を完全に除去できた。ま
た、湿潤処理の場合は、コーラルの細孔中の空気
を追い出しただけであるが、ヒ素除去能が向上し
ている。これは、コーラルの有効表面積が大きく
なつたためであると考えられる。 実施例 3 実施例1と同様の方法で調製した5〜8メツシ
ユおよび8〜120メツシユサイズの無処理コーラ
ル各40gを、50mlのヒ酸水素二ナトリウム水溶液
を入れた200ml三角フラストに入れ、振とう器に
かけて表3に示す各時間経過後のヒ素溶液濃度を
測定した。測定は原子吸光炎光共用分析装置(日
本ジヤーナル・アツシユ社製、AA−855)を使
用し、フレームレス原子吸光分光光度法により行
つた。 結果を表3及び第1図に示す。
[Table] From the results in Table 2, it can be seen that all treated corals are more effective in removing arsenic than when untreated coral is used. In particular, in the case of coral treated with FeCl 3 , 8.0 ppm of arsenic could be completely removed. In addition, in the case of wet treatment, although the air in the pores of the coral was simply expelled, the arsenic removal ability was improved. This is thought to be due to the increased effective surface area of coral. Example 3 40 g each of untreated coral of 5 to 8 mesh size and 8 to 120 mesh size prepared in the same manner as in Example 1 was placed in a 200 ml triangular frust containing 50 ml of an aqueous solution of disodium hydrogen arsenate, and placed in a shaker. The arsenic solution concentration was measured after each time shown in Table 3. The measurement was carried out by flameless atomic absorption spectrophotometry using an atomic absorption flame spectrometer (AA-855, manufactured by Japan Journal Atsushi Co., Ltd.). The results are shown in Table 3 and FIG.

【表】【table】

【表】 表3および第1図より、粒度の小さいコーラル
の方が吸着速度が大きいことがわかる。これはコ
ーラルの表面積の違いによるものと思われる。72
時間後のヒ素吸着量についても5〜8メツシユで
は480μg、8〜120メツシユでは550μgと差異が
認められる。 実施例 4 実施例3で得た5〜8メツシユサイズのコーラ
ルを、電気炉中にて650℃で2時間熱処理し、焼
成処理コーラルを得た。濃度8.07ppmのヒ酸水素
二ナトリウム水溶液を、実施例3と同様の方法で
上記熱処理コーラルに接触させ、該ヒ素溶液濃度
の経時変化を調べた。また、対照実験として無処
理コーラルによるヒ素吸着実験を同時に行つた。 結果を表4および第2図に示す。
[Table] From Table 3 and FIG. 1, it can be seen that the adsorption rate is higher for coral with smaller particle size. This seems to be due to the difference in the surface area of coral. 72
There is also a difference in the amount of arsenic adsorbed after hours: 480 μg for 5 to 8 meshes and 550 μg for 8 to 120 meshes. Example 4 The 5 to 8 mesh size coral obtained in Example 3 was heat treated at 650° C. for 2 hours in an electric furnace to obtain calcined coral. An aqueous solution of disodium hydrogen arsenate having a concentration of 8.07 ppm was brought into contact with the heat-treated coral in the same manner as in Example 3, and changes in the concentration of the arsenic solution over time were examined. In addition, as a control experiment, an arsenic adsorption experiment using untreated coral was conducted at the same time. The results are shown in Table 4 and FIG.

【表】【table】

【表】 焼成処理コーラルと無処理コーラルで吸着速度
の違いを比較すると、焼成したコーラルの方が遥
かに大きいことがわかる。1時間後では焼成した
ものは、1/10位まで溶液ヒ素濃度は減少している
が、無処理の方は、1/2にもなつていない。 これは、焼成によりコーラル表面の気孔が連続
気孔として内部にまでおよび、それにより表面積
が、増大する為と考えられる。 実施例 5および6 実施例3で得た5〜8メツシユサイズのコーラ
ルを、濃度1%、2%および4%の塩化第二鉄水
溶液にて実施例2と同様に処理して得たFeCl3
理コーラル(実施例5)および濃度1%、2%お
よび4%の硫酸アルミニウム水溶液にてこれと同
様に処理して得たAl2(SO43処理コーラル(実施
例6)につき、実施例4と同様にヒ素の吸着実験
を行つた(但し、ヒ素溶液の初濃度は18.0ppm)。
尚、対照として無処理コーラルによるヒ素吸着実
験を同時に行つた。 結果を表5および表6に示す。
[Table] Comparing the difference in adsorption speed between calcined coral and untreated coral, it can be seen that the calcined coral is much larger. After one hour, the concentration of arsenic in the solution had decreased to about 1/10 in the fired one, but it had not even reached 1/2 in the untreated one. This is thought to be because the pores on the surface of the coral extend into the interior as continuous pores due to firing, thereby increasing the surface area. Examples 5 and 6 FeCl 3 treatment obtained by treating the 5-8 mesh size coral obtained in Example 3 with ferric chloride aqueous solutions of concentrations 1%, 2% and 4% in the same manner as in Example 2. Example 4 for coral (Example 5) and Al 2 (SO 4 ) 3 treated coral (Example 6) obtained by treatment in the same manner with aluminum sulfate aqueous solutions at concentrations of 1%, 2% and 4%. An arsenic adsorption experiment was conducted in the same manner as (however, the initial concentration of the arsenic solution was 18.0 ppm).
As a control, an arsenic adsorption experiment using untreated coral was conducted at the same time. The results are shown in Tables 5 and 6.

【表】 FeCl3処理コーラルと無処理コーラルの吸着速
度を比較すると、無処理の方はppmのオーダーで
あるのに対し、FeCl3処理したものは、10分後に
既にppbのオーダーになつている。これはコーラ
ル表面上のFe分によるヒ素の化学吸着の速度が
極めて大きい為と考えられる。又12、24、72時間
後、溶液ヒ素濃度が上つているが、これは長い時
間振とうしていた為、コーラルが微細化され沈降
せずに浮いていた為と考えられる。
[Table] Comparing the adsorption rates of FeCl 3 -treated coral and untreated coral, the untreated one is on the order of ppm, while the FeCl 3- treated one is already on the order of ppb after 10 minutes. . This is thought to be due to the extremely high rate of chemical adsorption of arsenic by the Fe content on the coral surface. Also, after 12, 24, and 72 hours, the concentration of arsenic in the solution increased, but this is thought to be due to the long period of shaking, which caused the coral to become fine and float instead of settling.

【表】 Al2(SO43処理コーラルについても、前項の
FeCl3処理コーラルと同様無処理コーラルに比べ
て遥かに吸着速度が大きいことが分かる。 実施例 7 第3図に示すような装置を用い、カラム法によ
るヒ素の吸着実験を行つた。まず実施例3で得た
5〜8メツシユサイズの無処理コーラル50gとイ
オン交換水30mlをカラムに入れ、ヒ酸水素二ナト
リウム溶液(濃度4900ppb)を滴下スピード8
ml/6minで滴下した。1本の試験管に8.4mlずつ
フラクシヨンコレクターで採取し、採取液につい
て、フレームレス原子吸光光度法によりヒ素の定
量を行つた。ここで吸着剤充填カラムには、内径
20mm、高さ30mmのガラス管を用い、8.4mlごとの
分取には、GILSON社製マイクロフラクシヨン
ネーター(FC−80K)を用いた。 結果を表7および第4図に示す。
[Table] Regarding the Al 2 (SO 4 ) 3 treated coral, the above
It can be seen that the adsorption rate is much higher than that of FeCl 3 -treated coral as well as untreated coral. Example 7 Using an apparatus as shown in FIG. 3, an arsenic adsorption experiment was conducted using a column method. First, 50 g of untreated coral of 5-8 mesh size obtained in Example 3 and 30 ml of ion-exchanged water were placed in a column, and disodium hydrogen arsenate solution (concentration 4900 ppb) was added dropwise at a speed of 8.
It was added dropwise at a rate of ml/6 min. 8.4 ml of each test tube was collected using a fraction collector, and the arsenic content of the collected liquid was determined by flameless atomic absorption spectrophotometry. Here, the adsorbent-filled column has an inner diameter of
A glass tube with a diameter of 20 mm and a height of 30 mm was used, and a Microfractionator (FC-80K) manufactured by GILSON was used to collect each 8.4 ml. The results are shown in Table 7 and FIG.

【表】 実施例 8 実施例7の無処理コーラルに代えて実施例4の
焼成処理コーラルを使用し、実施例7同様にカラ
ム法によるヒ素の吸着実験を行つた。但し、滴下
したヒ素水溶液濃度は5670ppb、滴下スピードは
8.20ml/minであつた。 結果を表8および第5図に示す。
[Table] Example 8 The calcined coral of Example 4 was used in place of the untreated coral of Example 7, and an arsenic adsorption experiment was conducted using the column method in the same manner as in Example 7. However, the concentration of the dropped arsenic aqueous solution was 5670 ppb, and the dropping speed was
It was 8.20ml/min. The results are shown in Table 8 and FIG.

【表】【table】

【表】 実施例 9 実施例7の無処理コーラルに代えて、実施例5
で得た2%FeCl3処理コーラルを使用し、実施例
7同様にカラム法によるヒ素の吸着実験を行つ
た。但し、滴下ヒ素水溶液の濃度は4780ppb、滴
下スピードは8.30ml/6minであつた。 結果を表9および第6図に示す。
[Table] Example 9 In place of the untreated coral of Example 7, Example 5
Using the 2% FeCl 3 treated coral obtained in Example 7, an arsenic adsorption experiment was conducted using the column method in the same manner as in Example 7. However, the concentration of the dropped arsenic aqueous solution was 4780 ppb, and the dropping speed was 8.30 ml/6 min. The results are shown in Table 9 and FIG.

【表】【table】

【表】 実施例 10 ヒ素濃度12.7ppmのヒ酸水素二ナトリウム溶液
100mlを、実施例5で得た4%FeCl3処理コーラ
ル80gで処理し、該溶液内のヒ素をほぼ100%吸
着させた。このヒ素吸着コーラルをPH1、2、
3、4、5に調整した水20ml中にそれぞれ10gず
つ入れ、1日後、15日後、30日後のヒ素の脱離を
調べた。 結果を表10に示す。
[Table] Example 10 Disodium hydrogen arsenate solution with arsenic concentration of 12.7 ppm
100 ml was treated with 80 g of the 4% FeCl 3 -treated coral obtained in Example 5, resulting in almost 100% adsorption of arsenic in the solution. This arsenic-adsorbing coral has a pH of 1, 2,
10 g of each was added to 20 ml of water adjusted to 3, 4, and 5, and the desorption of arsenic was examined after 1 day, 15 days, and 30 days. The results are shown in Table 10.

【表】 PHの違いによる4%FeCl3処理コーラルに吸着
したヒ素の脱離を調べたものであるが、30日経過
しても1%も脱離が起つていない。一度吸着した
ものは、なかなか脱離しないことがわかる。
[Table] The desorption of arsenic adsorbed on coral treated with 4% FeCl 3 due to differences in pH was investigated, and even after 30 days, not even 1% desorption occurred. It can be seen that once adsorbed, it is difficult to desorb.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例3、第2図は実施例4、第4図
は実施例7、第5図は実施例8、そして第6図は
実施例9の結果をそれぞれ示すグラフである。第
3図は実施例7〜9におけるカラム法によるヒ素
の吸着実験に使用した装置を示す説明図である。
FIG. 1 is a graph showing the results of Example 3, FIG. 2 is Example 4, FIG. 4 is Example 7, FIG. 5 is Example 8, and FIG. 6 is a graph showing the results of Example 9. FIG. 3 is an explanatory diagram showing the apparatus used in the arsenic adsorption experiments by the column method in Examples 7 to 9.

Claims (1)

【特許請求の範囲】 1 ヒ素を含有する廃液を空〓率10〜50cm3/gの
多孔質石灰石と接触せしめ、該廃液中のヒ素を該
多孔質石灰石の表面および細孔内に吸着せしめる
ことを特徴とするヒ素含有廃液中のヒ素の除去方
法。 2 多孔質石灰石が珊瑚石灰石である特許請求の
範囲第1項のヒ素の除去方法。 3 多孔質石灰石が予め塩化第二鉄、硫酸アルミ
ニウム、硝酸マグネシウム、水酸化第二鉄および
グルタルアルデヒドの中のいずれか一種又は二種
以上により処理されたものである特許請求の範囲
第1項又は第2項記載のヒ素の除去方法。 4 多孔質石灰石が焼成処理、湿潤処理またはノ
ストツク藻体固定化処理されたものである特許請
求の範囲第1項又は第2項記載のヒ素の除去方
法。
[Claims] 1. Bringing arsenic-containing waste liquid into contact with porous limestone having a porosity of 10 to 50 cm 3 /g, and adsorbing arsenic in the waste liquid onto the surface and pores of the porous limestone. A method for removing arsenic from arsenic-containing waste liquid, characterized by: 2. The method for removing arsenic according to claim 1, wherein the porous limestone is coral limestone. 3. Claim 1, wherein the porous limestone has been previously treated with one or more of ferric chloride, aluminum sulfate, magnesium nitrate, ferric hydroxide, and glutaraldehyde, or The method for removing arsenic according to item 2. 4. The arsenic removal method according to claim 1 or 2, wherein the porous limestone is calcined, wetted, or immobilized with Nostok algae.
JP28598787A 1987-11-12 1987-11-12 Removal of arsenic Granted JPH01127094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28598787A JPH01127094A (en) 1987-11-12 1987-11-12 Removal of arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28598787A JPH01127094A (en) 1987-11-12 1987-11-12 Removal of arsenic

Publications (2)

Publication Number Publication Date
JPH01127094A JPH01127094A (en) 1989-05-19
JPH0334995B2 true JPH0334995B2 (en) 1991-05-24

Family

ID=17698547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28598787A Granted JPH01127094A (en) 1987-11-12 1987-11-12 Removal of arsenic

Country Status (1)

Country Link
JP (1) JPH01127094A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019404A (en) * 2001-07-06 2003-01-21 Mitsubishi Rayon Co Ltd Arsenic adsorbent and removal treatment method for arsenic using the same
US7790653B2 (en) 2001-10-11 2010-09-07 South Dakota School Of Mines & Technology Method and composition to reduce the amounts of arsenic in water
JP4527584B2 (en) * 2005-03-30 2010-08-18 株式会社神戸製鋼所 Preparation of arsenic remover in contaminated water
US20080060989A1 (en) * 2006-09-07 2008-03-13 Rajiv Manoher Banavall Water purification system
TWI404566B (en) * 2008-01-18 2013-08-11 Rohm & Haas Adsorbent bed for water treatment
JP5548956B2 (en) * 2009-01-28 2014-07-16 国立大学法人金沢大学 Arsenic sorbent and arsenic contaminant purification method

Also Published As

Publication number Publication date
JPH01127094A (en) 1989-05-19

Similar Documents

Publication Publication Date Title
Krishnan et al. Removal of mercury (II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies
Khraisheh et al. Remediation of wastewater containing heavy metals using raw and modified diatomite
Driehaus et al. Granular ferric hydroxide—a new adsorbent for the removal of arsenic from natural water
Kadirvelu et al. Mercury (II) adsorption by activated carbon made from sago waste
EP1070019B1 (en) Water treatment method
Rajamohan et al. Equilibrium, kinetic and thermodynamic studies on the removal of Aluminum by modified Eucalyptus camaldulensis barks
JP2020506049A (en) Adsorbent and manufacturing method
CN103723785A (en) Method adopting lanthanum modified attapulgite to remove fluorinion in water
Gupta et al. Adsorption of Cr (VI) by a low-cost adsorbent prepared from neem leaves
CA1117437A (en) Use of nonstoichiometric carbon-sulfur compounds to remove components from liquids
Mihayo et al. Defluoridation of aqueous solution using thermally activated biosorbents prepared from Adansonia digitata fruit pericarp
Guechi et al. Removal of cadmium and copper from aqueous media by biosorption on cattail (Typha angustifolia) leaves: Kinetic and isotherm studies
JPH0334995B2 (en)
CN113117643A (en) Modified biomass charcoal adsorption material, preparation method and application thereof, and method for regenerating modified biomass charcoal adsorption material
Gad et al. Factors affecting sorption of Pb (II) from aqueous solution using sawdust based activated carbon
CN116116388A (en) Preparation method and application of biochar/magnesium aerogel bead dephosphorization adsorbent
Saini et al. Valorization of toxic weed Lantana camara L. biomass for adsorptive removal of lead
KR20200038656A (en) Hybrid absorbent using sericite and spent coffee rounds for removal of heavy metal in aqueous solution and method of the same
Rinkus et al. NaOH regeneration of Pb and phenol-laden activated carbon. I. Batch study results
Chaudhuri et al. Copper and cadmium adsorption by activated carbon prepared from coconut coir
JPS6259973B2 (en)
Youssef et al. Removal of Pb (II) and Cd (II) From Aqueous solution Using Oxidized Activated Carbons Developed From Pecan Shells.
KR101927405B1 (en) Humic acid-impregnated activated carbon for adsorbing mercury and the manufacturing method thereof
Singer Activated Carbon for the Removal of Trace Metals from Aqueous Solutions
JPS6136973B2 (en)