JPH01176041A - Method for mixing sintered ore materials - Google Patents

Method for mixing sintered ore materials

Info

Publication number
JPH01176041A
JPH01176041A JP33371587A JP33371587A JPH01176041A JP H01176041 A JPH01176041 A JP H01176041A JP 33371587 A JP33371587 A JP 33371587A JP 33371587 A JP33371587 A JP 33371587A JP H01176041 A JPH01176041 A JP H01176041A
Authority
JP
Japan
Prior art keywords
rdi
sintered ore
ore
blending
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33371587A
Other languages
Japanese (ja)
Inventor
Kazuma Nakajima
中島 一磨
Takuma Kodama
児玉 琢磨
Yoshiyuki Nakajima
中嶋 由行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP33371587A priority Critical patent/JPH01176041A/en
Publication of JPH01176041A publication Critical patent/JPH01176041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To reduce the variance of the low-temperature-reduction powdering index (RDI) and to stabilize the operation of a blast furnace by estimating the RDI of the sintered ore from the RDI of the respective iron ores constituting the sintered ore material and the mixing ratio, comparing the estimated value with the set value, and correcting the mixing ratio. CONSTITUTION:The RDI is preestimated at every iron ore constituting the sintered ore material. The RDI of the sintered ore to be produced is estimated from the RDI of each iron ore and the mixing ratio based on the sintering material mixing schedule, or the slag component amts. are estimated from the slag component and the mixing ratio along with the estimation of RDI. The mixing ratio of the respective iron ores and the slag component amts. (SiO2%+CaO%+MgO%-Al2O3%) are corrected and controlled base on the estimated RDI and, as necessary, the estimated slag component amts. to keep the sintered ore in the set range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は焼結鉱原料の配合方法に係り、特に焼結鉱の低
温還元粉化指数(息下RDIと称する)を設定値範囲に
収めるように制御する焼結鉱原料の配合方法に関し、鉄
鉱石焼結分野に広く利用される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of blending raw materials for sintered ore, and in particular, to a method for keeping the low-temperature reduction pulverization index (referred to as RDI) of sintered ore within a set value range. It is widely used in the field of iron ore sintering as it relates to a blending method of sintered ore raw materials that controls the following.

〔従来の技術〕[Conventional technology]

近時、高炉の原料として焼結鉱の使用割合が増加してい
るが、焼結鉱の炉頂400〜600℃の低屋部で還元粉
化することにより高炉の通気性を阻害し、ひいては炉況
不調、溶銑の品質の悪化を斎らすことは周知のとおりで
ある。そのため焼結鉱のRDIを適正に制御することは
高炉の安定操業上きわめて重要である。従って製造焼結
鉱のRDI値の予測精度を向上させることがきわめて重
要な技術である。
Recently, the proportion of sintered ore used as a raw material for blast furnaces has been increasing, but the reduction and powdering of sintered ore at the top of the furnace in a low room at 400 to 600°C impedes the permeability of the blast furnace. It is well known that this can lead to poor furnace conditions and deterioration in the quality of hot metal. Therefore, properly controlling the RDI of sintered ore is extremely important for stable operation of a blast furnace. Therefore, it is an extremely important technique to improve the prediction accuracy of the RDI value of manufactured sintered ore.

従来の焼結鉱のRDI予測方法としては、焼結鉱中のF
eOから予測する方法や焼結鉱原料中の微粉部分のA 
l 203/S io2から予測する方法など多くの方
法が提唱されているが、これらの方法は、いずれも次の
如き問題点があって、短期的には使用可能であるものの
長期的には使用できないものが多い。
As a conventional method for predicting RDI of sintered ore, F in sintered ore is
Method of predicting from eO and A of fine powder part in sintered ore raw material
Many methods have been proposed, such as a method of predicting from l 203/S io2, but all of these methods have the following problems, and although they can be used in the short term, they cannot be used in the long term. There are many things that cannot be done.

第6図は焼結鉱中のFeOとRDIとの関係を示す一例
である。第6図から明らかな如く、同一配合原料Aもし
くはBのみの場合は、焼結鉱のFeOとRDIとの間に
は、かなり高い相関関係があり、FeOからRDIを精
度よく推定できるが、配合原料が変わると両者の関係が
全く異なるものとなり、従って一つの推定式の長期的使
用は不可能である。
FIG. 6 is an example showing the relationship between FeO and RDI in sintered ore. As is clear from Fig. 6, there is a fairly high correlation between FeO and RDI of sintered ore when only the same blended raw materials A or B are used, and RDI can be estimated from FeO with high accuracy. If the raw material changes, the relationship between the two will become completely different, and therefore it is impossible to use one estimation formula over a long period of time.

因に一つの配合原料の使用日数は7〜10日である。Incidentally, the number of days that one mixed raw material is used is 7 to 10 days.

第7図は焼結鉱の微粉部分のAl2O3/SiO2とR
DIとの関係を示す一例である。これは焼結原料のRD
I特性を微粉部分のAl2O3/SiO2にて代表させ
ようとするものである。第7図から明らかなとおり、焼
結原料のAl2O3、S 1o2Ju外の他のスラグ成
分が変らなければ両者の間にはかなり高い相関関係があ
り、A#O/SiOから高い精度でRDIを推定できる
Figure 7 shows Al2O3/SiO2 and R in the fine powder part of sintered ore.
This is an example showing the relationship with DI. This is the RD of the sintering raw material.
This is intended to represent the I characteristic with Al2O3/SiO2 in the fine powder portion. As is clear from Figure 7, if other slag components other than Al2O3 and S1o2Ju of the sintering raw material do not change, there is a fairly high correlation between the two, and RDI can be estimated with high accuracy from A#O/SiO. can.

しかしながら第8図に示す如く、焼結鉱中のアルカリ成
分、特にに20の影響が大きく、必ずしも微粉部分のA
j20./SiO□のみで焼結鉱のRDIを代表させる
ことができない。
However, as shown in Figure 8, the influence of alkaline components in the sintered ore, especially 20, is large, and the A
j20. /SiO□ alone cannot represent the RDI of sintered ore.

なお、焼結鉱のRDI管理に関し、特開昭60−131
931が開示されているが、この発明においては、RD
Iの調整に際しては、特定の鉱石について配合割合を調
整する例に止まり、多種類鉱石配合時の焼結RDIの制
御について開示されたものではない。
Regarding RDI management of sintered ore, Japanese Patent Application Laid-Open No. 1986-131
931 is disclosed, but in this invention, RD
The adjustment of I is limited to an example of adjusting the blending ratio of a specific ore, and does not disclose control of sintering RDI when blending multiple types of ores.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、多種類の鉄鉱石原料によって構成され
る焼結鉱のRDI値の推定における上記従来技術の欠点
を解消し、高い精度でこれを推定でき、しかも長期に亘
って普遍的に適用できる方式を見出し、これによって高
炉操業に最適の焼結鉱原料の効果的な配合方法を提供し
ようとするものである。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques in estimating the RDI value of sintered ore made of many types of iron ore raw materials, to be able to estimate it with high accuracy, and to be able to universally and over a long period of time. The aim is to find an applicable method and thereby provide an effective method for blending sintered ore raw materials that are optimal for blast furnace operation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的は、下記要旨の2発明によっていずれ
も効果的に達成される。第1発明の要旨とするところは
次の如くである。
The above objects of the present invention are effectively achieved by the following two inventions. The gist of the first invention is as follows.

すなわち、製造予定の焼結鉱が設定RDIを有するよう
に各鉄鉱石の配合比を制御する焼結鉱原料の配合方法に
おいて、焼結鉱原料を構成する各鉄鉱石毎の低温還元粉
化指数(RDI)を予め測定し前記各鉄鉱石のRDIと
焼結原料配合計画に基づく配合比をもとに前記焼結鉱の
RDIを予測し該予測RDIをもとに前記焼結鉱のRD
Iを設定範囲に収めるべく各鉄鉱石の配合比を修正制御
することを特徴とする焼結鉱原料の配合方法である。
That is, in a sintered ore raw material blending method that controls the blending ratio of each iron ore so that the sintered ore to be manufactured has a set RDI, the low temperature reduction pulverization index of each iron ore constituting the sintered ore raw material is determined. (RDI) is measured in advance, the RDI of the sintered ore is predicted based on the RDI of each iron ore and the mixing ratio based on the sintering raw material mixing plan, and the RD of the sintered ore is calculated based on the predicted RDI.
This method of blending raw materials for sintered ore is characterized by correcting and controlling the blending ratio of each iron ore in order to keep I within a set range.

第2発明の要旨とするところは次の如くである。The gist of the second invention is as follows.

すなわち、製造予定の焼結鉱が設定RDIを有するよう
に各鉄鉱石の配合比を制御する焼結鉱原料の配合方法に
おいて、焼結鉱原料を構成する各鉄鉱石毎の低温還元粉
化指数(RDI)を予め測定し前記各鉄鉱石のRDIな
らびに全使用原料のスラグ成分と焼結原料配合計画に基
づく配合比をもとに前記焼結鉱−のRDIならびにスラ
グ成分量を予測し、核子fiRDIならびにスラグ成分
量をもとに前記焼結鉱のRDIを設定範囲に収めるべく
各鉄鉱石の配合比および焼結鉱スラグ成分量を修正制御
することを特徴とする焼結鉱原料の配合方法である。
That is, in a sintered ore raw material blending method that controls the blending ratio of each iron ore so that the sintered ore to be manufactured has a set RDI, the low temperature reduction pulverization index of each iron ore constituting the sintered ore raw material is determined. (RDI) is measured in advance, and the RDI and slag component amount of the sintered ore are predicted based on the RDI of each iron ore, the slag component of all raw materials used, and the blending ratio based on the sintering raw material blending plan. A method for blending raw materials for sintered ore, which comprises modifying and controlling the blending ratio of each iron ore and the amount of sintered ore slag components in order to keep the RDI of the sintered ore within a set range based on fiRDI and the amount of slag components. It is.

本発明の詳細を添付図面を参照して説明する。The details of the invention will now be described with reference to the accompanying drawings.

焼結鉱を構成する各鉄鉱石の実測RDI値の一例は第1
図に示すとおりである。第1図の例によれば鉄鉱石Nの
13から鉄鉱石Aの73と大きなばらつきを呈している
。これらの鉄鉱石を組合せた時の一例を第1図のC鉄鉱
石とJ鉄鉱石をそれぞれ0〜100%および100〜0
%と組合わせた時の重量比から計算したRDI値は第2
図のA直線に示すとお秒であや、C鉄鉱石とJ鉄鉱石を
それぞれの割合で組合せた混合鉄鉱石の実1qRDI値
は0印にて示すとおりで、計算値と実測値はほぼ一致す
ることが判明した。従って多種類の鉄鉱石を構成原料と
する焼結鉱の予測RDI(%)は次の(1)式で表わす
ことができる。すなわち、ここにi:構成単味鉄鉱石の
銘柄 RDI、:  i鉄鉱石の測定RDi%)Wl:1鉄鉱
石の配合比 従って、焼結鉱原料を構成する各鉄鉱石毎のRDIを測
定しておき、その測定値に基づき焼結鉱原料の配合計画
に基づく配合比をもとに、(1)式により焼結鉱の予測
RDIを計算し、実際配合時に該予測RDIをもとに、
焼結鉱の設定RDI値範囲に収まるように、各鉄鉱石の
配合割合を制御することができる。これにより実績焼結
鉱のRDIを長期的に安定させることが可能である。
An example of the actually measured RDI value of each iron ore constituting sintered ore is
As shown in the figure. According to the example in FIG. 1, there is a large variation from 13 for iron ore N to 73 for iron ore A. An example of a combination of these iron ores is shown in Figure 1, where C iron ore and J iron ore are 0 to 100% and 100 to 0, respectively.
The RDI value calculated from the weight ratio when combined with % is the second
The actual 1qRDI value of mixed iron ore, which is a combination of C iron ore and J iron ore in their respective proportions, is as shown by the 0 mark, and the calculated value and the measured value almost match. It has been found. Therefore, the predicted RDI (%) of sintered ore made from various types of iron ores can be expressed by the following equation (1). That is, here, i: Brand name RDI of constituent single iron ore: i Measurement RDi of iron ore %) Wl: 1 Mixing ratio of iron ore Therefore, measure the RDI of each iron ore that makes up the sintered ore raw material. Then, based on the measured values and the blending ratio based on the blending plan of the sintered ore raw materials, the predicted RDI of the sintered ore is calculated using equation (1), and based on the predicted RDI at the time of actual blending,
The blending ratio of each iron ore can be controlled so that it falls within the set RDI value range of the sintered ore. This makes it possible to stabilize the RDI of the actual sintered ore over the long term.

以上は(1)式に基づく焼結鉱の予測RDIをもとに修
正制御する焼結鉱原料の配合方法について述べたが、焼
結鉱のRDIは焼結鉱原料を構成する各鉄鉱石の性状の
ほかに全使用原料のスラグ成分によって受ける影響も大
きい。この場合の全使用原料とは鉄鉱石のみならず副原
料をも含むものである。本発明者らが スラグ量=Si02%十〇aO%+MgO%−AI、0
3%として、(1)式に基いて計算した焼結鉱のRDI
値が既知の各焼結鉱について、実績スラグ量と焼結鉱の
実測RDIとの間の関係を求めたところ第3図の結果を
得た。
The above has described the blending method of sintered ore raw materials that is corrected and controlled based on the predicted RDI of sintered ore based on equation (1), but the RDI of sintered ore is In addition to the properties, the slag components of all raw materials used have a large influence. The total raw materials used in this case include not only iron ore but also auxiliary raw materials. Slag amount = Si02% 10aO% + MgO% - AI, 0
Assuming 3%, RDI of sintered ore calculated based on formula (1)
When the relationship between the actual slag amount and the actually measured RDI of the sintered ore was determined for each sintered ore whose value was known, the results shown in FIG. 3 were obtained.

第3図において、口印および十印は、(1)式による計
算により、それぞれ次の計算RDIを有する焼結鉱であ
る。
In FIG. 3, the mark and the mark are sintered ore having the following calculated RDI, respectively, calculated using equation (1).

口印: 30%≦計算RDI  <  35%+印: 
35%≦計算RDI  <  38%すなわち、スラグ
量と焼結鉱RDIとの間には、それぞれほぼAllおよ
びB線にて表わされる相関があり、焼結鉱のRDIは、
(2)式で表わされるように焼結鉱原料を構成する各鉱
石のRDIのほか、焼結鉱に含有されろスラグ量にても
予測することができろ。
Mouth seal: 30% ≦ Calculated RDI < 35% + seal:
35% ≦ Calculated RDI < 38% In other words, there is a correlation between the amount of slag and the RDI of the sintered ore, which is approximately represented by the All and B lines, respectively, and the RDI of the sintered ore is
As expressed by equation (2), it can be predicted not only by the RDI of each ore constituting the sintered ore raw material, but also by the amount of slag contained in the sintered ore.

ここにa s b % e ;定数 l:構成単味鉄鉱石の銘柄 J:全配合原料 W: J配合原料の配合比、 man スラブ量=Si02%十〇aO%+MgO%−Aj20
.%上記(2)式におけろ定数a、bXcは実擾業から
決定できるので(2)式により焼結鉱の予測RDI%)
を計算し、実際配合時に該予測RDIをもとに、該焼結
鉱の設定RDI値の範囲に収まるように各鉄鉱石の配合
割合および焼結鉱スラグ成分量を制御することができる
Here, a s b % e; Constant l: Brand of constituent single iron ore J: All blended raw materials W: Blend ratio of J blended raw materials, man Slab amount = Si02% 10aO% + MgO% - Aj20
.. %In the above formula (2), the constants a and bXc can be determined from the actual sintering process, so the predicted RDI% of sintered ore can be calculated using formula (2).
It is possible to calculate the blending ratio of each iron ore and the amount of sintered ore slag components based on the predicted RDI during actual blending so as to fall within the range of the set RDI value of the sintered ore.

上記第2発明におけるスラグ成分量の算出を実施例にて
説明する。焼結原料中の各種鉄鉱石全体の配合比が82
3%にて、その積算スラグ量およびその他の副原料であ
る珪石、蛇紋岩、石灰石、コークスの配合比およびスラ
グ成分量は第1表のとおりである。
The calculation of the amount of slag component in the second invention will be explained using an example. The total blending ratio of various iron ores in the sintering raw material is 82
At 3%, the cumulative amount of slag, the blending ratio of silica stone, serpentine, limestone, and coke as other auxiliary materials, and the amount of slag components are shown in Table 1.

第  1  表 かくの如くして求めた配合原料全体の積算平均スラグ量
について、各成分のそれぞれ異なる歩留を考慮して焼結
鉱スラグの推定成分量を求めると次の如くなる。すなわ
ち、 SiO□ :  5.3重量% AjO:   1.8  % CaO:   9.0 % MgO:    1.6  % かくの如く計算より求めたスラグ成分量は実際操業によ
る焼結鉱スラグ成分量とほぼ一致することを確認した。
Table 1 Regarding the cumulative average slag amount of the entire blended raw materials determined as above, the estimated component amount of sintered ore slag is calculated as follows, taking into account the different yields of each component. That is, SiO□: 5.3% by weight AjO: 1.8% CaO: 9.0% MgO: 1.6% The amount of slag components determined from the above calculations is almost the same as the amount of sintered ore slag components in actual operation. Confirmed that they match.

この算出スラグ成分量から上記(2)式スラグ量=Si
02%十C亀O%十MgO%−Al2O3%を算出し、
(2)式によって焼結鉱予測RDI%)を容易に算出す
ることができる。
From this calculated slag component amount, the above formula (2) slag amount = Si
Calculate 02% 10C turtle O% 10MgO% - Al2O3%,
The predicted sintered ore RDI%) can be easily calculated using equation (2).

上記(1)式、(2)式によって、いずれも実績の焼結
鉱RDIを長期的に安定して設定値内に収めることがで
きた。
By using the above equations (1) and (2), the actual sintered ore RDI could be stably kept within the set value over a long period of time.

〔実施例〕〔Example〕

実施例1 上記(1)式に基づく第1発明による制御方法採用前後
の焼結鉱RDI(%)のばらつきを第4図に示す。この
期間の設定RDI値は43%であったが、本発明の採用
により焼結鉱RDIのばらつきを大幅に低減することが
できた。
Example 1 Figure 4 shows the variation in sintered ore RDI (%) before and after the adoption of the control method according to the first invention based on the above equation (1). Although the set RDI value during this period was 43%, by adopting the present invention, it was possible to significantly reduce the variation in the sintered ore RDI.

実施例2 上記(2)式に基づく第2発明による焼結鉱の推定RD
I値と実績RDI値との比較図を第5図に示す。第5図
は水島製鉄所第4焼結炉において1987年2月〜7月
の実績である。第5図より明らかな如く、推定RDi%
)をXとし、実績RDI(%)をyとする場合、y=x
なるP直線に対し、実績値が上下に±2〜±3%の範囲
でばらついているものの、推定RDIと実績RDIとが
よく一致しており、スラグ量を加味した(2)式による
推定式の清度が高いことがわかる。
Example 2 Estimated RD of sintered ore according to the second invention based on the above formula (2)
A comparison diagram between the I value and the actual RDI value is shown in FIG. Figure 5 shows the results from February to July 1987 at the No. 4 sintering furnace at Mizushima Steel Works. As is clear from Figure 5, the estimated RDi%
) is X and actual RDI (%) is y, then y=x
Although the actual values vary upward and downward in the range of ±2 to ±3% with respect to the P straight line, the estimated RDI and the actual RDI match well, and the estimation formula based on equation (2) that takes into account the slag amount. It can be seen that the purity is high.

〔発明の効果〕〔Effect of the invention〕

本発明による焼結鉱原料の配合方法は、焼結鉱を構成す
る各鉄鉱石毎のRDIの測定値に基づき、もしくは各鉄
鉱石毎のRDIの測定値と、全使用原料の(SI02%
十〇aO%+MgO%−A!203%)にて表わされる
スラグ量に基づき、(1)式もしくは(2)式にて表わ
される焼結鉱のRDIを予測し、この予測値をもとに該
焼結鉱のRDIを設定範囲に収めるように各鉄鉱石の配
合比および焼結鉱のスラグ成分量を修正制御する方法を
とったので次の如き効果を挙げることができた。
The method of blending raw materials for sintered ore according to the present invention is based on the measured value of RDI of each iron ore constituting the sintered ore, or based on the measured value of RDI of each iron ore and (SI02%) of all raw materials used.
10aO%+MgO%-A! 203%), predict the RDI of the sintered ore expressed by equation (1) or (2), and set the RDI of the sintered ore within the range based on this predicted value. Since we adopted a method of modifying and controlling the blending ratio of each iron ore and the amount of slag components in the sintered ore so as to keep it within the following range, we were able to achieve the following effects.

(イ) 本発明による焼結鉱のRDIの予測値と、実績
値がきわめてよく一致するので、焼結鉱の設定RDI値
範囲に収めるための構成鉄鉱石の配合割合の修正がきわ
めて少くてすむ。
(b) Since the predicted value of RDI of sintered ore according to the present invention and the actual value match extremely well, there is very little need to modify the blending ratio of the constituent iron ore in order to keep the RDI value within the set RDI value range of sintered ore. .

(0)  焼結炉各ベツドによる焼結鉱RDIのばらつ
きが極めて少いので高炉の安定操業が可能となり、ひい
ては製造溶銑の品質向上が可能となった。
(0) Since the variation in sintered ore RDI between each bed of the sintering furnace is extremely small, stable operation of the blast furnace is possible, which in turn makes it possible to improve the quality of produced hot metal.

(ハ)従来、製造焼結鉱のRDI値が設定値を越した場
合には、配合原料中のコークスを増量して調整していた
が、本発明の適用により該コークスの増配はほとんど不
要となったので、焼結鉱の大幅なコスト低減が可能とな
った。
(c) Conventionally, when the RDI value of manufactured sintered ore exceeded a set value, it was adjusted by increasing the amount of coke in the blended raw materials, but with the application of the present invention, it is almost unnecessary to increase the amount of coke. This made it possible to significantly reduce the cost of sintered ore.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉄鉱石の銘柄によるRDI値のばらつきを示す
比較図、第2図は第1図C鉄鉱石とJ鉄鉱石とを種々の
配合割合に混合した場合の本発明による配合鉱石のRD
I(%)計算値と、実測RDI値を比較する線図、第3
図は鉱石中の(SiO%+CaO%+MgO%−Al2
O3%)にて表わされるスラグ量と焼結鉱の実測RDI
(%)との相関を示す線図、第4図は(1)式による本
発明実施前後における製造焼結鉱のRDI(%)値のば
らつき状況を比較する線図、第5図は(2)式による本
発明実施後の製造焼結鉱の推定RDI(%)値と実績R
Di%)との比較を示す線図、第6図は従来の鉄鉱石中
のFeO量と該鉱石のRDI(%)値の関係を示す線図
、第7図は従来の鉄鉱石の0.55mm以下の微粉中の
Al2O3/SlO□と該鉱石のRDI(%)値との相
関を示す線図、第8図は焼結鉱中のに20含有量と該焼
結鉱のRD1%)値との相関を示す線図である。
Figure 1 is a comparison diagram showing the variation in RDI values depending on the brand of iron ore, and Figure 2 is a comparison diagram showing the RD of blended ores according to the present invention when iron ore C and iron ore J are mixed at various blending ratios.
Diagram comparing calculated I (%) values and actually measured RDI values, 3rd
The figure shows (SiO%+CaO%+MgO%-Al2
Slag amount expressed in O3%) and measured RDI of sintered ore
(%), Figure 4 is a diagram comparing the variation in RDI (%) values of manufactured sintered ore before and after implementation of the present invention according to equation (1), and Figure 5 is a diagram showing the correlation with (%). Estimated RDI (%) value and actual R of sintered ore produced after implementation of the present invention using the ) formula
6 is a diagram showing the relationship between the amount of FeO in conventional iron ore and the RDI (%) value of the ore, and FIG. A diagram showing the correlation between Al2O3/SlO□ in fine powder of 55 mm or less and the RDI (%) value of the ore, Figure 8 shows the 20 content in the sintered ore and the RD1%) value of the sintered ore. FIG.

Claims (3)

【特許請求の範囲】[Claims] (1)製造予定の焼結鉱が設定RDIを有するように各
鉄鉱石の配合比を制御する焼結鉱原料の配合方法におい
て、焼結鉱原料を構成する各鉄鉱石毎の低温還元粉化指
数(RDI)を予め測定し前記各鉄鉱石のRDIと焼結
原料配合計画に基づく配合比をもとに前記焼結鉱のRD
Iを予測し該予測RDIをもとに前記焼結鉱のRDIを
設定範囲に収めるべく各鉄鉱石の配合比を修正制御する
ことを特徴とする焼結鉱原料の配合方法。
(1) In a sintered ore raw material blending method that controls the blending ratio of each iron ore so that the sintered ore to be manufactured has a set RDI, each iron ore constituting the sintered ore raw material is subjected to low-temperature reduction powdering. The RD of the sintered ore is determined based on the RDI of each iron ore and the mixing ratio based on the sintering raw material mixing plan.
A method for blending raw materials for sintered ore, which comprises predicting I and based on the predicted RDI, correcting and controlling the blending ratio of each iron ore in order to keep the RDI of the sintered ore within a set range.
(2)製造予定の焼結鉱が設定RDIを有するように各
鉄鉱石の配合比を制御する焼結鉱原料の配合方法におい
て、焼結鉱原料を構成する各鉄鉱石毎の低温還元粉化指
数(RDI)を予め測定し前記各鉄鉱石のRDIならび
に全使用原料のスラグ成分と焼結原料配合計画に基づく
配合比をもとに前記焼結鉱のRDIならびにスラグ成分
量を予測し、該予測RDIならびにスラグ成分量をもと
に前記焼結鉱のRDIを設定範囲に収めるべく各鉄鉱石
の配合比および焼結鉱スラグ成分量を修正制御すること
を特徴とする焼結鉱原料の配合方法。
(2) In a sintered ore raw material blending method that controls the blending ratio of each iron ore so that the sintered ore to be manufactured has a set RDI, each iron ore constituting the sintered ore raw material is subjected to low-temperature reduction powdering. The index (RDI) is measured in advance, and the RDI and slag component amount of the sintered ore are predicted based on the RDI of each iron ore, the slag component of all raw materials used, and the blending ratio based on the sintering raw material blending plan. A blending of sintered ore raw materials characterized by correcting and controlling the blending ratio of each iron ore and the amount of sintered ore slag components in order to keep the RDI of the sintered ore within a set range based on the predicted RDI and the amount of slag components. Method.
(3)前記スラグ成分量は(SiO_2%+CaO%+
MgO%−Al_2O_3%)である特許請求の範囲の
第2項に記載の焼結鉱原料の配合方法。
(3) The amount of the slag component is (SiO_2%+CaO%+
A method for blending a sintered ore raw material according to claim 2, which is (MgO%-Al_2O_3%).
JP33371587A 1987-12-29 1987-12-29 Method for mixing sintered ore materials Pending JPH01176041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33371587A JPH01176041A (en) 1987-12-29 1987-12-29 Method for mixing sintered ore materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33371587A JPH01176041A (en) 1987-12-29 1987-12-29 Method for mixing sintered ore materials

Publications (1)

Publication Number Publication Date
JPH01176041A true JPH01176041A (en) 1989-07-12

Family

ID=18269155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33371587A Pending JPH01176041A (en) 1987-12-29 1987-12-29 Method for mixing sintered ore materials

Country Status (1)

Country Link
JP (1) JPH01176041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046047A (en) * 1990-04-19 1992-01-10 Harmo Sogo Kenkyusho:Kk Package of dehumidifying agent
KR20000043773A (en) * 1998-12-29 2000-07-15 이구택 Method for producing agglomerate of extremely low reducing divergence for corex while sintering iron ore
CN112553458A (en) * 2020-11-23 2021-03-26 福建三宝钢铁有限公司 Method for improving RDI (powder metallurgy) performance of sinter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046047A (en) * 1990-04-19 1992-01-10 Harmo Sogo Kenkyusho:Kk Package of dehumidifying agent
KR20000043773A (en) * 1998-12-29 2000-07-15 이구택 Method for producing agglomerate of extremely low reducing divergence for corex while sintering iron ore
CN112553458A (en) * 2020-11-23 2021-03-26 福建三宝钢铁有限公司 Method for improving RDI (powder metallurgy) performance of sinter
CN112553458B (en) * 2020-11-23 2022-06-03 福建三宝钢铁有限公司 Method for improving RDI (mine description index) performance of sinter

Similar Documents

Publication Publication Date Title
JP7341771B2 (en) castable refractories
JPH01176041A (en) Method for mixing sintered ore materials
JPH02220749A (en) Initial stage casting method in continuous casting of stainless steel
JP3656615B2 (en) Mold powder for continuous casting of steel
JP4751180B2 (en) Blast furnace operation method
CN1341755A (en) Production process of silicon calcium barium liquid steel cleaning agent and its equipment
JPH08239720A (en) Method for manufacturing sintered ore from ore with high content of water of crystallization
JPS62158810A (en) Method for determining main material charging quantity in converter operation
SU578287A1 (en) Charge for manufacturing fused basic refractories
JPH01103952A (en) High-durability sliding nozzle plate brick
JPS59568B2 (en) Oxygen converter blowing control method
GB2038367A (en) Controlling the aluminium content of continuously cast silicon steels
JPH09287009A (en) Operation of blast furnace
JPH1072626A (en) Method for controlling basicity of sintered ore
JP2944820B2 (en) Operation method of ferronickel firing furnace
JPH0142323B2 (en)
KR101388068B1 (en) Method of low-silicon steel for coating steel plate
JP4822902B2 (en) Method for reforming electric furnace reducing slag
US4280837A (en) Method for continuously casting slab for manufacturing grain-oriented electrical steel sheet and strip
JPH11117013A (en) Converter blowing
US3341323A (en) Blast furnace control method
JP2001152217A (en) Method of controlling slag in melting furnace, such as high temperature melting vertical furnace and horizontal furnace
KR100466499B1 (en) Method for manufacturing the sintering ore having excellent anti-reduction
SU903358A1 (en) Fused refractory material
JP3611664B2 (en) Hot metal pretreatment method