JPH01175600A - Space craft - Google Patents

Space craft

Info

Publication number
JPH01175600A
JPH01175600A JP33362287A JP33362287A JPH01175600A JP H01175600 A JPH01175600 A JP H01175600A JP 33362287 A JP33362287 A JP 33362287A JP 33362287 A JP33362287 A JP 33362287A JP H01175600 A JPH01175600 A JP H01175600A
Authority
JP
Japan
Prior art keywords
control member
spacecraft
heat
conductive polymer
thermal control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33362287A
Other languages
Japanese (ja)
Other versions
JP2676208B2 (en
Inventor
Katsumi Yoshino
勝美 吉野
Haruhisa Fujii
藤井 治久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62333622A priority Critical patent/JP2676208B2/en
Publication of JPH01175600A publication Critical patent/JPH01175600A/en
Application granted granted Critical
Publication of JP2676208B2 publication Critical patent/JP2676208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a space craft in which the deterioration by radiation or electrification and an electric discharge caused by the electron in plasma are difficult to produce, and having a simple production process and an excellently operable thermal control member, by providing the thermal control member composed of a conductive high polymer material on the surface of a space craft. CONSTITUTION:A polythiophen film 7 as a conductive high polymer material is sticked to the body structure panel 5 of a space craft with a conductive adhesive 6. A stable large area film is obtained by an electrochemical electrolysis polymerization method in the polythiophen, and electrification is not arise even by an electronic current in the plasma in space. Moreover the polythiophen makes no oxidation deterioration in air, keeps flexibility for a long time, and does not require a protective layer. Consequently a space craft, in which the deterioration by radiation or electrification and an electric discharge are difficult to produce, and having a simple production process and excellently operable thermal control member, can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、人工衛星等の宇宙飛翔体、特に宇宙飛翔体
の表面に配設され、この宇宙飛翔体と宇宙空間との間に
おける熱移動・熱制御に供する熱制御部材に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a space vehicle such as an artificial satellite, which is arranged on the surface of a space vehicle, and which is arranged on the surface of a space vehicle, and which is used to control heat transfer between the space vehicle and outer space. - It relates to a heat control member used for heat control.

〔従来の技術〕[Conventional technology]

宇宙飛翔体は、軌道上で一150〜+150℃程度の熱
真空環境にさらされる。宇宙飛翔体の移動にともなって
、真空中において高温状態と低温状態が臘り返される苛
酷な環境条件下で、宇宙飛翔体内部の搭載機器類を許容
温度範囲内に保持するために、この宇宙飛翔体表面に熱
制御部材が配設される。
Space vehicles are exposed to a thermal vacuum environment of about -150 to +150 degrees Celsius while in orbit. In order to maintain the onboard equipment inside the spacecraft within the permissible temperature range under harsh environmental conditions where the spacecraft moves between high and low temperatures in vacuum, A thermal control member is disposed on the surface of the flying object.

この熱制御部材は、通常、反射層と熱放射層とからなり
、反射層は太陽光を反射することにより宇宙飛翔体内部
の温度が異常に高くなることを防止し、また、熱放射層
は宇宙飛翔体内部の電源等から発生する熱を赤外線とし
て宇宙飛翔体外部の宇宙空間に放射する機能を有してい
る。
This thermal control member usually consists of a reflective layer and a heat emitting layer.The reflective layer prevents the temperature inside the spacecraft from becoming abnormally high by reflecting sunlight, and the heat emitting layer prevents the temperature inside the spacecraft from becoming abnormally high. It has the function of radiating heat generated from the power source inside the spacecraft into outer space outside the spacecraft as infrared rays.

第3図は、従来の宇宙飛翔体の熱制御部材の構成を示す
断面図であり、図において、(1)は透明高分子フィル
ムからなる熱放射層、(2)は熱放射層(1)の裏面に
金属蒸着された反射層、(3)は反射層(2)の地上で
の酸化を防止するための保護層、(4)はこれら熱放射
層(1)と反射層(2)と保護層(3)とからなる熱制
御部材、(5)は宇宙飛翔体の構体パネル、(6)は熱
制御部材(4)を構体パネル(5)に張り付けるための
接着剤である。
FIG. 3 is a cross-sectional view showing the configuration of a conventional heat control member for a spacecraft. In the figure, (1) is a heat emitting layer made of a transparent polymer film, (2) is a heat emitting layer (1) (3) is a protective layer to prevent the reflective layer (2) from oxidizing on the ground; (4) is the heat emitting layer (1) and reflective layer (2). A thermal control member consisting of a protective layer (3), (5) a structure panel of a spacecraft, and (6) an adhesive for attaching the thermal control member (4) to the structure panel (5).

このように構成された熱制御部材(4)としては、従来
、熱放射層(1)としてテフロン(フルオロエチレンプ
ロピレン共重合体)、反射層(2)として銀の蒸着層、
さらに、上記保護層(3)としてインコネル合金層を配
した「銀蒸着テフロン」積層複合熱制御部材があった。
Conventionally, the heat control member (4) configured in this manner includes Teflon (fluoroethylene propylene copolymer) as the heat emitting layer (1), a deposited silver layer as the reflective layer (2),
Furthermore, there was a "silver-deposited Teflon" laminated composite thermal control member in which an Inconel alloy layer was arranged as the protective layer (3).

また、熱放射層(1)としてカプトン(ポリイミド)を
使用し、反射層(2)としてアルミニウムを蒸着し、保
護層(3)を配しない「アルミ蒸着カプトン」積層複合
熱制御部材のような2層型のものもあった。
In addition, there are two types of laminated composite heat control members, such as the "aluminum vapor-deposited Kapton" layer, in which Kapton (polyimide) is used as the heat emitting layer (1), aluminum is vapor-deposited as the reflective layer (2), and no protective layer (3) is provided. Some were layered.

さらに、溶融石英を熱放射層(1)として配し、反射層
(2)は銀蒸着層で構成し、インコネル合金による保護
層(3)を形成する「銀蒸着石英」積層複合熱制御部材
もあった。
Furthermore, we also offer "silver-deposited quartz" laminated composite thermal control members in which fused quartz is arranged as the heat emitting layer (1), the reflective layer (2) is composed of a silver-deposited layer, and a protective layer (3) of Inconel alloy is formed. there were.

このような構成を有する従来の積層複合熱制御部材(土
)においては、反射層(2)および保護層(3)は、構
体パネル(5)に電気的に接地されていた。
In the conventional laminated composite thermal control member (earth) having such a configuration, the reflective layer (2) and the protective layer (3) were electrically grounded to the structure panel (5).

次に、従来の宇宙飛翔体熱制御部材(土)の動作につい
て説明する。従来の宇宙飛翔体熱制御部材(±)は、上
述のように、軌道上で一150〜宙飛翔体内部の温度が
異常昇温するのを防止するとともに、宇宙飛翔体内部の
発生熱を宇宙飛翔体外部の宇宙空間に放射する作用を有
するものである。したがって、宇宙飛翔体表面に配され
る熱制御部材(4)は、太陽光をどの程度吸収するかを
示す太陽光吸収率と、宇宙飛翔体内部から発生する熱を
どの程度宇宙空間へ放射するかを示す熱放射率との二つ
の指標で示される特性により、宇宙飛翔体内部に搭載し
た各種機器の宇宙における熱真空環境に対する保護機能
を生むものである。
Next, the operation of the conventional spacecraft thermal control member (earth) will be explained. As mentioned above, the conventional spacecraft heat control member (±) prevents the temperature inside the spacecraft from increasing abnormally during orbit, and also transfers the heat generated inside the spacecraft to space. It has the effect of emitting radiation into outer space outside the flying object. Therefore, the heat control member (4) placed on the surface of the spacecraft has a solar absorption rate that indicates how much sunlight it absorbs, and how much heat generated from inside the spacecraft is radiated into space. The characteristics shown by two indicators, thermal emissivity and thermal emissivity, provide a protective function against the thermal vacuum environment of space for various equipment mounted inside a spacecraft.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

宇宙飛翔体表面に配される熱制御部材(工)は、上述の
ような熱真空環境のみならず、放射線やプラズマといっ
た宇宙空間の厳しい環境条件にさらされる。
Thermal control components placed on the surface of a spacecraft are exposed not only to the thermal vacuum environment described above, but also to the harsh environmental conditions of space, such as radiation and plasma.

このような苛酷な環境において、従来の[銀蒸着テフロ
ンJ熱制御部材は、放射線により劣化しやすく、また、
テフロンの体積抵抗率が大きいために、プラズマ中の電
子により帯電し、その結果、宇宙飛翔体構体電位との間
に大きな電位差が生じ、それを起因として放電しやすい
という問題点があった。第3図は、膜厚25μmの銀蒸
着テフロン熱制御部材に宇宙の電子流に模した電子線を
照射したときの、銀蒸着テフロン熱制御部材の帯電およ
び放電特性を示す特性図である0図において、横軸は時
間を示し、縦軸は帯電電位を示す、なお、照射電子線の
照射エネルギーは20keV、照射電流密度は0.5n
A/c+/である0図に示されたとおり、実験に用いら
れた熱制御部材は40分をすぎた時点で放電を起こした
In such a harsh environment, conventional silver-deposited Teflon J thermal control members are easily degraded by radiation, and
Because Teflon has a high volume resistivity, it is charged by electrons in the plasma, resulting in a large potential difference between it and the spacecraft structure potential, which poses a problem in that it is prone to discharge. Figure 3 is a characteristic diagram showing the charging and discharging characteristics of the silver-vapor-deposited Teflon heat-control member when the silver-vapor-deposit Teflon heat-control member with a film thickness of 25 μm is irradiated with an electron beam imitating the electron flow in space. , the horizontal axis shows time and the vertical axis shows charging potential.The irradiation energy of the irradiated electron beam is 20 keV, and the irradiation current density is 0.5n.
As shown in the A/c+/0 diagram, the thermal control member used in the experiment started discharging after 40 minutes.

また、銀蒸着テフロンや銀蒸着石英は、反射層(2)で
ある銀蒸着層が地上において酸化しゃすぐ、酸化防止の
ために保護層(3)としてインコネル合金を蒸着しなけ
ればならない、したがって、製造工程が複雑になり、特
に銀蒸着石英においては宇宙飛翔体への張り付は等の作
業において割れたり、クラックが発生したりするという
問題点もあった。
In addition, with silver-deposited Teflon and silver-deposited quartz, the silver-deposited layer, which is the reflective layer (2), does not oxidize on the ground, so an Inconel alloy must be deposited as a protective layer (3) to prevent oxidation. The manufacturing process becomes complicated, and silver-deposited quartz, in particular, has the problem of breaking or cracking during work such as attaching it to a spacecraft.

さらに、アルミ蒸着カプトン熱制御部材は、カプトンフ
ィルム自体が黄褐色であるため、太陽光吸収率が大きい
という問題点もあった。
Furthermore, the aluminum vapor-deposited Kapton heat control member has a problem in that the Kapton film itself has a yellowish brown color, and therefore has a high solar absorption rate.

この発明は、上記のような問題点を解決するためになさ
れたもので、放射線による劣化やプラズマ中の電子に起
因する帯電・放電が生じ難く、製造工程が簡単で作業性
のよい熱制御部材を有する宇宙飛翔体を得ることを目的
とする。
This invention was made to solve the above-mentioned problems, and it provides a thermal control member that is less susceptible to deterioration due to radiation and charging and discharging caused by electrons in plasma, has a simple manufacturing process, and has good workability. The purpose is to obtain a spacecraft with a

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る宇宙飛翔体は、表面に導電性高分子材料
からなる熱制御部材を設けたものである。
The spacecraft according to the present invention has a heat control member made of a conductive polymer material on its surface.

〔作用〕[Effect]

この発明における宇宙飛翔体の熱制御部材である導電性
高分子材料は、放射線による劣化が少なく、また、帯電
がほとんど生じない、さらには、導電性高分子材料が反
射作用と熱放射作用をもっている。
The conductive polymer material that is the heat control member of the spacecraft in this invention has little deterioration due to radiation, and almost no charging occurs.Furthermore, the conductive polymer material has a reflective action and a heat radiation action. .

〔実施例〕〔Example〕

導電性高分子は、共役系が高度に発達した高分子であり
、従来のテフロンやカプトン等の絶縁性高分子と異なり
電気抵抗が非常に小さく、かつ、プラズマ反射を利用し
てそれ自体に高い反射率を付与することができる。また
、耐放射線性にすぐれており、熱伝導率も従来の絶縁性
高分子に比して、1桁程度大きいという特徴を有する0
以上のことから、宇宙飛翔体熱制御部材として導電性高
分子材料は最適の特性を有している。
Conductive polymers are polymers with highly developed conjugated systems, and unlike conventional insulating polymers such as Teflon and Kapton, they have extremely low electrical resistance, and they themselves have high electrical resistance using plasma reflection. Reflectance can be imparted. In addition, it has excellent radiation resistance and thermal conductivity that is about an order of magnitude higher than that of conventional insulating polymers.
From the above, conductive polymer materials have optimal characteristics as spacecraft thermal control members.

導電性高分子は、共役系が鎖状に発達しな直鎖状導電性
高分子と面状に発達したものにわけられるが、後者が極
端に発達したものがグラファイトである。
Conductive polymers can be divided into linear conductive polymers in which the conjugated system does not develop into a chain, and those in which the conjugated system develops in a planar manner, and graphite is one in which the latter is extremely developed.

この発明の実施に用いられる導電性高分子は、何ら特定
の導電性高分子に限定されるものではない0例えば、ポ
リアセチレン、ポリメチルアセチレン、ポリチアジル、
ポリパラフェニレンサルファイド、ポリパラフェニレン
セレナイド、ポリパラフェニレンオキサイド、ポリパラ
フェニレンビニレン、ポリパラフェニレン、ポリピロー
ル、ポリチオフェン、ポリセレノフェン、ポリイソチア
ノナフテン、ポリアセン、ポリアントラセン、ポリアニ
リン、ポリトリフェニルアミン、ポリナフテン、ポリア
ズレンや、それらの側鎖に適当な分子団を導入したもの
等非常に多くの種類のものが利用可能である。また、予
め絶縁性高分子を熱処理等により処理することにより作
製されるものや、ポリパラフェニレンビニレンの熱処理
により得られるグラファイトフィルム等もこの発明の実
施に適する。(なお、導電性高分子の例は、例えば応用
物理 第56巻第11号(昭和62年11月10日発行
)の第1433頁の吉野の論文に示されている。) さらに、導電性高分子は、CIO,−やBF4−やL 
i As Fgのドーピングによりその特性、例えば導
電率や反射率を向上させることができるが、この発明の
実施においてはドーピングがなされているか否かは問わ
ない、なお、ポリアセチレンのように酸化劣化しやすい
ものでは、予めドーピングしておく方が空気中の取扱い
が容易である。また、導電性高分子を単独で用いる場合
もあるが、積層させて用いる場合もある。導電性高分子
フィルムの作り方(電解重合、触媒重合等)にも何ら限
定されない。
The conductive polymer used in the implementation of this invention is not limited to any particular conductive polymer. For example, polyacetylene, polymethylacetylene, polythiazyl,
Polyparaphenylene sulfide, polyparaphenylene selenide, polyparaphenylene oxide, polyparaphenylene vinylene, polyparaphenylene, polypyrrole, polythiophene, polyselenophene, polyisothyanonaphthene, polyacene, polyanthracene, polyaniline, polytriphenylamine, A wide variety of materials are available, including polynaphthene, polyazulene, and those with appropriate molecular groups introduced into their side chains. Also suitable for carrying out the present invention are those produced by pre-treating an insulating polymer by heat treatment or the like, and graphite films obtained by heat treating polyparaphenylene vinylene. (Examples of conductive polymers are shown in Yoshino's paper on page 1433 of Applied Physics Vol. 56, No. 11 (published November 10, 1986).) Molecules include CIO,-, BF4- and L
i As Fg can be doped to improve its properties, such as conductivity and reflectance, but in the practice of this invention, it does not matter whether it is doped or not. For materials, it is easier to handle them in air if they are doped in advance. Moreover, although conductive polymers may be used alone, they may also be used in a stacked manner. There are no limitations to the method of making the conductive polymer film (electrolytic polymerization, catalytic polymerization, etc.).

なお、最近、ポリチオフェンの3位置に適当な分子団、
例えば長鎖アルキル等を導入したものは溶媒に可溶であ
ることが見出されており、キャスティングも可能である
。(例えば、ケミカル エクスプレス 第1巻(Che
mical  Express  Vol、1(198
6))の635頁のR,Sugimoto等の論文に示
されている。
Recently, a suitable molecular group,
For example, those into which long-chain alkyl etc. have been introduced have been found to be soluble in solvents, and casting is also possible. (For example, Chemical Express Volume 1 (Che
mical Express Vol, 1 (198
6)), p. 635, in the article by R. Sugimoto et al.

以下、この発明の一実施例を図について説明する。第1
図は、この発明の一実施例の宇宙飛翔体の熱制御部材の
構成を示す断面図である0図において、(7)は導電性
高分子材料としてのポリチオフェンフィルムで、宇宙飛
翔体の構体パネル(5)に導電性接着剤(6)により張
り付けられている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
Figure 0 is a cross-sectional view showing the configuration of a thermal control member for a spacecraft according to an embodiment of the present invention. (5) with a conductive adhesive (6).

以下、作用について説明する。ポリチオフェンは、例え
ば、ジャパニーズ ジャーナル オブアプライド フィ
ジックス 第21巻(Japanese  Journ
al  of  Applied  Physics 
 Vol、21(1982))の第5567頁のに、K
aneto等の論文に示されるように、電気化学的な電
解重合法により、安定な大面積フィルムが得られる。ポ
リチオフェンは、4フツ化ホウ素(BF、−)等のドー
パントをドープすることにより1011Ωcm以下の抵
抗率を自由に制御できるが、非ドープポリチオフェンに
おいても抵抗率が1011Ωcm程度であり、宇宙空間
のプラズマ中の電子電流(電流密度としてはlnA/c
m2以下)によっても帯電は生じない、また、ポリチオ
フェンは、例えば高分子論文集第41巻(1984)の
第177頁の吉野等の論文に示されるとおり、10”r
ad程度の耐放射線性も有している。
The effect will be explained below. Polythiophene is described, for example, in the Japanese Journal of Applied Physics, Volume 21.
al of Applied Physics
Vol. 21 (1982)), page 5567, K.
As shown in the article by Aneto et al., stable large area films can be obtained by electrochemical electropolymerization. By doping polythiophene with a dopant such as boron tetrafluoride (BF, -), it is possible to freely control the resistivity of 1011 Ωcm or less, but even undoped polythiophene has a resistivity of about 1011 Ωcm, and it cannot be used in plasmas in space. electron current (current density: lnA/c
Furthermore, as shown in the paper by Yoshino et al., p. 177 of Kobunshi Ronshu Vol. 41 (1984), polythiophene is
It also has radiation resistance on the order of AD.

分子運動に関連した赤外吸収をもつことにより、太陽光
反射と熱放射作用を有する。
It has infrared absorption associated with molecular motion, which allows it to reflect sunlight and radiate heat.

さらに、ポリチオフェンは空気中で酸化劣化せず柔軟性
を長期にわたって保持するため、保護層を必要とせず製
造工程が簡単であり作業性にすぐれる。
Furthermore, since polythiophene does not undergo oxidative deterioration in the air and maintains its flexibility for a long period of time, it does not require a protective layer and the manufacturing process is simple and has excellent workability.

さらに、いくつかの実施例を説明する。Furthermore, some examples will be described.

実施例2 ポリ(3−メチルチオフェン)をF e Cl sを用
いて触媒重合できる。このフィルムは重合とともにF 
e C1sがドーピングされ、比抵抗としてio−’Ω
cmが得られる。電子ビーム照射により何ら劣化せず、
また、電荷蓄積もない。
Example 2 Poly(3-methylthiophene) can be catalytically polymerized using FeCls. This film becomes F with polymerization.
e C1s is doped and the resistivity is io-'Ω
cm is obtained. No deterioration due to electron beam irradiation,
Also, there is no charge accumulation.

実施例3 ポリパラフェニレンビニレンをポリマー コミュニケー
ション 第25巻(Polymer  Communi
cation  vol、25(1984))の第32
7頁の材温等の論文に示された方法で作製し、A s 
F sを10%ドーピングすると比抵抗10−2Ωcm
のフィルムが得られる。これに電子線で電荷を打ちこん
でも電位の上昇は全く見られない。
Example 3 Polyparaphenylenevinylene was made into a polymer Communication Volume 25 (Polymer Communi
cation vol. 25 (1984)) No. 32
Produced by the method shown in the paper on material temperature, etc. on page 7,
When F s is doped by 10%, the specific resistance is 10-2 Ωcm.
of film is obtained. Even if a charge is injected into this with an electron beam, no increase in potential is observed at all.

実施例4 ポリパラフェニレンビニレンフィルムをArガス中で2
800℃で熱処理すると、金属光沢をもったフレキシブ
ルなフィルムが得られる。このフィルムの比抵抗は約1
01Ωcmで、電子ビームを照射しても電荷蓄積はない
Example 4 A polyparaphenylene vinylene film was prepared in Ar gas.
Heat treatment at 800°C yields a flexible film with metallic luster. The specific resistance of this film is approximately 1
01 Ωcm, there is no charge accumulation even when irradiated with an electron beam.

なお、以上の実施例はいずれもフィルム状の導電性高分
子材料からなる熱制御部材(7)を導電性接着剤(6)
で槽体バオ、ル(5)に張り付けたが、これに限らす構
体パネル上に直接導電性高分子の膜を形成してもよいこ
とはいうまでもない。
In all of the above examples, the heat control member (7) made of a film-like conductive polymer material is bonded to a conductive adhesive (6).
Although the conductive polymer film was attached to the tank body panel (5), it goes without saying that the conductive polymer film may be directly formed on the structure panel.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、宇宙飛翔体の表面に
導電性高分子材料からなる熱制御部材を設けたので、放
射線による劣化やプラズマ中の電子に起因する帯電・放
電が生じ難く、製造工程が簡単で作業性のよい熱制御部
材を有する宇宙飛翔体を得ることができる。
As described above, according to the present invention, since a heat control member made of a conductive polymer material is provided on the surface of a spacecraft, deterioration due to radiation and charging/discharging due to electrons in plasma are less likely to occur. A spacecraft having a heat control member with a simple manufacturing process and good workability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の宇宙飛翔体の熱制御部材
の構成を示す断面図、第2図は従来の宇宙飛翔体の熱制
御部材の構成を示す断面図、第3図は膜厚25μmの銀
蒸着テフロン熱制御部材に宇宙の電子流に模した電子線
を照射したときの、銀蒸着テフロン熱制御部材の帯電お
よび放電特性を示す特性図である。 図において、(5)は構体パネル、(6)は導電性接着
剤、(7)は導電性高分子としてのポリチオフェンフィ
ルムである。 なお、各図中、同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view showing the configuration of a heat control member for a spacecraft according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the configuration of a conventional heat control member for a spacecraft, and FIG. 3 is a membrane FIG. 2 is a characteristic diagram showing the charging and discharging characteristics of a silver-vapor-deposited Teflon heat-control member when the silver-vapor-deposit Teflon heat-control member with a thickness of 25 μm is irradiated with an electron beam imitating an electron flow in space. In the figure, (5) is a structural panel, (6) is a conductive adhesive, and (7) is a polythiophene film as a conductive polymer. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (5)

【特許請求の範囲】[Claims] (1)表面に導電性高分子材料からなる熱制御部材を設
けたことを特徴とする宇宙飛翔体。
(1) A spacecraft characterized by having a heat control member made of a conductive polymer material provided on its surface.
(2)導電性高分子材料は共役二重結合を有する直鎖状
導電性高分子フィルムであることを特徴とする特許請求
の範囲第1項記載の宇宙飛翔体。
(2) The spacecraft according to claim 1, wherein the conductive polymer material is a linear conductive polymer film having conjugated double bonds.
(3)導電性高分子材料は共役系が面状に発達した導電
性高分子フィルムであることを特徴とする特許請求の範
囲第1項記載の宇宙飛翔体。
(3) The spacecraft according to claim 1, wherein the conductive polymer material is a conductive polymer film in which a conjugated system is developed in a planar manner.
(4)熱制御部材は単層の導電性高分子フィルムである
ことを特徴とする特許請求の範囲第2項または第3項記
載の宇宙飛翔体。
(4) The spacecraft according to claim 2 or 3, wherein the heat control member is a single-layer conductive polymer film.
(5)熱制御部材は導電性高分子フィルムを積層したも
のであることを特徴とする特許請求の範囲第2項または
第3項記載の宇宙飛翔体。
(5) The spacecraft according to claim 2 or 3, wherein the heat control member is a laminate of conductive polymer films.
JP62333622A 1987-12-29 1987-12-29 Spacecraft Expired - Fee Related JP2676208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62333622A JP2676208B2 (en) 1987-12-29 1987-12-29 Spacecraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62333622A JP2676208B2 (en) 1987-12-29 1987-12-29 Spacecraft

Publications (2)

Publication Number Publication Date
JPH01175600A true JPH01175600A (en) 1989-07-12
JP2676208B2 JP2676208B2 (en) 1997-11-12

Family

ID=18268112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62333622A Expired - Fee Related JP2676208B2 (en) 1987-12-29 1987-12-29 Spacecraft

Country Status (1)

Country Link
JP (1) JP2676208B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012100205A (en) * 2010-11-05 2012-05-24 Ihi Aerospace Co Ltd Transmission antenna
WO2015029974A1 (en) * 2013-08-28 2015-03-05 三菱重工業株式会社 Flexible thermal-control material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3009353B1 (en) * 2013-08-28 2019-07-31 Mitsubishi Heavy Industries, Ltd. Flexible thermal-control material, and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253538A (en) * 1984-05-31 1985-12-14 三菱電機株式会社 Thermal-shield
JPS60255427A (en) * 1984-05-31 1985-12-17 三菱電機株式会社 Thermal-shield
JPS6227422A (en) * 1985-07-29 1987-02-05 Res Dev Corp Of Japan Conjugated polymer and its production
JPS6298577A (en) * 1985-10-25 1987-05-08 Ricoh Co Ltd Conductive polymer electronic material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253538A (en) * 1984-05-31 1985-12-14 三菱電機株式会社 Thermal-shield
JPS60255427A (en) * 1984-05-31 1985-12-17 三菱電機株式会社 Thermal-shield
JPS6227422A (en) * 1985-07-29 1987-02-05 Res Dev Corp Of Japan Conjugated polymer and its production
JPS6298577A (en) * 1985-10-25 1987-05-08 Ricoh Co Ltd Conductive polymer electronic material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012100205A (en) * 2010-11-05 2012-05-24 Ihi Aerospace Co Ltd Transmission antenna
WO2015029974A1 (en) * 2013-08-28 2015-03-05 三菱重工業株式会社 Flexible thermal-control material
JP2015063118A (en) * 2013-08-28 2015-04-09 三菱重工業株式会社 Flexible heat control material
US10220967B2 (en) 2013-08-28 2019-03-05 Mitsubishi Heavy Industries, Ltd. Flexible thermal-control material

Also Published As

Publication number Publication date
JP2676208B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
EP0247366B1 (en) Electrically conducting polymer film and method of manufacturing the same
Li et al. Soft and flexible PEDOT/PSS films for applications to soft actuators
US20180014359A1 (en) Heating device, in particular a semi-transparent heating device
EP1808928B1 (en) Multilayer body for dye-sensitized solar cell, electrode for dye-sensitized solar cell and method for producing same
KR100591725B1 (en) Electroluminescent device and manufacturing method thereof
FR2646966A1 (en) METHOD FOR QUICK AND UNIFORMLY HEATING A MULTILAYER ASSEMBLY COMPRISING AT LEAST ONE THIN LAYER BASED ON A MACROMOLECULAR MATERIAL WITH IONIC CONDUCTION INTERCALE BETWEEN TWO HIGH ELECTRONIC CONDUCTION STRUCTURES
KR102550303B1 (en) Heating system and heatinng element
US4433201A (en) Solar power arrays for spacecraft
JPH066440B2 (en) Dielectric material used for cosmic rays and method of manufacturing the same
Zhang et al. Facile preparation of flexible and highly stable graphene oxide-silver nanowire hybrid transparent conductive electrode
US4489906A (en) Thermal control material
EP3009353B1 (en) Flexible thermal-control material, and production method therefor
Yun et al. Low resistance flexible current collector for lithium secondary battery
Hao et al. Novel transparent TiO2/AgNW–Si (NH2)/PET hybrid films for flexible smart windows
EP2630646B1 (en) Carbon nanotube coated structure and associated method of fabrication
JPH01175600A (en) Space craft
JP2009227923A (en) Manufacturing method for article having negative pattern
JP2013016670A (en) Transparent conductive film, method for producing the same, and organic thin-film solar cell
CN115988862B (en) Multifunctional flexible device with broadband electromagnetic characteristic and automatic electric adjustable and preparation method thereof
KR20110105377A (en) Thin-film solar cell with conductor track electrode
Schoch et al. Conducting polymers
JP7102501B2 (en) Photoelectric conversion element
JP2004317877A (en) Electrochromic device
EP1382229B1 (en) Article provided with surface antistatic properties and method for obtaining same
US20040038066A1 (en) Controlled binary macrosegregated powder particles, their uses, and preparation methods therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees