JPS60253538A - Thermal-shield - Google Patents

Thermal-shield

Info

Publication number
JPS60253538A
JPS60253538A JP10964984A JP10964984A JPS60253538A JP S60253538 A JPS60253538 A JP S60253538A JP 10964984 A JP10964984 A JP 10964984A JP 10964984 A JP10964984 A JP 10964984A JP S60253538 A JPS60253538 A JP S60253538A
Authority
JP
Japan
Prior art keywords
film
transparent
thermal
polyimide film
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10964984A
Other languages
Japanese (ja)
Inventor
藤井 治久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10964984A priority Critical patent/JPS60253538A/en
Publication of JPS60253538A publication Critical patent/JPS60253538A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、サーマル・シールドに関するものであり、
とりわけ、人工衛星の熱制御に供するサーマルφシール
ドに関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a thermal shield,
In particular, it relates to a thermal φ shield used for thermal control of an artificial satellite.

〔従来の技術〕[Conventional technology]

第1図は従来のこの種のサーマル・シールドを示し1図
において、フルオロエチレン−プロピレン共重合体(F
EP) 、ポリイミド、ポリエチレンテレフタレート等
の高分子でなる透明高分子フィルムlの裏面に銀、アル
ミニウム等の蒸着でなる金属膜コを形成してなり、この
金属膜コにより衛星構体にアニス接地されていた。
Figure 1 shows a conventional thermal shield of this type. In Figure 1, a fluoroethylene-propylene copolymer (F
EP), a metal film made of vapor deposition of silver, aluminum, etc. is formed on the back side of a transparent polymer film l made of a polymer such as polyimide or polyethylene terephthalate, and this metal film is used to provide anis grounding to the satellite structure. Ta.

以上の構成になるサーマル・シールドは、衛星の表面に
取り付けられ、人工衛星内部の搭載機器を適正な許容温
度範囲内に保つ機能を有しているが、それは、サーマル
・シールドの太陽光吸収率と赤外輻射率により受動的に
なされる。太陽光吸収率は、透明高分子フィルムlを透
過してきた太陽光を金属膜λで反射する性質により決ま
り、赤外輻射率は、衛星内部で発生した熱を透明高分子
フィルム/で吸収し赤外線として輻射する性質により決
まる。この輻射率を一般に大きくする場合が多いが、そ
れは、透明高分子フィルムlの厚さをjOμIfl−/
、27μm程度に大きくしてなされる。
The thermal shield with the above configuration is attached to the surface of the satellite and has the function of keeping the onboard equipment inside the satellite within the appropriate permissible temperature range, but it depends on the solar absorption rate of the thermal shield. and passively by infrared emissivity. The solar absorption rate is determined by the ability of the metal film λ to reflect sunlight that has passed through the transparent polymer film l, and the infrared emissivity is determined by the ability of the metal film λ to reflect sunlight that has passed through the transparent polymer film l. It is determined by the property of radiation. This emissivity is generally increased in many cases by increasing the thickness of the transparent polymer film l by jOμIfl−/
, about 27 μm.

しかし、従来のサーマル・シールドは以上のように比較
的埋い透明高分子フィルム/が宇宙側に露出しているた
め、宇宙のプラズマ、特に電子により帯電、し、時には
大きな電位差が表面と衛星のアースとの間に生じて放電
することもあり、この現象は透明高分子フィルムlがF
EPやポリエチレンテレフタレートの場合に大きい。そ
の場合衛星に搭載された電子機器に誤動作ないし故障を
起こすという欠点があった。
However, as described above, conventional thermal shields are relatively buried and the transparent polymer film is exposed to the space side, so it is charged by space plasma, especially electrons, and sometimes a large potential difference is created between the surface and the satellite. Discharge may occur between the transparent polymer film l and the earth, and this phenomenon occurs when the transparent polymer film
It is large in the case of EP and polyethylene terephthalate. In that case, there was a drawback that the electronic equipment onboard the satellite could malfunction or break down.

〔発明の概要〕[Summary of the invention]

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、透明高分子フィルムの表面にポ
リイミドの薄い透明フィルムを導電、性接着剤忙より貼
りつけ、表面の帯電を防止することができるサーマル・
シールドを提供する。
This invention was made to eliminate the above-mentioned drawbacks of the conventional products.A thin transparent polyimide film is pasted on the surface of a transparent polymer film using a conductive adhesive to prevent the surface from being charged. Thermal
Provide a shield.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を前記第1図と同一部分に同
一符号を付した第2図について説明する。
An embodiment of the present invention will be described below with reference to FIG. 2, in which the same parts as in FIG. 1 are denoted by the same reference numerals.

第2図において、ポリイミドの透明フィルムJと透明高
分子フィルムlとを透明導電性接着剤Vで接合してなる
。導電性接着剤ダの層と金属膜λとは共に衛星の構体に
アース接地される。
In FIG. 2, a transparent polyimide film J and a transparent polymer film I are bonded together using a transparent conductive adhesive V. Both the conductive adhesive layer and the metal film λ are grounded to the satellite structure.

次に作用について説明する。上記のように構成されたラ
ママル・シールドにおいては、透明ポリイミドフィルム
3が宇宙側に露出しているので。
Next, the effect will be explained. In the Ramamal shield configured as described above, the transparent polyimide film 3 is exposed to the space side.

この透明ボリエミドフィルムJを透過してしまわないよ
うなエネルギをもった宇宙プラズマの荷電粒子により表
面が帯電して電位が形成される。しかし、この透明ポリ
イミドフィルム3の裏面には透明導電性接着剤ダの層が
あり、これが衛星構体にアース接地されているので1表
面の電位による薄い透明ポリイミドフィルムJの内部は
商い電位傾度になり、電導度が犬ぎくなる。このとき、
透明ポリイミドフィルム3の内部を流れる電流が大きく
なって、平衡状態では表面の電位は放電するような大き
さにはならない。第3図に、0よm1J(127μm)
と、ymtj(7aμR)の厚さの透明ポリイミドフィ
ルムJに電子線を一〇 Key、 0.7 n A/ 
cdの照射条件で照射したときのポリイミドフィルム3
中を流れる電流の時間特性を示しているが、ポリイミド
フィルム3の厚さが薄い方が電流がよく流れ、帯電しに
くいという特性を示している。
The surface of the transparent polyemide film J is charged by charged particles of space plasma that have such energy that they do not pass through it, forming a potential. However, there is a layer of transparent conductive adhesive on the back side of the transparent polyimide film 3, and this is grounded to the satellite structure, so the internal potential of the thin transparent polyimide film J due to the potential on the first surface becomes a transverse potential gradient. , the conductivity becomes sharp. At this time,
The current flowing inside the transparent polyimide film 3 increases, and in an equilibrium state, the surface potential does not reach a level that would cause a discharge. In Figure 3, 0 m1J (127 μm)
Then, an electron beam was applied to a transparent polyimide film J with a thickness of ymtj (7 aμR) at 10 Key, 0.7 n A/
Polyimide film 3 when irradiated under CD irradiation conditions
The time characteristics of the current flowing through the polyimide film 3 are shown, and it shows that the thinner the polyimide film 3 is, the better the current flows and the less likely it is to be charged.

宇宙のプラズマの荷電粒子のエネルギは、静止軌道付近
の定常状態で</に9V 、地磁気風の時には〜20K
eVであるので、磁気風のときに帯電およびそれに付随
した放電の影醤がないように、透明ポリイミドフィルム
3の厚さは03m1l(tAりμm)程度以下のものを
使用する必要がある。宇宙のプラズマは、電子では数e
V程度の低エネルギのものから数10MevOものまで
が存在しているので、この薄い透明ポリイミドフィルム
3の層を貫通して透明高分子フィルムlに蓄積したり、
あるいは透明高分子フィルムlの層も貫通してしまうこ
ともある。しかし、これらは、透明ポリイミドフィルム
3中に蓄積する粒子数に比べると非常に少なく、また、
透明高分子フィルムlの層に蓄積しても荷電量が小さく
、この透明高分子フィルム/の両端は接地されているの
で放電は起こらない。
The energy of charged particles in space plasma is 9V in steady state near geostationary orbit, and ~20K in geomagnetic winds.
eV, so that the thickness of the transparent polyimide film 3 must be approximately 0.3 ml (tA μm) or less so that there is no effect of charging and accompanying discharge during magnetic wind. Plasma in the universe consists of several e of electrons.
Since there are energies ranging from as low as V to as high as several tens of MevO, they may penetrate the layer of the thin transparent polyimide film 3 and accumulate in the transparent polymer film 1.
Alternatively, the layer of transparent polymer film 1 may also be penetrated. However, these are very few compared to the number of particles accumulated in the transparent polyimide film 3, and
Even if the charge is accumulated in the layer of the transparent polymer film 1, the amount of charge is small, and since both ends of the transparent polymer film are grounded, no discharge occurs.

なお、上記実施例では透明ポリイミドフィルム3も透明
導電性接着剤ヶにより透明高分子フィルムlの表面に貼
りつけた構成になるものを示したが、透明ポリイミドフ
ィルム3の裏面にアルミ等の金属膜を蒸着したものを導
電性接着剤により透明高分子フィルムlに貼り付けても
よい。その構成を第ダ図に示す。すなわち、ポリイミド
フィルム3に金属Mりを蒸着形成し、金属膜Sの面と透
明高分子フィルムlの表面とを導電性接着剤弘で接合し
℃なるものである。この場合、金属膜5の分だけ太陽光
吸収率は小さくなるが、同様の効果を奏する。
In the above embodiment, the transparent polyimide film 3 was also attached to the surface of the transparent polymer film 1 using a transparent conductive adhesive. may be attached to the transparent polymer film 1 using a conductive adhesive. Its configuration is shown in Figure d. That is, a metal M is formed on a polyimide film 3 by vapor deposition, and the surface of the metal film S and the surface of the transparent polymer film 1 are bonded together using a conductive adhesive. In this case, although the sunlight absorption rate is reduced by the amount of the metal film 5, the same effect can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、透明島分子フィルム
の表面に薄い透明ポリイミドフィルムを導電性接着剤に
より貼りつけた構成にしたので、帯電を防止して放電に
よる影響を除去できるので信頼性の高い衛星システムを
構築できるという効来がある。
As described above, according to the present invention, since a thin transparent polyimide film is attached to the surface of a transparent island molecular film using a conductive adhesive, charging can be prevented and the effects of discharge can be removed, thereby improving reliability. This has the effect of making it possible to construct a satellite system with high performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のものの断面図、第2図はこの発明の一実
施例の断面図、第3図は当該実施例においてポリイミド
フィルムに電子線を照射したときのフィルム中を流れる
M流の時間特性料!図、第q図はこの発明の他の実施例
の断面図である。 /・・透明高分子フィルム、コ・・蒸着金R膜、J・・
透明ポリイミドフィルム、ダ・・透明導電。 性接着剤、j・・金属膜。 なお、各図中、同一符号は同一または相当部分を示す。 先3図 死4図
Fig. 1 is a cross-sectional view of a conventional product, Fig. 2 is a cross-sectional view of an embodiment of the present invention, and Fig. 3 is a time period of the M flow flowing through the polyimide film when the polyimide film is irradiated with an electron beam in this embodiment. Characteristic fee! Figures 1 and q are cross-sectional views of other embodiments of the present invention. /...Transparent polymer film, Co...Vapour-deposited gold R film, J...
Transparent polyimide film, transparent conductive. adhesive, j...metal film. In each figure, the same reference numerals indicate the same or corresponding parts. Ahead 3 figures Death 4 figures

Claims (1)

【特許請求の範囲】 (1)裏面に蒸着金属膜を形成した透明高分子フィルム
と、この透明高分子フィルムの表面に透明導電性接着剤
により接合された透明ポリイミドフィルムとを備えてな
るサーマル・シールド。 (J) 透明高分子フィルムが、フルオロエチレン−プ
ロピレン共重合体(FEP) 、ポリイミド、ポリエチ
レンテレフタレートから選んだ高分子物質でなる特許請
求の範囲第1項記載のサーマル・シールド。 (3) 厚さが0. !r mijを超えない透明ポリ
イミドフィルムを備えた特許請求の範囲第1項記載のサ
ーマル・シールド。 (り)接着面に金属膜を蒸着形成した透明ポリイミドフ
ィルムを備えた特許請求の範囲第1項記載のサーマル・
シー□ルド。
[Claims] (1) A thermal film comprising a transparent polymer film with a vapor-deposited metal film formed on the back surface and a transparent polyimide film bonded to the surface of the transparent polymer film with a transparent conductive adhesive. shield. (J) The thermal shield according to claim 1, wherein the transparent polymeric film is made of a polymeric material selected from fluoroethylene-propylene copolymer (FEP), polyimide, and polyethylene terephthalate. (3) Thickness is 0. ! 2. The thermal shield of claim 1, comprising a transparent polyimide film not exceeding r mij. (i) The thermal film according to claim 1, comprising a transparent polyimide film with a metal film deposited on the adhesive surface.
Sealed.
JP10964984A 1984-05-31 1984-05-31 Thermal-shield Pending JPS60253538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10964984A JPS60253538A (en) 1984-05-31 1984-05-31 Thermal-shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10964984A JPS60253538A (en) 1984-05-31 1984-05-31 Thermal-shield

Publications (1)

Publication Number Publication Date
JPS60253538A true JPS60253538A (en) 1985-12-14

Family

ID=14515637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10964984A Pending JPS60253538A (en) 1984-05-31 1984-05-31 Thermal-shield

Country Status (1)

Country Link
JP (1) JPS60253538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175600A (en) * 1987-12-29 1989-07-12 Katsumi Yoshino Space craft
CN102530272A (en) * 2011-12-08 2012-07-04 北京空间飞行器总体设计部 Solar wing pneumatic thermal protection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175600A (en) * 1987-12-29 1989-07-12 Katsumi Yoshino Space craft
CN102530272A (en) * 2011-12-08 2012-07-04 北京空间飞行器总体设计部 Solar wing pneumatic thermal protection device

Similar Documents

Publication Publication Date Title
Mozer Origin and effects of electric fields during isolated magnetospheric substorms
Stone et al. The Voyager 2 encounter with the Neptunian system
Heikkila et al. Penetration of magnetosheath plasma to low altitudes through the dayside magnetospheric cusps
US4540843A (en) Solar cell
US4433201A (en) Solar power arrays for spacecraft
Reid et al. The influence of the geomagnetic tail on low‐energy cosmic‐ray cutoffs
Coleman Jr et al. Fluctuations in the distant geomagnetic field during substorms: ATS 1
JPS60253538A (en) Thermal-shield
Reddy et al. Formation of blanketing sporadic E-layers at the magnetic equator due to horizontal wind shears
US3845494A (en) HgTe-CdTe PHOTOVOLTAIC DETECTORS
Clark et al. The global morphology of electron temperature in the topside ionosphere, as measured by an ac Langmuir probe
Formisano HEOS-2 observations of the boundary layer from the magnetopause to the ionosphere
Farrugia et al. Response of the equatorial and polar magnetosphere to the very tenuous solar wind on May 11, 1999
Warwick Propagation of solar particles and the interplanetary magnetic field
McDiarmid et al. Morphology of outer radiation zone electron (E> 35 keV) acceleration mechanisms
JPS60253537A (en) Thermal-shield
JPS63145020A (en) Space-missile heat transfer-heat control laminated composite material
Opp Scientific results from the Pioneer 11 mission to Jupiter
Porter et al. A search for evidence of nuclearites in astrophysical pulse experiments
Banks Composite ion accelerator grids
Burch High‐latitude proton precipitation and light ion density profiles during the magnetic storm initial phase
Holt et al. Millstone Hill observations of ionospheric convection
Oksman STUDIES ON THE AURORAL SPORADIC E IONIZATION AT SODANKYLA
Prange et al. Influence of the equatorial irregularities and precipitations in the South Atlantic Magnetic Anomaly on the generation of auroral‐type plasma instabilities
Stella et al. Integrally covered silicon solar cells.