JP2009227923A - Manufacturing method for article having negative pattern - Google Patents

Manufacturing method for article having negative pattern Download PDF

Info

Publication number
JP2009227923A
JP2009227923A JP2008078129A JP2008078129A JP2009227923A JP 2009227923 A JP2009227923 A JP 2009227923A JP 2008078129 A JP2008078129 A JP 2008078129A JP 2008078129 A JP2008078129 A JP 2008078129A JP 2009227923 A JP2009227923 A JP 2009227923A
Authority
JP
Japan
Prior art keywords
pattern
substance
article
magnetic field
sublimable substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008078129A
Other languages
Japanese (ja)
Inventor
Taichi Kamimura
太一 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Chemical and Co Ltd
Original Assignee
Kyoritsu Chemical and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Chemical and Co Ltd filed Critical Kyoritsu Chemical and Co Ltd
Priority to JP2008078129A priority Critical patent/JP2009227923A/en
Publication of JP2009227923A publication Critical patent/JP2009227923A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To easily obtain an article having a negative pattern, usable as a permeation film, and changing continuously a volume fraction of a hole along a thickness direction. <P>SOLUTION: This manufacturing method for the article having the negative pattern comprises (1) a process for forming a positive pattern of a sublimable substance derived from a gas phase on a surface of a solidifiable and flowable material or ranging over from the surface to an inside, (2) a process for solidifying the flowable material, and (3) a process for removing the sublimable substance, according to this order, and manufacturing the article having the negative pattern on the surface of the flowable material or ranging over from the surface to the inside. The present invention discloses further a separator of a battery or a capacitor manufactured by the method, a separator blended with a foaming agent, and the battery and the capacitor blocking safely a current, by foaming the foaming agent in the separator, when run away thermally, to make distant a distance between electrodes. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固化可能で流動性がある材料の表面又は表面から内部にかけて気相由来の固体の昇華性物質のポジパターンを形成する工程、(2)前記材料を固化する工程、(3)前記昇華性物質を除去する工程、をこの順で行う、前記材料表面又は表面から内部にかけてネガパターンを有する物品を製造する方法、及び前記製造方法により製造された多孔質パターンを有する物品をセパレーターとして用いる電池、及び前記多孔質パターンを有する物品に更に任意の温度で発泡する発泡剤を含有し、任意の温度以上になると前記セパレーターが発泡して安全に電気の流れを遮断できる電池に関する。   The present invention includes a step of forming a positive pattern of a solid sublimable substance derived from a gas phase from the surface of a solidifiable and fluid material or from the surface to the inside thereof, (2) a step of solidifying the material, (3) The step of removing a sublimable substance is performed in this order, the method of manufacturing an article having a negative pattern from the surface of the material or from the surface to the inside, and the article having a porous pattern manufactured by the manufacturing method is used as a separator. The present invention relates to a battery and a battery that further contains a foaming agent that foams at an arbitrary temperature in the article having the porous pattern, and that can safely block the flow of electricity when the separator is foamed above an arbitrary temperature.

多孔質材料の製造方法としては、水を含んだ水溶性高分子を凍結乾燥させる方法(特許文献1)、水溶性高分子を複合させた樹脂を凍結乾燥させる方法(特許文献2)がある。また、空気中の水分を利用して流動性がある材料表面にパターンを形成する方法として、結露水を利用する方法がある(特許文献3)。   As a method for producing a porous material, there are a method of freeze-drying a water-soluble polymer containing water (Patent Document 1) and a method of freeze-drying a resin combined with a water-soluble polymer (Patent Document 2). As a method for forming a pattern on a fluid material surface using moisture in the air, there is a method using condensed water (Patent Document 3).

特開2002−146084号公報JP 2002-146084 A 特開2003−171496号公報JP 2003-171696 A 国際公開第2004/048064号パンフレットInternational Publication No. 2004/048064 Pamphlet

従来の凍結乾燥を用いた多孔質材料の製造方法では、固化可能で流動性がある材料に凍結乾燥できる物質を含ませる必要があり、前記凍結乾燥できる物質を含んだ物質に製造方法の適応が限定されており、水が凍結乾燥に用いられる一般的な例については、更にその適応は水溶性の物質や水溶性の物質を懸濁させることなどによって水を安定に含むことができる組成物に限定される。   In the conventional method for producing a porous material using lyophilization, it is necessary to include a substance that can be lyophilized in a solidified and fluid material, and the production method is applied to the substance containing the substance that can be lyophilized. For general examples where water is used for lyophilization, which is limited, the indication is further to a water-soluble substance or a composition that can stably contain water, such as by suspending a water-soluble substance. Limited.

結露水を利用したパターンの製造方法では、パターニングに必要な物質を流動性がある材料に含ませる必要は無いため製造方法の適応範囲は広いが、溶媒の蒸発の潜熱に伴う結露を利用しているため流動性がある材料に揮発性の溶媒を含有させる必要があり、更に液滴でパターニングしているため孔の形状は球の一部に限定される。   The pattern manufacturing method using condensed water does not require the substances necessary for patterning to be included in the flowable material, so the manufacturing method has a wide range of applications, but it uses condensation due to the latent heat of solvent evaporation. Therefore, it is necessary to contain a volatile solvent in the fluid material, and further, since the patterning is performed with droplets, the shape of the hole is limited to a part of the sphere.

これらの文献の方法により製造されたパターンの孔はランダムな方向を向いているか球状であるため孔の方向に異方性は無く、透過膜としての性質は理想的な状態に無い。   Since the holes of the pattern manufactured by the methods of these documents are oriented in a random direction or spherical, there is no anisotropy in the direction of the holes, and the properties as a permeable membrane are not in an ideal state.

また、凍結乾燥を用いる方法では多孔質材料が得られるが、固化可能で流動性がある材料の表面の全体から多孔質中の揮発性物質が揮発するため、基板やデバイス表面に直接密着した状態で形成することが困難であり、多孔質材料を改めて基板やデバイスに設置する必要がある。   In addition, the method using freeze-drying produces a porous material, but the volatile substances in the porous body volatilize from the entire surface of the solidifiable and fluid material, so that it is in direct contact with the substrate or device surface. It is difficult to form a porous material, and it is necessary to install a porous material on a substrate or a device again.

また凍結乾燥を用いる方法では、孔の分布は多孔質材料中で概略均一となり多孔質材料の厚さ方向の孔の分布を傾斜させることは困難である。   In the method using lyophilization, the pore distribution is substantially uniform in the porous material, and it is difficult to incline the pore distribution in the thickness direction of the porous material.

本発明者らは、上記課題を解決する為に鋭意研究を行った結果、(1)固化可能で流動性がある材料(以下、流動性がある材料という)の表面又は表面から内部にかけて気相由来の固体の昇華性物質によるポジパターンを形成する工程、(2)前記材料を固化する工程、(3)前記昇華性物質を除去する工程、をこの順で行うことにより前記材料の表面又は表面から内部にかけてネガパターンを有する物品を製造できる方法を開発し、これを電池のセパレーターとして利用できることを見出し、更に前記セパレーター中に発泡剤を含有することで熱暴走時に前記含有された発泡剤が発泡し電極間の距離を引き離すことにより安全に電流を遮断できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have (1) the surface of a solidifiable and fluid material (hereinafter referred to as fluid material) or the gas phase from the surface to the inside. The surface or surface of the material is formed by performing a step of forming a positive pattern with a solid sublimable substance derived from the above, (2) a step of solidifying the material, and (3) a step of removing the sublimable material in this order. Developed a method that can produce an article having a negative pattern from the inside to the inside, and found that this can be used as a battery separator. Further, by containing a foaming agent in the separator, the contained foaming agent foams during thermal runaway. The inventors have found that the current can be safely interrupted by separating the distance between the electrodes, and have completed the present invention.

よって、第1の本発明は、(1)固化可能で流動性がある材料の表面又は表面から内部にかけて気相由来の固体の昇華性物質のポジパターンを形成する工程、(2)前記材料を固化する工程、(3)前記昇華性物質を除去する工程、をこの順で行い、前記材料の表面又は表面から内部にかけてネガパターンを有する物品を製造する方法に関する。   Therefore, the first aspect of the present invention is: (1) a step of forming a positive pattern of a solid sublimable substance derived from a gas phase from the surface of the solidifiable and fluid material or from the surface to the inside thereof; (2) The present invention relates to a method for producing an article having a negative pattern by performing a solidifying step and (3) a step of removing the sublimable substance in this order, and the surface of the material or from the surface to the inside thereof.

また、第2の本発明は、昇華性物質が誘電率及び/又は磁化率に異方性がある物質であり、少なくとも前記材料を固化する前に、更に、前記昇華性物質を電場及び/又は磁場で任意の方向に配向させる工程を含む、ネガパターンを有する物品の製造方法に関する。   In the second aspect of the present invention, the sublimable substance is a substance having anisotropy in dielectric constant and / or magnetic susceptibility, and at least before the material is solidified, the sublimable substance is further converted into an electric field and / or The present invention relates to a method for manufacturing an article having a negative pattern, including a step of aligning in an arbitrary direction with a magnetic field.

また、第3の本発明は、ネガパターンが、前記流動性がある材料の表面から内部にかけて孔の体積分率を連続的に変化させたパターンであり、ネガパターンを有する物品を製造する方法、及び前記流動性がある材料の表面から内部にかけて連続的に変化する屈折率を有する物品の製造方法に関する。   The third aspect of the present invention is a method for producing an article having a negative pattern, wherein the negative pattern is a pattern in which the volume fraction of the pores is continuously changed from the surface of the fluid material to the inside thereof, And a method for producing an article having a refractive index that continuously changes from the surface to the inside of the fluid material.

また、第4の本発明は、(1)電極に塗布した前記流動性がある材料の表面又は表面から内部にかけて、気相由来の固体の昇華性物質のポジパターンを形成する工程、(2)前記材料を固化する工程、(3)前記昇華性物質を除去する工程、をこの順で行う、ネガパターンを有する物品が表面に形成された電極の製造方法に関する。   The fourth aspect of the present invention is: (1) a step of forming a positive pattern of a gas-derived solid sublimable substance from the surface of the fluid material applied to the electrode or from the surface to the inside; (2) The present invention relates to a method for producing an electrode having an article having a negative pattern formed on the surface thereof, wherein the step of solidifying the material and (3) the step of removing the sublimable substance are performed in this order.

第1の本発明の物品を製造する方法によれば、低いコストで高速にネガパターンを材料の表面又は表面から内部にかけて形成した物品を製造することが可能である。   According to the method of manufacturing the article of the first aspect of the present invention, it is possible to manufacture an article in which a negative pattern is formed on the surface of the material or from the surface to the inside at a low speed and at a high speed.

また、第1の本発明によれば、固体の昇華性物質が概略不溶の流動性がある材料であれば、昇華性物質と流動性がある材料のありとあらゆる組み合わせに対して適応が可能である。特に、氷を昇華性物質として用いた場合、従来の凍結乾燥技術に必要だった水を含有できる流動性がある材料以外にもネガパターンを有する物品を製造することができ、多孔質パターンを有する物品を流動性がある材料としてエネルギー線硬化型樹脂を用いることで連続的かつ高速で製造することもでき、エネルギー線硬化型樹脂として光硬化性のアクリル樹脂プレポリマーや光硬化性のエポキシ樹脂プレポリマーを用いることで、一般的に透明性や耐熱性に優れる熱硬化性の材料でネガパターンを有する物品を製造することも簡便にできる。   In addition, according to the first aspect of the present invention, as long as the solid sublimable substance is a substantially insoluble fluid material, the present invention can be applied to any combination of the sublimable substance and the fluid material. In particular, when ice is used as a sublimable substance, an article having a negative pattern can be produced in addition to a fluid material that can contain water necessary for conventional freeze-drying techniques, and has a porous pattern. Articles can be manufactured continuously and at high speed by using energy ray curable resin as a fluid material, and photocurable acrylic resin prepolymer or photocurable epoxy resin prepolymer can be used as energy ray curable resin. By using a polymer, it is also possible to easily produce an article having a negative pattern with a thermosetting material that is generally excellent in transparency and heat resistance.

また、第1の本発明によれば、流動性がある材料を任意の形状に固化することができるため、複雑な形状の物品表面に流動性がある材料からなる塗膜を形成することでその表面に多孔質パターンを簡便に製造することが可能である。   In addition, according to the first aspect of the present invention, since a fluid material can be solidified into an arbitrary shape, by forming a coating film made of a fluid material on the surface of an article having a complicated shape, It is possible to easily produce a porous pattern on the surface.

更に、第1の本発明を複雑な形状を有する生体材料表面に適用することで多孔質パターンを有する物品を簡便に製造でき、更に流動性がある材料に水を含有しない材料を用いることができるため湿度や水分による溶解の心配が無い多孔質パターンを有する物品を簡便に生体材料表面に製造できる。   Furthermore, by applying the first invention to the surface of a biomaterial having a complicated shape, an article having a porous pattern can be easily produced, and a material that does not contain water can be used as a fluid material. Therefore, an article having a porous pattern without worrying about dissolution due to humidity or moisture can be easily produced on the surface of the biomaterial.

また、第1の本発明において固化可能で流動性がある材料が接着性を有する場合、任意の材料の表面に多孔質パターンを有する物品を直接製造できる。   Moreover, when the material which can be solidified and has fluidity in the first invention has adhesiveness, an article having a porous pattern on the surface of any material can be directly produced.

また、第2の本発明によれば、任意の方向にパターンの異方性を発現できる。   Further, according to the second aspect of the present invention, pattern anisotropy can be expressed in an arbitrary direction.

また、第3の本発明によれば、前記流動性がある材料の表面から内部にかけて孔の体積分率を連続的に変化させたパターンを有する物品を製造でき、また、前記流動性がある材料の表面から内部にかけて連続的に変化する屈折率を有する物品を製造できる。   Further, according to the third aspect of the present invention, an article having a pattern in which the volume fraction of the pores is continuously changed from the surface of the fluid material to the inside thereof can be manufactured, and the fluid material Articles having a refractive index that continuously changes from the surface to the inside can be manufactured.

また、第4の本発明によれば、流動性がある材料が固化後に絶縁性を示す場合、ネガパターンを有する物品をセパレーターに使用することができ、多孔質パターンであるセパレーターを電池もしくはキャパシタの電極表面に直接形成できる。   Further, according to the fourth aspect of the present invention, when a fluid material exhibits insulation after solidification, an article having a negative pattern can be used as a separator, and the separator having a porous pattern can be used as a battery or capacitor. It can be formed directly on the electrode surface.

また、第4の本発明で、ネガパターンを有する物品を電池やキャパシタの活物質層にすると、電池活物質層の表面積が大きい電極を製造できる。   In the fourth aspect of the present invention, when an article having a negative pattern is used as an active material layer of a battery or a capacitor, an electrode having a large surface area of the battery active material layer can be manufactured.

本発明のネガパターンを有する物品を製造する方法は、(1)固化可能で流動性がある材料の表面又は表面から内部にかけて気相由来の固体の昇華性物質のポジパターンを形成する工程、(2)前記材料を固化する工程、(3)前記昇華性物質を除去する工程、をこの順で行うことで前記材料の表面又は表面から内部にかけてネガパターンを有する物品を製造することを特徴とする。   The method for producing an article having a negative pattern according to the present invention includes (1) a step of forming a positive pattern of a solid sublimable substance derived from a gas phase from the surface of a solidifiable and flowable material or from the surface to the inside thereof. 2) solidifying the material, and (3) removing the sublimable substance in this order to manufacture an article having a negative pattern from the surface of the material to the inside. .

本発明における固化可能で流動性がある材料は、ネガパターンを形成できる流動性を有し、ネガパターンを形成した後に固化可能であるものをいう。固化可能で流動性がある材料であればあらゆるものを使用でき、例えば、液体や流動性を有する粉体等が挙げられる。液体の場合には、溶融した液体の冷却による固化、固体が溶解した溶液の溶剤を揮発させることによる固化、液状のエポキシ樹脂プレポリマーやアクリル樹脂プレポリマーなどの反応性を有する各種プレポリマーの重合による固化などが利用できる。粉体の場合には、圧着や焼成などによる固化が可能な流動性がある粉体を利用できる。本明細書で例示した流動性がある材料の他にも、固化可能で流動性がある材料ならば、あらゆる材料を用いることができる。なお、液体は、ゲル状、ペースト状などを含む。   The material that can be solidified and has fluidity in the present invention refers to a material that has fluidity to form a negative pattern and can be solidified after the negative pattern is formed. Any material that can be solidified and has fluidity can be used, and examples thereof include liquids and powders having fluidity. In the case of liquid, solidification by cooling of the molten liquid, solidification by volatilizing the solvent of the solution in which the solid is dissolved, polymerization of various prepolymers having reactivity such as liquid epoxy resin prepolymer and acrylic resin prepolymer Solidification by can be used. In the case of powder, a fluid powder that can be solidified by pressure bonding or firing can be used. In addition to the fluid material exemplified herein, any material that can be solidified and fluid can be used. The liquid includes gel, paste, and the like.

また、流動性がある材料として、絶縁性材料、導電性材料、これらを混合したものも使用できる。この流動性がある絶縁性材料として、硬化性の有機成分及び無機成分を適宜用いることができる。これらのうち有機成分としては、各種エポキシ化合物、アクリル化合物、シロキサン化合物等のほか、硬化性のモノマーやオリゴマー等のプレポリマーを使用でき、これらをポリマーの状態で融解させたり溶媒に溶解させて使用したり流動性がある微粉末を使用したりすることもできる。これらには熱可塑性樹脂も熱硬化性樹脂も使用でき、熱可塑性樹脂としては、酢酸ビニル、ビニルアルコール、ビニルブチラール、塩化ビニル、メタクリレート、アクリル酸、メタクリル酸、スチレン、エチレン、アミド、セルロース、イソブチレン、ビニルエーテル、ポリフッ化ビニリデン、ポリエステル等からなるプレポリマーやポリマーを挙げることができる。また、熱硬化性樹脂としては、尿素、メラミン、フェノール、レゾルシノール、エポキシ、オキセタン、エピスルフィド、イソシアネート、ポリビニルアルコールとポリカルボン酸の混合物、イミド等からなるプレポリマーやポリマーを挙げることができる。また、これらのプレポリマーやポリマーは、硬化剤、重合硬化剤の種類により、光硬化性にすることもできる。これらの化合物は、1種類、又は2種類以上を適宜組み合わせて使用できる。   In addition, as a material having fluidity, an insulating material, a conductive material, or a mixture thereof can be used. As the fluid insulating material, a curable organic component and an inorganic component can be appropriately used. Among these, as the organic component, in addition to various epoxy compounds, acrylic compounds, siloxane compounds, etc., prepolymers such as curable monomers and oligomers can be used, and these are melted in a polymer state or dissolved in a solvent. Or a fine powder having fluidity can be used. For these, thermoplastic resins and thermosetting resins can be used. Examples of thermoplastic resins include vinyl acetate, vinyl alcohol, vinyl butyral, vinyl chloride, methacrylate, acrylic acid, methacrylic acid, styrene, ethylene, amide, cellulose, and isobutylene. And prepolymers and polymers made of vinyl ether, polyvinylidene fluoride, polyester and the like. Examples of the thermosetting resin include urea, melamine, phenol, resorcinol, epoxy, oxetane, episulfide, isocyanate, a mixture of polyvinyl alcohol and polycarboxylic acid, a prepolymer and a polymer made of imide and the like. These prepolymers and polymers can also be made photocurable depending on the type of curing agent and polymerization curing agent. These compounds can be used alone or in combination of two or more.

このような硬化性のプレポリマーを配合する際には、プレポリマーを硬化させるための硬化剤、重合開始剤を必要に応じて配合できる。これらの硬化剤、重合開始剤の種類は、配合するプレポリマーの種類に応じて適宜選択できる。このような硬化剤、重合開始剤としてエネルギー線により反応を開始する化合物を好ましく用いることができる。例えば、アクリルモノマー・オリゴマーの光ラジカル重合型樹脂、ポリエン−チオール硬化系の光マイケル付加型樹脂、エポキシ及びオキセタン及びビニルエーテルモノマー・オリゴマーの光カチオン重合型樹脂が例示できる。また、これら配合には各種公知の光反応増感剤を使用できる。このような光硬化性樹脂を用いることで、パターン形成時の形状を速やかに固定できる。   When blending such a curable prepolymer, a curing agent and a polymerization initiator for curing the prepolymer can be blended as necessary. The kind of these hardening | curing agents and a polymerization initiator can be suitably selected according to the kind of prepolymer to mix | blend. As such a curing agent and polymerization initiator, a compound that initiates a reaction by energy rays can be preferably used. For example, a photo radical polymerization resin of acrylic monomer / oligomer, a photo-michael addition resin of polyene-thiol curing system, a photo cationic polymerization resin of epoxy, oxetane, and vinyl ether monomer / oligomer can be exemplified. Also, various known photosensitizers can be used for these formulations. By using such a photocurable resin, the shape at the time of pattern formation can be quickly fixed.

電池のセパレーターとして利用する場合は、電解液として用いられている有機溶媒に不溶な樹脂の利用が好ましく、更に好ましくは水溶性のポリマーであり、その一例として水溶性のポリマーであるポリビニルアルコールやポリビニルアルコールを重合性の置換基であるエポキシ、オキセタン、あるいはアクリル、メタクリル基で変性し三次元的に重合したものが挙げられる。また、電池が異常発熱した際、軟化して孔がふさがるタイプも好ましく、熱で解重合を起こすウレタン変性のアクリル樹脂プレポリマーをラジカル重合して得たアクリル樹脂などをその一例として示すことができる。この場合、ウレタン結合部位が熱によって開裂し、分子量の低下に伴う軟化が起きるタイプを得ることができる。   When used as a battery separator, it is preferable to use a resin that is insoluble in an organic solvent used as an electrolytic solution, more preferably a water-soluble polymer, for example, a water-soluble polymer such as polyvinyl alcohol or polyvinyl. Examples include alcohols modified with polymerizable substituents such as epoxy, oxetane, or acrylic or methacrylic groups and polymerized three-dimensionally. Also, a type that softens and closes the pores when the battery abnormally generates heat is preferable, and an acrylic resin obtained by radical polymerization of a urethane-modified acrylic resin prepolymer that causes depolymerization by heat can be shown as an example. . In this case, it is possible to obtain a type in which the urethane bond site is cleaved by heat and the softening accompanying the decrease in molecular weight occurs.

加熱による固化する流動性がある絶縁性材料としては、熱で硬化する樹脂や、溶剤の揮発によって固化する樹脂、ゾルゲル法で得られる金属酸化物等多種多様な材料を用いることができる。   As the insulating material having fluidity to be solidified by heating, various materials such as a resin that is cured by heat, a resin that is solidified by volatilization of a solvent, and a metal oxide obtained by a sol-gel method can be used.

また、流動性がある絶縁性材料(以下、流動性がある絶縁材料という)には、公知のホットメルト樹脂を使用できる。   A known hot melt resin can be used as the fluid insulating material (hereinafter referred to as fluid insulating material).

また、流動性がある絶縁性材料の無機成分としては、各種金属アルコキシド、各種金属塩化物、水ガラス、コロイダルシリカ、各種ケイ素酸化物、ケイ素窒化物、ケイ素フッ化物、金属酸化物、金属窒化物、金属ケイ化物、金属ホスフェートの溶液を使用したり流動性があるこれらの微粉末を使用したりできる。   In addition, as the inorganic component of the fluid insulating material, various metal alkoxides, various metal chlorides, water glass, colloidal silica, various silicon oxides, silicon nitrides, silicon fluorides, metal oxides, metal nitrides It is possible to use a solution of metal silicide, metal phosphate, or these fine powders having fluidity.

このような無機成分を含む流動性がある絶縁性材料は、ゾルゲル反応や高温焼付け等を用いることで固化でき、またゾルゲル反応の触媒を流動性がある材料に配合することもできる。   Such a fluid insulating material containing an inorganic component can be solidified by using a sol-gel reaction or high-temperature baking, and a sol-gel reaction catalyst can be blended with the fluid material.

上記ゾルゲル反応の触媒としては、無機成分を加水分解し重縮合させる、塩酸のような酸;水酸化ナトリウム、水酸化アンモニウムのようなアルカリ;アミン;あるいはジブチルスズジアセテ−ト、ジブチルスズジオクテ−ト、ジブチルスズジラウレート、ジブチルスズジマレート、ジオクチルスズジラウレート、ジオクチルスズジマレート、オクチル酸スズ等の有機スズ化合物;イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルピロホスフェート)チタネート、ビス(ジオクチルピロホスフェート)オキシアセテートチタネート、テトラアルキルチタネート等の有機チタネート化合物;テトラブチルジルコネート、テトラキス(アセチルアセトナート)ジルコニウム、テトライソブチルジルコネート、ブトキシトリス(アセチルアセトナート)ジルコニウム、ナフテン酸ジルコニウム等の有機ジルコニウム化合物;トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム等の有機アルミニウム化合物;ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸コバルト等の有機金属触媒等を挙げることができる。これらの中でも、市販品としてジブチルスズ化合物(三共有機化学(株)製SCAT−24)を具体的に挙げることができる。これらの化合物は、1種類、又は2種類以上を適宜組み合わせて使用できる。   As a catalyst for the sol-gel reaction, an acid such as hydrochloric acid; an alkali such as sodium hydroxide or ammonium hydroxide; an amine; or dibutyltin diacetate or dibutyltin dioctate which hydrolyzes and polycondenses inorganic components. , Dibutyltin dilaurate, dibutyltin dimaleate, dioctyltin dilaurate, dioctyltin dimaleate, tin octylate and other organotin compounds; isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate Organic titanate compounds such as tetraalkyl titanate; tetrabutyl zirconate, tetrakis (acetylacetonate) zirconium, tetraisobutyl zirconate, butto Organic zirconium compounds such as citrus (acetylacetonato) zirconium and zirconium naphthenate; organoaluminum compounds such as tris (ethylacetoacetate) aluminum and tris (acetylacetonato) aluminum; zinc naphthenate, cobalt naphthenate, cobalt octylate, etc. And organometallic catalysts. Among these, a dibutyltin compound (SCAT-24 manufactured by Sansha Machinery Chemical Co., Ltd.) can be specifically mentioned as a commercial product. These compounds can be used alone or in combination of two or more.

これらの有機成分及び無機成分は、必要に応じて単体でも有機・無機の組み合わせでも適宜組み合わせて使用できる。   These organic components and inorganic components can be used alone or in combination as appropriate, either alone or in combination of organic and inorganic.

固化可能で流動性がある導電性材料(以下、流動性がある導電性材料という)としては、溶融した金属又は合金等を使用できる。また、溶融させたもしくは溶媒に溶解させた導電性高分子を使用できる。また、これらの導電性材料を流動性がある粉体にして使用でき、焼き固めたり圧縮したりすることにより固化できる。   As a conductive material that can be solidified and fluidized (hereinafter referred to as a conductive material having fluidity), a molten metal, an alloy, or the like can be used. Alternatively, a conductive polymer that has been melted or dissolved in a solvent can be used. Further, these conductive materials can be used in the form of fluid powder and can be solidified by baking or compression.

このような金属又は合金として、特に低融点の合金を好ましく使用でき、Sn−Pb系、Sn−In系、Sn−Bi系、Sn−Ag系、Sn−Zn系の合金等を例示できる。   As such a metal or alloy, an alloy having a low melting point can be particularly preferably used, and examples thereof include Sn—Pb, Sn—In, Sn—Bi, Sn—Ag, and Sn—Zn alloys.

次に、このような導電性高分子として、ポリアセチレン、ポリチオフェン、ポリアニリン、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホナート)などを例示できる。   Next, examples of such a conductive polymer include polyacetylene, polythiophene, polyaniline, poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonate), and the like.

流動性がある材料が絶縁体である場合には、流動性を有する限りにおいて流動性がある材料に導電性フィラーを含有させることができる。このような導電性フィラーとしては、Ag、Cu、Au、Al、Mg、Rh、W、Mo、Co、Ni、Pt、Pd、Cr、Ta、Pb、V、Zr、Ti、In、Fe、Zn等の金属粉末やフレーク、あるいはコロイドを用いることができ、Sn−Pb系、Sn−In系、Sn−Bi系、Sn−Ag系、Sn−Zn系の合金粉末やフレーク、アセチレンブラック、ファーネスブラック、チャンネルブラック等のカーボンブラックやグラファイト、グラファイト繊維、グラファイトフィブリル、カーボンファイバー、活性炭、木炭、カーボンナノチューブ、フラーレン等の導電性炭素系材料、金属酸化物系導電性フィラーとしては、酸化亜鉛、酸化スズ、酸化インジウム、酸化チタン(二酸化チタン、一酸化チタン等)、これらの化合物等のうち格子欠陥の存在により余剰電子が生成し導電性を示すフィラー、コバルト酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム、などの導電性のアルカリ金属塩等が挙げられる。このようなフィラーは、1種類、又は2種類以上を適宜組み合わせて使用でき、更に表面をカップリング剤等で処理したフィラーを利用することも好ましい。また、層間にアルカリ金属を挿入したグラファイト及び/又は粘土層状化合物を配合することでイオン伝導性を向上させることもできる。この場合、電子伝導が起きない程度配合することによって、電子伝導に対しては絶縁でイオン伝導に対しては導電性の物品を製造する事ができる。このような特性を有する物品は、例えば電池用のセパレーターのイオン導電性フィラーとして好ましく用いる事ができる。   When the fluid material is an insulator, the conductive material can be contained in the fluid material as long as it has fluidity. Examples of such conductive filler include Ag, Cu, Au, Al, Mg, Rh, W, Mo, Co, Ni, Pt, Pd, Cr, Ta, Pb, V, Zr, Ti, In, Fe, and Zn. Metal powder, flakes or colloids such as Sn—Pb, Sn—In, Sn—Bi, Sn—Ag, Sn—Zn alloy powders and flakes, acetylene black, furnace black Carbon black such as channel black, graphite, graphite fiber, graphite fibril, carbon fiber, activated carbon, charcoal, carbon nanotube, fullerene and other conductive carbon materials, metal oxide conductive fillers include zinc oxide and tin oxide , Indium oxide, titanium oxide (titanium dioxide, titanium monoxide, etc.), among these compounds Filler exhibiting conductivity and surplus electrons are produced by the presence of the child defects, lithium cobalt acid, lithium nickel acid, lithium iron phosphate, and alkali metal salts of conductivity, such as. Such fillers can be used singly or in appropriate combination of two or more, and it is also preferable to use a filler whose surface is treated with a coupling agent or the like. Moreover, ion conductivity can also be improved by mix | blending the graphite and / or clay layered compound which inserted the alkali metal between the layers. In this case, by blending to such an extent that electron conduction does not occur, it is possible to produce an article that is insulating for electron conduction and conductive for ion conduction. Articles having such characteristics can be preferably used as, for example, ion conductive fillers for battery separators.

導電性フィラーは、導電性粒子であることが好ましく、粒子の大きさは形成する部材の大きさよりも小さいほうが更に好ましい。導電性粒子を固化可能で流動性がある絶縁性組成物に配合すると、導電性粒子が固化可能で流動性がある絶縁性組成物中で接触しあうことで導電性を付与することができる。このような導電性粒子としては、上記金属若しくは合金の粉末やフレーク等を使用できる。   The conductive filler is preferably conductive particles, and the size of the particles is more preferably smaller than the size of the member to be formed. When the conductive particles are blended in an insulating composition that can be solidified and fluidized, the conductive particles can be imparted by contacting each other in the insulating composition that can be solidified and fluidized. As such conductive particles, powders or flakes of the above metals or alloys can be used.

これらの導電性材料は、必要に応じて単体でも、2種以上の組み合わせでも適宜組み合わせて使用できる。   These conductive materials can be used alone or in combination of two or more as required.

上述のように導電性の粒子を用いて導電性の物品を作製する場合、絶縁性材料の粒子と導電性粒子とを組み合わせた流動性がある材料を固化させて導電性組成物を作製することが可能である。絶縁性材料が液体である場合とは異なり絶縁性材料による導電性粒子の濡れによる被覆がないため、導電性粒子同士が接触しやすく、また導電性粒子自体の抵抗値が低いため、できあがった導電性組成物の抵抗値を低くできる。この絶縁性材料の粒子の流動性を無くし固化する手段としては、焼付けや圧縮固定等の任意の手段を用いることができる。   When a conductive article is prepared using conductive particles as described above, a conductive composition is prepared by solidifying a fluid material in which the particles of the insulating material and the conductive particles are combined. Is possible. Unlike the case where the insulating material is a liquid, the conductive particles are not covered by the insulating material, so that the conductive particles easily come into contact with each other, and the resistance value of the conductive particles themselves is low. The resistance value of the composition can be lowered. As a means for eliminating the fluidity of the particles of the insulating material and solidifying it, any means such as baking or compression fixation can be used.

また、流動性がある導電性材料として、イオン性を有する液体を例示できる。イオン性を有する液体としては、イオンが溶解した液体を例示でき、溶媒が水の場合、電解質として塩化ナトリウム、塩化カリウム、塩化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が例示でき、溶媒がジメチルカーボネート等の有機物の場合、電解質として六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、トリフルオロメタンスルホン酸リチウム等が例示できる。イオン性を有する液体のその他の例として、イオン性液体を例示できる。イオン性液体の例としては、イミダゾリウム塩誘導体として1,3−ジメチルイミダゾリウムメチルスルフェート、1−エチル−3−メチルイミダゾリウムビス(ペンタフルオロエチルスルフォニル)イミド、1−エチル−3−メチルイミダゾリウムブロミド、ピリジニウム塩誘導体として、3−メチル−1−プロピルピリジミウムビス(トリフルオロメチルスルフォニル)イミド、1−ブチル−3−メチルピリジニウムビス(トリフルオロメチルスルフォニル)イミド、アルキルアンモニウム誘導体として、テトラブチルアンモニウムヘプタデカフルオロオクタンスルフォネート、テトラフェニルアンモニウムメタンスルフォネート、ホスホニウム塩誘導体として、テトラブチルフォスフォニウムメタンスルフォネート等を示すことができる。   An example of a fluid conductive material is an ionic liquid. Examples of the liquid having ionicity include a liquid in which ions are dissolved. When the solvent is water, examples of the electrolyte include sodium chloride, potassium chloride, lithium chloride, sodium hydroxide, potassium hydroxide, and lithium hydroxide. When the solvent is an organic substance such as dimethyl carbonate, examples of the electrolyte include lithium hexafluorophosphate, lithium tetrafluoroborate, and lithium trifluoromethanesulfonate. As another example of the liquid having ionicity, an ionic liquid can be exemplified. Examples of ionic liquids include 1,3-dimethylimidazolium methyl sulfate, 1-ethyl-3-methylimidazolium bis (pentafluoroethylsulfonyl) imide, 1-ethyl-3-methylimidazole as imidazolium salt derivatives. Palladium bromide, pyridinium salt derivatives, 3-methyl-1-propylpyridium bis (trifluoromethylsulfonyl) imide, 1-butyl-3-methylpyridinium bis (trifluoromethylsulfonyl) imide, alkylammonium derivatives, tetra Examples of butylammonium heptadecafluorooctane sulfonate, tetraphenylammonium methanesulfonate, and phosphonium salt derivatives include tetrabutylphosphonium methanesulfonate. .

これらのイオン性を有する液体を、本発明の昇華性物質を用いて作製した多孔質材料に含浸させることで、導電性を有する物品を形成できる。   By impregnating a porous material produced using the sublimable substance of the present invention with these ionic liquids, an electrically conductive article can be formed.

更に必要に応じて、流動性がある材料には配合成分に応じて適宜選択した溶媒を含有させることができる。このような溶媒としては凝固した昇華性物質が概略溶解しないものを用いることができ、具体的には炭化水素(プロパン、n−ブタン、n−ペンタン、イソヘキサン、シクロヘキサン、n−オクタン、イソオクタン、ベンゼン、トルエン、キシレン、エチルベンゼン、アミルベンゼン、テレピン油、ピネン等)、ハロゲン系炭化水素(塩化メチル、クロロホルム、四塩化炭素、塩化エチレン、臭化メチル、臭化エチル、クロロベンゼン、クロロブロモメタン、ブロモベンゼン、フルオロジクロロメタン、ジクロロジフルオロメタン、ジフルオロクロロエタン等)、アルコール(メタノール、エタノール、n−プロパノール、イソプロパノール、n−アミルアルコール、イソアミルアルコール、n−ヘキサノール、n−ヘプタノール、2−オクタノール、n−ドデカノール、ノナノール、シクロヘキサノール、グリシドール等)、エーテル、アセタール(エチルエーテル、ジクロロエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソアミルエーテル、メチルフェニルエーテル、エチルベンジルエーテル、フラン、フルフラール、2−メチルフラン、シネオール、メチラール)、ケトン(アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−アミルケトン、ジイソブチルケトン、ホロン、イソホロン、シクロヘキサノン、アセトフェノン等)、エステル(ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸−n−アミル、酢酸メチルシクロヘキシル、酪酸メチル、酪酸エチル、酪酸プロピル、ステアリン酸ブチル等)、多価アルコールとその誘導体(エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、メトキシメトキシエタノール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノエチルエーテル等)、脂肪酸及びフェノール(ギ酸、酢酸、無水酢酸、プロピオン酸、無水プロピオン酸、酪酸、イソ吉草酸、フェノール、クレゾール、o−クレゾール、キシレノール等)、窒素化合物(ニトロメタン、ニトロエタン、1−ニトロプロパン、ニトロベンゼン、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジアミルアミン、アニリン、モノメチルアニリン、o−トルイジン、o−クロロアニリン、シクロヘキシルアミン、ジシクロヘキシルアミン、モノエタノールアミン、ホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、アセトニトリル、ピリジン、α−ピコリン、2,4−ルチジン、キノリン、モルホリン等)、硫黄、リン、その他化合物(二硫化炭素、ジメチルスルホキシド、4,4−ジエチル−1,2−ジチオラン、ジメチルスルフィド、ジメチルジスルフィド、メタンチオール、プロパンスルトン、リン酸トリエチル、リン酸トリフェニル、炭酸ジエチル、炭酸エチレン、ホウ酸アミル等)、無機溶剤(液体アンモニア、シリコーンオイル等)、水等を挙げることができる。   Further, if necessary, the fluid material can contain a solvent appropriately selected according to the blending components. As such a solvent, a solvent in which a solidified sublimable substance is not substantially dissolved can be used. Specifically, hydrocarbons (propane, n-butane, n-pentane, isohexane, cyclohexane, n-octane, isooctane, benzene). , Toluene, xylene, ethylbenzene, amylbenzene, turpentine oil, pinene, etc.), halogenated hydrocarbons (methyl chloride, chloroform, carbon tetrachloride, ethylene chloride, methyl bromide, ethyl bromide, chlorobenzene, chlorobromomethane, bromobenzene , Fluorodichloromethane, dichlorodifluoromethane, difluorochloroethane, etc.), alcohol (methanol, ethanol, n-propanol, isopropanol, n-amyl alcohol, isoamyl alcohol, n-hexanol, n-heptanol, 2-octane) , N-dodecanol, nonanol, cyclohexanol, glycidol, etc.), ether, acetal (ethyl ether, dichloroethyl ether, isopropyl ether, n-butyl ether, diisoamyl ether, methylphenyl ether, ethyl benzyl ether, furan, furfural, 2 -Methylfuran, cineol, methylal), ketones (acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-amyl ketone, diisobutyl ketone, phorone, isophorone, cyclohexanone, acetophenone, etc.), esters (methyl formate, ethyl formate, formic acid) Propyl, methyl acetate, ethyl acetate, propyl acetate, n-amyl acetate, methyl cyclohexyl acetate, methyl butyrate, ethyl butyrate, propyl butyrate, stearin Butyl), polyhydric alcohols and their derivatives (ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether, methoxymethoxyethanol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol monomethyl ether, propylene glycol, propylene Glycol monoethyl ether), fatty acids and phenols (formic acid, acetic acid, acetic anhydride, propionic acid, propionic anhydride, butyric acid, isovaleric acid, phenol, cresol, o-cresol, xylenol, etc.), nitrogen compounds (nitromethane, nitroethane, 1-nitropropane, nitrobenzene, monomethylamine, dimethylamine, trimethylamine, monoethylamine Min, diamylamine, aniline, monomethylaniline, o-toluidine, o-chloroaniline, cyclohexylamine, dicyclohexylamine, monoethanolamine, formamide, N, N-dimethylformamide, acetamide, acetonitrile, pyridine, α-picoline, 2,4 -Lutidine, quinoline, morpholine, etc.), sulfur, phosphorus, other compounds (carbon disulfide, dimethyl sulfoxide, 4,4-diethyl-1,2-dithiolane, dimethyl sulfide, dimethyl disulfide, methanethiol, propane sultone, triethyl phosphate , Triphenyl phosphate, diethyl carbonate, ethylene carbonate, amyl borate, etc.), inorganic solvents (liquid ammonia, silicone oil, etc.), water and the like.

流動性がある材料には、更に必要に応じて、安定剤、カップリング剤等を適宜選択して配合することができる。このような安定剤としては、具体的には2,6−ジ−tert−ブチル−フェノール、2,4−ジ−tert−ブチル−フェノール、2,6−ジ−tert−ブチル−4−エチル−フェノール、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチル−アニリノ)−1,3,5−トリアジン等によって例示されるフェノール系酸化防止剤、アルキルジフェニルアミン、N,N′−ジフェニル−p−フェニレンジアミン、6−エトキシ−2,2,4−トリメチル−1,2−ジヒドロキノリン、N−フェニル−N′−イソプロピル−p−フェニレンジアミン等によって例示される芳香族アミン系酸化防止剤、ジラウリル−3,3′−チオジプロピオネート、ジトリデシル−3,3′−チオジプロピオネート、ビス[2−メチル−4−{3−n−アルキルチオプロピオニルオキシ}−5−tert−ブチル−フェニル]スルフィド、2−メルカプト−5−メチル−ベンゾイミダゾール等によって例示されるサルファイド系ヒドロペルオキシド分解剤、トリス(イソデシル)ホスファイト、フェニルジイソオクチルホスファイト、ジフェニルイソオクチルホスファイト、ジ(ノニルフェニル)ペンタエリトリトールジホスファイト、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスファートジエチルエステル、ナトリウムビス(4−tert−ブチルフェニル)ホスファート等によって例示されるリン系ヒドロペルオキシド分解剤、フェニルサリチラート、4−tert−オクチルフェニルサリチラート等によって例示されるサリチレート系光安定剤、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸等によって例示されるベンゾフェノン系光安定剤、2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール、2,2′−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール−2−イル)フェノール]等によって例示されるベンゾトリアゾール系光安定剤、フェニル−4−ピペリジニルカルボナート、セバシン酸ビス−[2,2,6,6−テトラメチル−4−ピペリジニル]等によって例示されるヒンダードアミン系光安定剤、[2,2′−チオ−ビス(4−t−オクチルフェノラート)]−2−エチルヘキシルアミン−ニッケル−(II)によって例示されるNi系光安定剤、シアノアクリレート系光安定剤、シュウ酸アニリド系光安定剤等を挙げることができる。またこのようなカップリング剤としては、具体的にはフッ素系のシランカップリング剤として、(トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリエトキシシラン、エポキシ変性シランカップリング剤として信越化学工業株式会社製カップリング剤(商品名:KBM−403)、オキセタン変性シランカップリング剤として東亞合成株式会社製カップリング剤(商品名:TESOX)、あるいは、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−グリシドキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン等のシランカップリング剤や、トリエタノールアミンチタネート、チタニウムアセチルアセトネート、チタニウムエチルアセトアセテート、チタニウムラクテート、チタニウムラクテートアンモニウム塩、テトラステアリルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリイソステアロイルチタネート、チタニウムラクテートエチルエステル、オクチレングリコールチタネート、イソプロピルトリイソステアロイルチタネート、トリイソステアリルイソプロピルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、テトラ(2−エチルヘキシル)チタネート、ブチルチタネートダイマー、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリス(ジオクチルピロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジ−トリデシル)ホスファイトチタネート、ビス(ジオクチルピロホスフェート)オキシアセテートチタネート、ビス(ジオクチルピロホスフェート)エチレンチタネート、テトラ−i−プロピルチタネート、テトラ−n−ブチルチタネート、ジイソステアロイルエチレンチタネート等のチタン系カップリング剤を挙げることができる。これらの化合物は、1種類、又は2種類以上を適宜組み合わせて使用できる。   If necessary, the material having fluidity can be appropriately mixed with a stabilizer, a coupling agent and the like. Specific examples of such stabilizers include 2,6-di-tert-butyl-phenol, 2,4-di-tert-butyl-phenol, 2,6-di-tert-butyl-4-ethyl- Phenol-based antioxidants exemplified by phenol, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-tert-butyl-anilino) -1,3,5-triazine and the like Agent, alkyldiphenylamine, N, N'-diphenyl-p-phenylenediamine, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, N-phenyl-N'-isopropyl-p-phenylenediamine, etc. Aromatic amine antioxidants, dilauryl-3,3'-thiodipropionate, ditridecyl-3,3'-thiodipropionate A sulfide hydroperoxide decomposer exemplified by bis [2-methyl-4- {3-n-alkylthiopropionyloxy} -5-tert-butyl-phenyl] sulfide, 2-mercapto-5-methyl-benzimidazole and the like; Tris (isodecyl) phosphite, phenyl diisooctyl phosphite, diphenyl isooctyl phosphite, di (nonylphenyl) pentaerythritol diphosphite, 3,5-di-tert-butyl-4-hydroxy-benzyl phosphate diethyl ester , Phosphorus hydroperoxide decomposing agents exemplified by sodium bis (4-tert-butylphenyl) phosphate, etc., salicylates exemplified by phenyl salicylate, 4-tert-octylphenyl salicylate, etc. Benzophenone-based light stabilizers exemplified by 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and the like, 2- (2'-hydroxy-5'-methylphenyl) Benzotriazole-based light exemplified by benzotriazole, 2,2'-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2N-benzotriazol-2-yl) phenol] and the like Stabilizers, hindered amine light stabilizers exemplified by phenyl-4-piperidinyl carbonate, bis- [2,2,6,6-tetramethyl-4-piperidinyl sebacate] and the like, [2,2′- Exemplified by thio-bis (4-t-octylphenolate)]-2-ethylhexylamine-nickel- (II) Examples thereof include Ni-based light stabilizers, cyanoacrylate-based light stabilizers, and oxalic acid anilide-based light stabilizers. As such a coupling agent, specifically, as a fluorine-based silane coupling agent, (tridecafluoro-1,1,2,2-tetrahydrooctyl) triethoxysilane, an epoxy-modified silane coupling agent Coupling agent (trade name: KBM-403) manufactured by Shin-Etsu Chemical Co., Ltd., coupling agent (trade name: TESOX) manufactured by Toagosei Co., Ltd. as an oxetane-modified silane coupling agent, or vinyltrimethoxysilane, vinyltriethoxy Silane, γ-chloropropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxy Silane, γ-glycidoxypropyltrimethoxysilane , Silane coupling agents such as β-glycidoxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, triethanolamine titanate, Titanium acetylacetonate, titanium ethyl acetoacetate, titanium lactate, titanium lactate ammonium salt, tetrastearyl titanate, isopropyl tricumyl phenyl titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, dicumyl phenyloxyacetate titanate, isopropyl trio Kutanoyl titanate, isopropyl dimethacrylisostearoyl titanate, titanium lactate ethyl ester , Octylene glycol titanate, isopropyl triisostearoyl titanate, triisostearyl isopropyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, tetra (2-ethylhexyl) titanate, butyl titanate dimer, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) ) Titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (di) -Tridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate Tochitaneto, mention may be made of bis (dioctyl pyrophosphate) ethylene titanate, tetra -i- propyl titanate, tetra -n- butyl titanate, titanium-based coupling agents such as diisostearoyl ethylene titanate. These compounds can be used alone or in combination of two or more.

流動性がある材料が液体の場合は、ぬれを調節するために各種界面活性剤を含有することができる。このような界面活性剤としては、アニオン界面活性剤として、石ケン、ラウリル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルエーテルリン酸、ポリオキシエチレンアルキルフェニルエーテルリン酸、N−アシルアミノ酸塩、α−オレフィンスルホン酸塩、アルキル硫酸エステル塩、アルキルフェニルエーテル硫酸エステル塩、メチルタウリン酸塩等が挙げられ、両性界面活性剤としては、塩酸アルキルジアミノエチルグリシン、2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、ヤシ油脂肪酸アミドプロピルベタイン、脂肪酸アルキルベタイン、スルホベタイン、アミノオキサイド等が挙げられ、非イオン(ノニオン)型界面活性剤としては、ポリエチレングリコールのアルキルエステル型化合物、トリエチレングリコールモノブチルエーテル等のアルキルエーテル型化合物、ポリオキシソルビタンエステル等のエステル型化合物、アルキルフェノール型化合物、フッ素型化合物、シリコーン型化合物等が挙げられる。これらの化合物は、1種類、又は2種類以上を適宜組み合わせて使用できる。   When the fluid material is a liquid, various surfactants can be contained in order to control wetting. Examples of such surfactants include soaps, lauryl sulfate, polyoxyethylene alkyl ether sulfate, alkyl benzene sulfonate, polyoxyethylene alkyl ether phosphate, polyoxyethylene alkyl phenyl ether phosphate. Acid, N-acyl amino acid salt, α-olefin sulfonate, alkyl sulfate ester salt, alkyl phenyl ether sulfate ester salt, methyl taurate, and the like. Examples of amphoteric surfactants include alkyl diaminoethyl glycine hydrochloride, 2 -Alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, lauryldimethylaminoacetic acid betaine, coconut oil fatty acid amidopropyl betaine, fatty acid alkyl betaine, sulfobetaine, amino oxide, etc. Nonionic (nonionic) surfactants include polyethylene glycol alkyl ester compounds, alkyl ether compounds such as triethylene glycol monobutyl ether, ester compounds such as polyoxysorbitan esters, alkylphenol compounds, and fluorine compounds. Examples thereof include silicone compounds and silicone type compounds. These compounds can be used alone or in combination of two or more.

流動性がある材料は、固化後の機械的強度や熱的特性を向上させるために、必要に応じて各種のフィラーを必要なその他の物性を損なわない範囲で配合できる。絶縁性フィラーとしてはアルミナ、シリカ、ジルコニア、チタニア等の金属酸化物の粉末や、コロイダルシリカやチタニアゾル、アルミナゾル等のゾル、タルク、カオリナイト、スメクタイト等の粘土鉱物、炭化ケイ素、炭化チタン等の炭化物、窒化ケイ素、窒化アルミニウム、窒化チタン等の窒化物、窒化ホウ素、ホウ化チタン、酸化ホウ素等のホウ化物、ムライト等の複合酸化物、水酸化アルミニウム、水酸化マグネシウム等の水酸化物、ポリプロピレン粉末、ポリエチレン粉末、アラミド繊維状粉末等の樹脂等が挙げられる。このようなフィラーを添加した流動性を有する材料を用いて製造した多孔質材料は強度が高いため、電池用のセパレーターとして好ましく用いることができ、電極間に発生するデンドライトがセパレーターを突き抜けることによって発生する短絡の可能性を下げることができる。   In order to improve the mechanical strength and thermal characteristics after solidification, the material having fluidity can be blended with various fillers as necessary as long as other physical properties are not impaired. Insulating fillers include powders of metal oxides such as alumina, silica, zirconia and titania, sols such as colloidal silica, titania sol and alumina sol, clay minerals such as talc, kaolinite and smectite, and carbides such as silicon carbide and titanium carbide. , Nitrides such as silicon nitride, aluminum nitride and titanium nitride, borides such as boron nitride, titanium boride and boron oxide, complex oxides such as mullite, hydroxides such as aluminum hydroxide and magnesium hydroxide, polypropylene powder And resins such as polyethylene powder and aramid fibrous powder. A porous material produced using a fluid material with such filler added has high strength and can be used preferably as a battery separator. Dendrites generated between electrodes penetrate through the separator. The possibility of short circuiting can be reduced.

流動性がある材料は、上記成分を混合し撹拌することによって溶液、懸濁液又は粉体等として得ることができる。撹拌には、プロペラ式ミキサー、プラネタリーミキサー、ハイブリッドミキサー、ニーダー、乳化用ホモジナイザー、超音波ホモジナイザー等の各種撹拌装置を適宜選択できる。また、必要に応じて加熱又は冷却しながら撹拌できる。   The fluid material can be obtained as a solution, suspension, powder, or the like by mixing and stirring the above components. For the stirring, various stirring devices such as a propeller mixer, a planetary mixer, a hybrid mixer, a kneader, an emulsifier homogenizer, and an ultrasonic homogenizer can be appropriately selected. Moreover, it can stir, heating or cooling as needed.

流動性がある材料が液体である場合には、ディスペンサーやスクリーン印刷機、インクジェットプリンター等の様々な装置で任意の形状に簡便に印刷したり形成したりできる。また、中空の支持体間にシャボン球のように前記材料の極薄い膜を形成することができ、前記膜の片面あるいは両面あるいは表面から内部にかけてあるいは両面を貫通したパターンを形成できる。   When the fluid material is a liquid, it can be easily printed or formed into an arbitrary shape by various devices such as a dispenser, a screen printer, and an ink jet printer. In addition, an extremely thin film of the material can be formed between the hollow supports like a soap sphere, and a pattern can be formed from one side or both sides of the membrane, from the surface to the inside, or through both sides.

昇華とは物質が液体を介さずに固体から気体、気体から固体へと相転移する現象を指し、本発明における昇華性物質とは気体から固体へと相転移する物質と固体から気体へと相転移する物質を指す。工程(1)では、気体から固体へと相転移する性質を用いる。また、工程(3)では固体から気体へと相転移する性質を用いることができるが、流動性がある物質を固化形成した後なら固体から液体へと相転移した後に取り除くこともできる。昇華性物質として、ナフタレン、1,7,7−トリメチルビシクロ[2.2.1]ヘプタン−2−オン、固体二酸化炭素、ヨウ素、氷を例示することができる。なお、相転移し易さの観点から昇華性物質は蒸気圧が高い方が好ましい。また、流動性がある材料が液体の場合、昇華性物質は前記液体に概略不溶のものが好ましい。   Sublimation refers to a phenomenon in which a substance undergoes a phase transition from a solid to a gas and from a gas to a solid without going through a liquid, and a sublimable substance in the present invention refers to a phase transition from a gas to a solid and a phase from a solid to a gas. Refers to the substance that is transferred. In the step (1), the property of phase transition from gas to solid is used. In step (3), the property of phase transition from solid to gas can be used. However, after solidifying a fluid substance, it can be removed after phase transition from solid to liquid. Examples of the sublimable substance include naphthalene, 1,7,7-trimethylbicyclo [2.2.1] heptan-2-one, solid carbon dioxide, iodine, and ice. The sublimable substance preferably has a higher vapor pressure from the viewpoint of easy phase transition. When the fluid material is a liquid, the sublimable substance is preferably insoluble in the liquid.

本発明におけるポジパターンは、気相由来の固体の昇華性物質により形成されるパターンを指し、昇華性物質の結晶等の形状がポジパターンとなる。この固体の昇華性物質は、流動性がある材料の表面及び表面から内部に侵入し、ポジパターンの形状を流動性がある材料にネガパターンを与えるように形成できる。ここで、気相由来とは、固体の昇華性物質が気体に由来することを示す。気相由来の固体の昇華性物質は、昇華性物質自体の重力、昇華性物質と流動性がある材料との静電的な相互作用などにより、流動性がある材料の内部に進入すると考えられる。   The positive pattern in the present invention refers to a pattern formed by a solid sublimable substance derived from a gas phase, and the shape of a crystal of the sublimable substance is a positive pattern. This solid sublimable material can be formed to penetrate the surface of the flowable material and from the surface into the interior, giving the positive pattern shape a negative pattern to the flowable material. Here, the term “derived from the gas phase” means that the solid sublimable substance is derived from a gas. A solid sublimable substance derived from the gas phase is considered to enter the fluid material due to the gravity of the sublimate substance itself, electrostatic interaction between the sublimable substance and the fluid material, etc. .

工程(1)のポジパターンの形成は、昇華性物質を昇華点以下の温度に冷却することにより達成できる。気相中に存在する昇華性物質は、昇華点以下の温度に冷却すると流動性がある材料の表面で固体となり、ポジパターンを形成する。   Formation of the positive pattern in step (1) can be achieved by cooling the sublimable substance to a temperature below the sublimation point. When the sublimable substance existing in the gas phase is cooled to a temperature below the sublimation point, it becomes solid on the surface of the fluid material and forms a positive pattern.

昇華性物質は氷であることが実用上の観点から好ましく、工程(1)におけるポジパターンの形成が、流動性がある材料を霜点(そうてん)以下に冷却し、空気中の水分を霜として形成させることで達成できる。   It is preferable from a practical point of view that the sublimable substance is ice, and the formation of the positive pattern in the step (1) is to cool the fluid material below the frost point, and to convert moisture in the air to frost. This can be achieved by forming.

本発明の工程(2)における流動性がある材料の固化は、エネルギー線照射もしくは加熱による材料の硬化、材料の冷却又は材料中の溶剤の揮発による固化を用いることができる。エネルギー線としては、アルファー線、陽子線、中性子線などの粒子線やベータ線のような電子線、ガンマ線やエックス線や紫外線のような電磁波などが例示できる。特に、昇華性物質のポジパターンは高温になると昇華するので、熱の発生が少なくまた冷却しながら固化できるエネルギー線を用いた硬化を好ましく用いることができる。   Solidification of the fluid material in the step (2) of the present invention can be performed by curing the material by irradiation with energy rays or heating, cooling the material, or volatilization of a solvent in the material. Examples of energy rays include particle rays such as alpha rays, proton rays and neutron rays, electron rays such as beta rays, and electromagnetic waves such as gamma rays, X rays and ultraviolet rays. In particular, since the positive pattern of the sublimable substance sublimes at a high temperature, it is preferable to use curing using energy rays that generate less heat and can be solidified while being cooled.

工程(2)をエネルギー線照射により行う場合には、流動性がある材料がエネルギー線硬化型樹脂又はエネルギー線硬化型接着剤を用いることができる。エネルギー線硬化型樹脂又はエネルギー線硬化型接着剤には、上述のプレポリマー等を用いることができる。   When the step (2) is performed by energy beam irradiation, an energy beam curable resin or an energy beam curable adhesive can be used as the fluid material. The above-mentioned prepolymer or the like can be used for the energy beam curable resin or the energy beam curable adhesive.

活性エネルギー線で硬化する流動性がある絶縁性材料として樹脂を用いる場合、加熱硬化に比べて硬化時の熱の発生が少ないので、熱に弱い昇華性物質や昇華温度が低い昇華性物質を用いることができ、また発泡性物質を含有する物品を製造する場合には発泡温度が低い発泡剤を用いることができる。活性エネルギー線としては、前述の陽子線、電子線、電磁波などを例示できる。また、活性エネルギー線を照射する際の雰囲気は限定されるものではなく、大気、窒素やアルゴン等の不活性ガス、真空中等様々な雰囲気、温度環境下で照射することができる。   When using a resin as a fluid insulating material that cures with active energy rays, less heat is generated during curing compared to heat curing, so use a sublimable material that is weak against heat or a sublimable material that has a low sublimation temperature. In the case of producing an article containing a foamable substance, a foaming agent having a low foaming temperature can be used. Examples of the active energy ray include the above-described proton beam, electron beam, and electromagnetic wave. Moreover, the atmosphere at the time of irradiating an active energy ray is not limited, It can irradiate in various atmospheres and temperature environments, such as air | atmosphere, inert gas, such as nitrogen and argon, and a vacuum.

また、工程(2)は、流動性がある材料が溶融した高分子又は金属、合金等である場合には冷却により行うことができる。   Step (2) can be performed by cooling when the fluid material is a molten polymer, metal, alloy, or the like.

溶融状態の流動性がある材料を冷却固化する場合には、流動性がある物質を固化するスピードが速く大量生産が必要な場合に有利である。また、流動性がある材料が発泡性物質を含有し、溶融温度が発泡温度よりも低い場合には、発泡性物質の発泡を速やかにかつ効率よく行うことができ、更に溶融した材料によって発泡に伴う流動性がある物質の破断に伴う破片の発生を防ぐことができる。   When a material having fluidity in a molten state is cooled and solidified, it is advantageous when the mass of the material having fluidity is fast and mass production is required. In addition, when the material having fluidity contains a foaming substance and the melting temperature is lower than the foaming temperature, foaming of the foaming substance can be performed quickly and efficiently. Generation | occurrence | production of the fragment | piece accompanying the fracture | rupture of the substance with the fluidity | liquidity with it can be prevented.

流動性がある材料が揮発性を有する溶剤を含有する場合には、工程(2)における流動性がある材料の固化を、材料中の溶剤の少なくとも一部を揮発させることにより達成することができる。また、この工程のみにより工程(2)が完了することは必要ではなく、溶剤の揮発により流動性がある材料中のプレポリマー等の密度が高くなった状態でエネルギー線照射による硬化等を行うことにより、硬化時の変形、収縮等を抑制することができる。   When the fluid material contains a volatile solvent, the solidification of the fluid material in the step (2) can be achieved by volatilizing at least a part of the solvent in the material. . In addition, it is not necessary to complete step (2) only by this step, and curing by irradiation with energy rays is performed in a state where the density of the prepolymer or the like in the fluid material is increased by volatilization of the solvent. Thus, deformation, shrinkage, etc. during curing can be suppressed.

工程(3)は、昇華性物質を加熱昇華又は減圧昇華することにより容易に行うことが可能である。また、固化した流動性がある材料を実質的に溶解しないが、昇華性物質を溶解する溶剤により行うこともできる。   Step (3) can be easily performed by subjecting the sublimable substance to heat sublimation or sublimation under reduced pressure. Moreover, although the solidified fluid material is not substantially dissolved, it can be carried out with a solvent that dissolves the sublimable substance.

以上の工程を、図1の模式図で示す。   The above process is shown in the schematic diagram of FIG.

ここで、図1は(1)気化した昇華性物質雰囲気1中に固化可能で流動性がある材料2の塗膜が形成された基板3の冷却により、固体の昇華性物質のポジパターン4を流動性がある材料2の表面又は表面から内部にかけて形成させ、次いで(2)流動性がある材料2を固化させた後、(3)昇華性物質を昇華させて除去し、ネガパターン5が形成された物品を製造する方法を示した例である。(a)は気化した昇華性物質雰囲気1中に流動性がある材料2の塗膜を形成した基板3を設置した状態、(b)は流動性がある材料2を昇華性物質の昇華点以下まで冷却し固体の昇華性物質のポジパターン4を流動性がある材料2の表面又は表面から内部にかけて形成した状態、(c)は流動性がある材料を固化した後、昇華性物質を除去させネガパターン5が形成された物品が得られた状態を示している。   Here, FIG. 1 shows (1) a positive pattern 4 of a solid sublimable substance by cooling a substrate 3 on which a coating film of a material 2 that can be solidified and fluidized in a vaporized sublimable substance atmosphere 1 is formed. Forming from the surface of the material 2 having fluidity or from the surface to the inside, and then (2) solidifying the material 2 having fluidity and then (3) sublimating and removing the sublimation material to form a negative pattern 5 It is the example which showed the method of manufacturing manufactured goods. (A) is a state in which a substrate 3 on which a coating film of fluid material 2 is formed in vaporized sublimable substance atmosphere 1, and (b) is a sublimation point of the sublimable substance below fluid material 2. (C) is a state in which the positive pattern 4 of the solid sublimable substance is formed from the surface of the fluid material 2 or from the surface to the inside, and (c) solidifies the fluid material and then removes the sublimable substance. The state in which the article in which the negative pattern 5 is formed is shown.

図1の例の場合、基板3は流動性がある材料2の支持体になっているが、リング状の支持体に流動性がある材料の膜を張りそこに固体の昇華性物質のポジパターンを形成させてパターニングすることや複雑な形状の表面に流動性がある材料の塗膜を形成しパターニングすることも可能であり、特にその実施態様は制限されない。   In the case of the example in FIG. 1, the substrate 3 is a support for the material 2 having fluidity, but a film of the material having fluidity is stretched on the ring-like support, and a positive pattern of a solid sublimation substance is provided there. It is also possible to form the film and pattern it, or to form a film of fluid material on the surface of a complicated shape and pattern it, and the embodiment is not particularly limited.

また、本発明のネガパターンとして多孔質パターンを例示することができ、固体の昇華性物質のポジパターンが固化可能で流動性がある材料表面から内部に侵入する場合には表面から内部にかけて貫通した多孔質パターンを形成することができる。   Moreover, a porous pattern can be illustrated as a negative pattern of the present invention, and when a positive pattern of a solid sublimable substance penetrates from the surface of a solid material that is solidified and fluid, it penetrated from the surface to the inside. A porous pattern can be formed.

次に、図2はネガパターンが固化可能で流動性がある材料の裏面まで貫通している様子を模式的に示す例である。   Next, FIG. 2 is an example schematically showing how the negative pattern penetrates to the back surface of the material that can be solidified and has fluidity.

図2(c)に示す様に、固体の昇華性物質のポジパターン4が、流動性がある材料2の裏面まで貫通する場合、貫通したネガパターン5を形成することができる。固体の昇華性物質のポジパターン4が、流動性がある材料2を貫通するかどうかは固体の昇華性物質のポジパターン4の量や結晶の成長度合いによって変わり、冷却時間や温度、昇華性物質雰囲気1中の昇華性物質の濃度を調整することによって決めることができる。また、固体の昇華性物質のポジパターン4の大きさも、冷却時間や温度、昇華性物質雰囲気1中の昇華性物質の濃度、流動性がある材料と個体の昇華性物質間の比重差や静電的な相互作用や濡れ性によって調整できる。   As shown in FIG. 2C, when the positive pattern 4 of the solid sublimable substance penetrates to the back surface of the material 2 having fluidity, the penetrating negative pattern 5 can be formed. Whether the positive pattern 4 of the solid sublimable substance penetrates the flowable material 2 depends on the amount of the positive pattern 4 of the solid sublimable substance and the degree of crystal growth, and the cooling time, temperature, and sublimable substance. It can be determined by adjusting the concentration of the sublimable substance in the atmosphere 1. In addition, the size of the positive pattern 4 of the solid sublimable substance also includes the cooling time and temperature, the concentration of the sublimable substance in the sublimable substance atmosphere 1, the specific gravity difference between the fluid material and the individual sublimable substance, It can be adjusted by electrical interaction and wettability.

本発明のネガパターンを有する物品を製造する方法の一実施態様は、前記固体の昇華性物質が誘電率及び/又は磁化率に異方性がある物質である場合、少なくとも前記材料を固化する前に、前記固体の昇華性物質を電場及び/又は磁場で任意の方向に配向させる工程を含む。   In one embodiment of the method for producing an article having a negative pattern according to the present invention, when the solid sublimable substance is a substance having anisotropy in dielectric constant and / or magnetic susceptibility, at least before solidifying the material. And orienting the solid sublimable substance in an arbitrary direction with an electric field and / or a magnetic field.

ここで図3は、電場及び/又は磁場6を印加することで、固体の昇華性物質を配向させたときの様子と、配向した固体の昇華性物質のポジパターン7を固化可能で流動性がある材料の表面又は表面から内部にかけてネガパターンを形成したときの様子を模式的に示した例である。   Here, FIG. 3 shows a state in which a solid sublimable substance is oriented by applying an electric field and / or a magnetic field 6, and a positive pattern 7 of the oriented solid sublimable substance can be solidified and has fluidity. It is the example which showed typically a mode when a negative pattern was formed from the surface of a certain material or the surface to the inside.

図3(b)に示す様に、固体の昇華性物質のポジパターン4が誘電率及び/又は磁化率に異方性を有する場合、電場及び/又は磁場6を印加することによって電場及び/又は磁場を印加した方向に対応した方向に配向したネガパターン8を形成できる。   As shown in FIG. 3B, when the positive pattern 4 of the solid sublimable material has anisotropy in dielectric constant and / or magnetic susceptibility, an electric field and / or magnetic field 6 is applied by applying an electric field and / or a magnetic field 6. The negative pattern 8 oriented in the direction corresponding to the direction in which the magnetic field is applied can be formed.

ここで、本発明でいう磁場(磁界)H(単位はAT/m=アンペア-ターン/メートル)とは、電荷が動くことによって生じる渦状の場を指し、電荷の動きに力を及ぼす。磁場の強さは磁束密度B(単位はT=テスラ)で表され、磁界と垂直な面積S(m2)を貫く磁力線の数Φ(単位はWb=ウェーバー)を面積で割ったものである。 Here, the magnetic field (magnetic field) H (unit: AT / m = ampere-turn / meter) in the present invention refers to a vortex-like field generated by the movement of electric charges, and exerts a force on the movement of electric charges. The strength of the magnetic field is represented by magnetic flux density B (unit: T = Tesla), and is the number of magnetic lines Φ (unit: Wb = Weber) penetrating the area S (m 2 ) perpendicular to the magnetic field divided by the area. .

式1 B=Φ/S (Wb/m2=T) Formula 1 B = Φ / S (Wb / m 2 = T)

このような磁場は、電磁石のように電流を流すことで発生させたり、永久磁石のように物質が持つ電子スピンの磁気モーメントの方向を揃えることで発生させたりすることができる。また、磁束密度Bと磁場Hは、真空中では以下の関係式で表せる。   Such a magnetic field can be generated by passing an electric current as in an electromagnet, or can be generated by aligning the direction of the magnetic moment of an electron spin of a substance as in a permanent magnet. Further, the magnetic flux density B and the magnetic field H can be expressed by the following relational expression in a vacuum.

式2 B=μ0Formula 2 B = μ 0 H

ここで、μ0は真空の透磁率で、有理単位で4Π×10−7(ヘンリー/メートル=H/m)、非有理単位で1(無名数)であり、磁束密度Bと磁場強度Hを結びつける係数である。また、磁場中に物質を置いた際の磁束密度Bと磁場の強さHとの比μをμ0で割ったものを透磁率K(ヘンリー/メートル=H/m)という。 Here, μ 0 is the permeability of vacuum, which is 4Π × 10 −7 (Henry / meter = H / m) in rational units, and 1 (anonymous number) in non-rational units, and the magnetic flux density B and magnetic field strength H are It is a coefficient to tie. Further, the magnetic permeability K (Henry / meter = H / m) is obtained by dividing the ratio μ between the magnetic flux density B and the magnetic field strength H when a substance is placed in a magnetic field by μ 0 .

式3 K=μ/μ0 Formula 3 K = μ / μ 0

磁場による物質の相互作用の強さは磁化率χで示され、その絶対値が大きい方がより強く物質に磁場が誘起され、誘起した磁場と強い磁気的相互作用を起こす。そして、上述した透磁率Kとは非有理単位で以下の関係式が成り立つ。   The strength of the interaction of the material by the magnetic field is indicated by the magnetic susceptibility χ, and the larger the absolute value, the stronger the magnetic field is induced in the material, causing a strong magnetic interaction with the induced magnetic field. The above-described magnetic permeability K is a non-rational unit and the following relational expression is established.

式4 K=1+χ             Equation 4 K = 1 + χ

以下の説明においては、特に断りが無い限り、磁化率χは非有理単位で示す。次に、代表的な物質の磁気異方性を表1に示す。ここで例示したのは、結晶構造に由来する磁気異方性であるが、高分子を延伸して得られた繊維や、磁化率の違う材料を組み合わせた材料等、人工的に磁気異方性を持たせた物質や形状異方性を有する材料に対しても適切な磁場を印加することで配向させることができる。   In the following explanation, unless otherwise specified, the magnetic susceptibility χ is shown in a non-rational unit. Next, Table 1 shows the magnetic anisotropy of typical substances. The examples shown here are magnetic anisotropy derived from the crystal structure, but artificially magnetic anisotropy, such as fibers obtained by stretching polymers and materials combining different magnetic susceptibility, etc. The material can be oriented by applying an appropriate magnetic field to a material having a shape or a material having shape anisotropy.

磁場と物質との相互作用は、磁場の強さと磁化率χの絶対値で決まり、磁場が強く磁化率χの絶対値が大きい軸が磁場に対して平行に配向しようとする力が強くなる。実際にどの方向に向くか(磁化容易軸)は結晶の3軸の磁気異方性の釣り合いで決定される。   The interaction between the magnetic field and the substance is determined by the strength of the magnetic field and the absolute value of the magnetic susceptibility χ, and the force to align the axis where the magnetic field is strong and the absolute value of the magnetic susceptibility χ is large is parallel to the magnetic field. Which direction it is actually oriented (easy magnetization axis) is determined by the balance of the three-axis magnetic anisotropy of the crystal.

また、磁気異方性とは、外部磁場によって励起される磁化に対して物質内で異方性を有することをさし、磁場内では磁気的相互作用によりトルクを発生し、より安定な方向に回転する。分子構造に異方性を有する物質は、磁気的にも異方性を持ち、例えば延伸して作った繊維は分子鎖が延伸方向に並んでいるため、繊維方向(//)とそれに垂直な方向(⊥)では磁化率が異なる。繊維が反磁性を示す場合は、その差を反磁性異方性磁化率(χa)と呼び、任意の軸に対する磁化率の差で表す。   Also, magnetic anisotropy means that there is anisotropy in a substance with respect to magnetization excited by an external magnetic field. In the magnetic field, torque is generated by magnetic interaction, and in a more stable direction. Rotate. Substances that have anisotropy in the molecular structure also have magnetic anisotropy. For example, in a fiber made by drawing, molecular chains are aligned in the drawing direction, so the fiber direction (//) and perpendicular to it The magnetic susceptibility differs in the direction (率). When the fiber exhibits diamagnetism, the difference is called diamagnetic anisotropic magnetic susceptibility (χa), and is represented by the difference in magnetic susceptibility with respect to an arbitrary axis.

χa=χ//−χ⊥ χ a = χ // − χ⊥

このような磁気異方性を持つ反磁性物質を強度Bの磁場中に置くと、物質は磁気エネルギーEを獲得する。 When a diamagnetic material having such magnetic anisotropy is placed in a magnetic field of strength B, the material acquires magnetic energy E.

ここでμは真空の透磁率、Vは物体の体積、θは磁場と繊維軸方向のなす角度、Bは外部磁場強度である。 Here, μ 0 is the vacuum permeability, V is the volume of the object, θ is the angle between the magnetic field and the fiber axis direction, and B is the external magnetic field strength.

χa>0の場合には、繊維軸方向が磁場と平行になったほうが磁気エネルギーは小さくなり安定である。その結果、磁場に平行に配向する。 When χ a > 0, the magnetic energy becomes smaller and more stable when the fiber axis direction is parallel to the magnetic field. As a result, it is oriented parallel to the magnetic field.

このように一軸配向する繊維については、以上のように記述することができる。一方、磁気異方性が三軸で異なる物質は、配向の方向が空間的に決まる。この場合、三軸の磁気異方性の数値から外場に対してどの方向に物質が配向するかが決まる。   Such a uniaxially oriented fiber can be described as described above. On the other hand, the direction of orientation of substances having different magnetic anisotropy in three axes is spatially determined. In this case, the direction in which the substance is oriented with respect to the external field is determined from the value of the triaxial magnetic anisotropy.

また、外部磁場が大きいとき、体積が大きいとき、より強く磁気的エネルギーを受けることが式からわかる。   It can also be seen from the formula that when the external magnetic field is large and when the volume is large, the magnetic energy is received more strongly.

磁気異方性を有する物質には、物質内の電子状態に異方性を有するものがある。上述したような繊維の場合、延伸した方向に分子が並ぶことで、結合を通じた電子の流れに異方性が生じる。また、結晶構造に異方性を有する物質も磁場内で配向する。一方、磁気的な異方性が無い場合も物質の形状に異方性を有する場合は配向する。   Some substances having magnetic anisotropy have anisotropy in the electronic state in the substance. In the case of the fibers described above, anisotropy occurs in the flow of electrons through the bonds by arranging the molecules in the stretched direction. A substance having anisotropy in the crystal structure is also oriented in the magnetic field. On the other hand, even when there is no magnetic anisotropy, the material is oriented if it has anisotropy.

このような物質に磁場を印加すると磁気的に安定な方向に配向するが、例えば一軸回転する磁場を、磁気異方性を有する材料に印加した場合、回転軸に対して物質の磁化困難軸が磁場の回転軸に平行に配向する。また、このように、磁気異方性を有する物質に印加する磁場は前記回転磁場を含め、時間的に磁場の印加方向や強度が変動する磁場を印可することも可能である。   When a magnetic field is applied to such a substance, it is oriented in a magnetically stable direction. However, when a magnetic field that rotates uniaxially is applied to a material having magnetic anisotropy, for example, the axis of hard magnetization of the substance is relative to the rotational axis. Oriented parallel to the rotation axis of the magnetic field. In addition, as described above, the magnetic field applied to the substance having magnetic anisotropy can be a magnetic field in which the application direction and strength of the magnetic field vary with time, including the rotating magnetic field.

以上、磁場中における磁気異方性を有する物質の挙動について述べたが、電場中の誘電率異方性を有する物質の挙動も同等の原理で説明できる。   Although the behavior of a substance having magnetic anisotropy in a magnetic field has been described above, the behavior of a substance having dielectric anisotropy in an electric field can also be explained by an equivalent principle.

このような磁場配向を行う物質に他の物質をコーティングしたり複合したりすることもできるが、磁場配向を実施する場合は有効な磁気異方性が失われない範囲で行う必要がある。   Although it is possible to coat or combine other substances with a substance that performs such magnetic field orientation, it is necessary to perform the magnetic field orientation within a range that does not lose effective magnetic anisotropy.

流動性がある材料中で、磁気及び/又は誘電率の異方性を有する物質を磁場及び/又は電場で配向させる場合、熱エネルギーに由来するランダムな回転運動や、粘性抵抗に打ち勝つ必要がある。磁気及び/又は誘電率の異方性が小さい物質を配向させるためには、強い磁場及び/又は電場を用いるのが有利であり、粘度の低い流体を用いることによりプロセスを短時間で終わらせることもできる。   When a substance having magnetic and / or dielectric anisotropy is oriented in a magnetic material and / or electric field in a flowable material, it is necessary to overcome random rotational motion derived from thermal energy and viscous resistance. . In order to orient a substance having a small magnetic and / or dielectric anisotropy, it is advantageous to use a strong magnetic field and / or electric field, and the process can be completed in a short time by using a low-viscosity fluid. You can also.

また、磁気及び/又は誘電率の異方性を有する物質が沈降しないように、比重を調整した流動性がある材料中で磁場及び/又は電場を用いて配向させることが好ましい。   Moreover, it is preferable to orient using a magnetic field and / or an electric field in a fluid material whose specific gravity is adjusted so that a substance having magnetic and / or dielectric anisotropy does not settle.

磁気異方性が無い材料を配向させるその他の方法として、磁気異方性の無い材料に異方性を有する物質を配向付着させる方法を用いることができる。この場合、配向付着した異方性を有する物質の異方性によって磁気異方性の無い材料を間接的に磁場配向させることができる。例えば、界面活性剤がその分子間力によって配向付着した扁平な形状の磁気異方性が無い物質は、界面活性剤の磁気異方性によって静磁場でも配向できる。   As another method of orienting a material having no magnetic anisotropy, a method of orienting and attaching a substance having anisotropy to a material having no magnetic anisotropy can be used. In this case, a material without magnetic anisotropy can be indirectly magnetically oriented by the anisotropy of the substance having anisotropy attached to the orientation. For example, a flat substance having no magnetic anisotropy in which a surfactant is aligned and adhered by the intermolecular force can be aligned even in a static magnetic field due to the magnetic anisotropy of the surfactant.

特に、磁場及び/又は電場を用いた配向の観点から述べると、流動性がある材料が液体である場合が好ましく、液体の粘度が低いほど磁場及び/又は電場を用いた配向に対する粘性抵抗が小さくなり、その結果、磁場及び/又は電場による配向をスムーズに行えるため、更に好ましいといえる。これ以外にも、流動性を有する粉や、気体に対しても適応可能であり、材料の種類にはとらわれない。   In particular, in terms of orientation using a magnetic field and / or electric field, the fluid material is preferably a liquid, and the lower the viscosity of the liquid, the smaller the viscous resistance to orientation using the magnetic field and / or electric field. As a result, the orientation by the magnetic field and / or the electric field can be smoothly performed, which is more preferable. Besides this, it can be applied to fluid powder and gas, and is not restricted by the type of material.

また、磁場もしくは電場は磁化率の高い物質もしくは誘電率の高い物質に吸い込まれ、磁力線もしくは電気力線を曲げることができる。このような特性を利用して磁力線もしくは電気力線を磁化率もしくは誘電率の高い物質からなるパターンに沿って曲げ、曲がった磁力線もしくは電気力線に沿って磁気異方性もしくは誘電率に異方性を有する物質を傾斜配向させることもできる。   In addition, a magnetic field or an electric field can be absorbed by a substance having a high magnetic susceptibility or a substance having a high dielectric constant, and the lines of magnetic force or lines of electric force can be bent. Using these characteristics, magnetic lines of force or electric lines of force are bent along a pattern made of a material having a high magnetic susceptibility or dielectric constant, and anisotropic to the magnetic anisotropy or dielectric constant along the bent lines of magnetic force or electric lines of force. It is also possible to tilt and align the material having the property.

本発明のネガパターンを有する物品を製造する方法のその他の実施態様は、ネガパターンが、流動性がある材料の表面から内部にかけての孔の体積分率を連続的に変化させたパターンである物品を製造する方法である。工程(1)で形成されたポジパターンの形状がネガパターンとして形成されるため、ネガパターンは、ポジパターンが表面から内部にかけて進入したときの形状になる。よって、表面から内部にかけてパターンの空隙率が連続的に変化したパターンを形成することが可能であり、傾斜材料の作製に応用できる。   In another embodiment of the method for producing an article having a negative pattern according to the present invention, the negative pattern is a pattern in which the volume fraction of pores from the surface to the inside of the fluid material is continuously changed. It is a method of manufacturing. Since the shape of the positive pattern formed in the step (1) is formed as a negative pattern, the negative pattern becomes a shape when the positive pattern enters from the surface to the inside. Therefore, it is possible to form a pattern in which the porosity of the pattern changes continuously from the surface to the inside, and it can be applied to the production of a gradient material.

この応用例として、得られる物品が、流動性がある材料の表面から内部にかけて連続的に体積分率が変化する光の波長以下の直径かつ光の波長以上の深さの空孔を有する場合、屈折率が連続的に変化する傾斜材料を得ることができる。この場合の孔の直径は100nm以下であることが好ましく50nm以下であることが更に好ましく、孔の深さは500nm以上が好ましく1μm以上が更に好ましい。このような材料は空気と固化後の材料の体積分率に比例した連続的な屈折率を有する傾斜材料となり、空気界面の光反射を小さくすることができる。   As an example of this application, when the obtained article has pores having a diameter equal to or less than the wavelength of light and a depth equal to or greater than the wavelength of light whose volume fraction continuously changes from the surface of the fluid material to the inside thereof, A gradient material having a continuously changing refractive index can be obtained. In this case, the hole diameter is preferably 100 nm or less, more preferably 50 nm or less, and the hole depth is preferably 500 nm or more, and more preferably 1 μm or more. Such a material becomes a gradient material having a continuous refractive index proportional to the volume fraction of the air and the solidified material, and light reflection at the air interface can be reduced.

本発明のネガパターンを有する物品を製造する方法のその他の実施態様は、流動性がある材料をガラス表面に塗布したものであり、工程(1)〜(3)によりネガパターンが、ガラス表面に形成される方法である。このネガパターン内には空気層が存在するため、ガラス表面にネガパターンによる断熱効果を持つガラスを製造することに好ましく適応することができる。このネガパターンは多孔質パターンであることが更に好ましく、ネガパターンのサイズは光の波長以下であるほうが透明性の観点から更に好ましい。また、ネガパターン表面の表面張力を表面処理剤などで下げることにより、超撥水表面を形成することもできる。   In another embodiment of the method for producing an article having a negative pattern according to the present invention, a fluid material is applied to the glass surface, and the negative pattern is formed on the glass surface by the steps (1) to (3). It is a method to be formed. Since an air layer exists in this negative pattern, it can be preferably applied to the production of glass having a heat insulating effect due to the negative pattern on the glass surface. The negative pattern is more preferably a porous pattern, and the size of the negative pattern is more preferably less than the wavelength of light from the viewpoint of transparency. Moreover, a super-water-repellent surface can be formed by lowering the surface tension of the negative pattern surface with a surface treatment agent or the like.

また、本発明のネガパターンを有する物品が表面に形成された電極を製造する方法の態様は、流動性がある材料が接着性を有しかつ少なくとも固化後に絶縁性を示すものであって、(1)電極に塗布した前記流動性がある材料の表面から内部にかけて、気相由来の固体の昇華性物質のポジパターンを形成する工程、(2)前記材料を固化する工程、(3)前記昇華性物質を除去する工程、をこの順で行う。絶縁性のネガパターンを有する物品の内孔が裏面まで貫通している物品はセパレーターとして使用することができる。この場合、流動性がある材料で電極を被覆し次いで多孔質パターンを形成することによって、対向電極と接することなくイオンによる電気伝導のみを起こすセパレーター一体型の電極を製造できる。このように、固体の昇華性物質のポジパターンは表面から内部にかけて進入するため、表面から裏面にかけて貫通した多孔質パターンを簡便に形成でき、多孔質パターンによる透過性を有する物品としての利用が可能で、特に電池もしくはキャパシタ用のセパレーターとしての応用に好ましく適応できる。また、流動性がある材料の塗布形成が可能であるため極薄い多孔質パターンを有する物品の膜で電極表面を被覆することも可能であり、その分電極間距離を小さくできるためハイレートで充放電が行える電池の開発や薄い電池の開発および薄くなった分活物質を詰め込むことで容量の大きい電池の開発に有効に用いることができる。更に、電極とセパレーターを一体形成できるため、工程の簡略化を行うこともできる。更に、発泡性物質を配合したセパレーターは、熱暴走時に発泡して電気の流れを安全に止める安全機構としても用いることができる。更に、本方法によると三次的に重合する熱硬化性の光ラジカル硬化性アクリル樹脂や光カチオン硬化性エポキシ樹脂およびオキセタン樹脂を用いて連続的にセパレーターを製造できるため、異常発熱時にセパレーターが溶解して熱暴走が起きる可能性が低い耐熱性の高いセパレーターを簡便に製造することができる。   Moreover, the aspect of the method for producing an electrode having an article having a negative pattern according to the present invention formed on the surface is such that the fluid material has adhesiveness and at least exhibits insulation after solidification, 1) A step of forming a positive pattern of a solid sublimable substance derived from a gas phase from the surface to the inside of the fluid material applied to the electrode, (2) a step of solidifying the material, and (3) the sublimation. The step of removing the active substance is performed in this order. An article in which the inner hole of the article having an insulating negative pattern penetrates to the back surface can be used as a separator. In this case, by coating the electrode with a fluid material and then forming a porous pattern, it is possible to manufacture a separator-integrated electrode that causes only electric conduction by ions without being in contact with the counter electrode. In this way, since the positive pattern of the solid sublimable material enters from the surface to the inside, a porous pattern penetrating from the front surface to the back surface can be easily formed, and can be used as an article having permeability by the porous pattern. In particular, it can be preferably applied to an application as a separator for a battery or a capacitor. In addition, it is possible to coat and form a material with fluidity, so it is possible to cover the electrode surface with a film of an article having an extremely thin porous pattern. Can be effectively used for development of a battery having a large capacity by developing a battery capable of performing the above, developing a thin battery, and packing a thinned active material. Furthermore, since the electrode and the separator can be integrally formed, the process can be simplified. Furthermore, the separator which mix | blended the foamable substance can be used also as a safety mechanism which foams at the time of thermal runaway and stops the flow of electricity safely. Furthermore, according to this method, a separator can be continuously produced using a thermosetting photo-radical curable acrylic resin, a photo-cation curable epoxy resin and an oxetane resin that are polymerized in a tertiary manner, so that the separator dissolves during abnormal heat generation. Thus, it is possible to easily manufacture a separator having high heat resistance and low possibility of thermal runaway.

図4はセパレーターが一体形成された電極の製造方法の模式図であり、(a)は電極9の表面に接着性を有する固化可能で流動性がある材料2をコーティングした状態、(b)は固体の昇華性物質によるポジパターン4を流動性がある材料2の表面に形成した状態、(c)は昇華性物質を除去することで貫通した多孔質パターンの孔10を形成した状態を示している。   FIG. 4 is a schematic view of an electrode manufacturing method in which a separator is integrally formed. (A) is a state in which the surface of the electrode 9 is coated with a solidified and fluid material 2 having adhesiveness, and (b) A state in which a positive pattern 4 made of a solid sublimable substance is formed on the surface of the fluid material 2, and (c) shows a state in which pores 10 having a porous pattern are formed by removing the sublimable substance. Yes.

図4に示す様に、多孔質材料が一体化した電極を容易に作製することが可能であり、セパレーターやセパレーターを設置する工程を削減することができる。また、電極表面全体をセパレーターで保護できるため、対向電極とのショートによる事故の確率を減らすこともできる。   As shown in FIG. 4, it is possible to easily produce an electrode in which a porous material is integrated, and the number of steps for installing a separator or a separator can be reduced. Moreover, since the entire electrode surface can be protected by the separator, the probability of an accident due to a short circuit with the counter electrode can be reduced.

電池やキャパシタにおいては、電極面積や体積がその電気的な容量、出力及び/又は効率を決めるため、一般に電極面積が広くなるように作製されるためその全面に安全装置を組み込むことは困難である。一方、セパレーターとして発泡性物質を有する多孔質材料を用いることで電極全面に安全装置を簡便に設置できる。また、本発明は発泡によって電流の流れを遮断するため、電極間に導電性の異物が入ったりデンドライトが発生したりすることによってショートが発生した場合でも、異物やデンドライトを発泡による膨張で押し上げることでショートを解消できる。   In a battery or capacitor, the electrode area and volume determine its electrical capacity, output and / or efficiency, so it is generally difficult to incorporate a safety device on the entire surface because the electrode area is widened. . On the other hand, a safety device can be simply installed on the entire surface of the electrode by using a porous material having a foamable substance as a separator. In addition, since the current flow is blocked by foaming in the present invention, even when a conductive foreign matter enters between electrodes or a dendrite is generated and a short circuit occurs, the foreign matter and dendrite are pushed up by expansion due to foaming. Can solve the short circuit.

本発明のネガパターンを有する物品を製造する方法のその他の実施態様は、流動性がある材料が任意の温度で発砲する発泡性物質を含有することで、得られた物品が所定の温度で発泡することを特徴とする。   In another embodiment of the method for producing an article having a negative pattern of the present invention, the flowable material contains a foamable substance that fires at an arbitrary temperature, so that the obtained article is foamed at a predetermined temperature. It is characterized by doing.

上記発泡性物質は、一般的に固体もしくは液体から気体になるときの体積膨張率が大きいため、前記所定の温度で気化する固体もしくは液体であることが好ましく、気化は、化学的分解、昇華、沸騰等により起こるものを選べる。発泡性物質の発泡倍率が大きいものを選ぶことで発泡効率を高めることができ、10倍以上の体積膨張率を有する物質が好ましく、50倍以上の体積膨張率を有する物質が更に好ましい。   The foamable substance generally has a large volume expansion coefficient when it becomes a gas from a solid or liquid, and is preferably a solid or liquid that vaporizes at the predetermined temperature. The vaporization includes chemical decomposition, sublimation, You can choose what happens by boiling. Foaming efficiency can be increased by selecting a foamable substance having a large expansion ratio, and a substance having a volume expansion coefficient of 10 times or more is preferable, and a substance having a volume expansion coefficient of 50 times or more is more preferable.

所定の温度に達すると化学的分解を起こす発泡性物質が、例えば1の分子からなる物質が化学的に分解して2以上の分子になる場合、更に体積膨張率が大きくなるため、発泡剤の発泡倍率を大きくし発泡効率を高めることができる。このような化学的分解を起こす物質としては、炭酸水素ナトリウム、p,p’−オキシビスベンゼンスルホニルヒドラジド、アゾジカルボン酸アミド、N,N’−ジニトロソペンタメチレンテトラミン、4,4’−オキシビス(ベンゼンスルホニルヒドラジド)等を例示できる。   When the foaming substance that causes chemical decomposition when it reaches a predetermined temperature, for example, when a substance consisting of one molecule is chemically decomposed into two or more molecules, the volume expansion coefficient further increases. The foaming efficiency can be increased by increasing the foaming ratio. Substances causing such chemical decomposition include sodium hydrogen carbonate, p, p′-oxybisbenzenesulfonylhydrazide, azodicarboxylic acid amide, N, N′-dinitrosopentamethylenetetramine, 4,4′-oxybis ( And benzenesulfonyl hydrazide).

所定の温度に達すると昇華する発泡性物質としては、ナフタレン、1,7,7−トリメチルビシクロ[2.2.1]ヘプタン−2−オン、固体二酸化炭素、ヨウ素等を例示できる。   Examples of the foaming substance that sublimes when reaching a predetermined temperature include naphthalene, 1,7,7-trimethylbicyclo [2.2.1] heptan-2-one, solid carbon dioxide, iodine and the like.

所定の温度に達すると沸騰する発泡性物質としては、炭化水素(プロパン、n−ブタン、n−ペンタン、イソヘキサン、シクロヘキサン、n−オクタン、イソオクタン、ベンゼン、トルエン、キシレン、エチルベンゼン、アミルベンゼン、テレピン油、ピネン等)、ハロゲン系炭化水素(塩化メチル、クロロホルム、四塩化炭素、塩化エチレン、臭化メチル、臭化エチル、クロロベンゼン、クロロブロモメタン、ブロモベンゼン、フルオロジクロロメタン、ジクロロジフルオロメタン、ジフルオロクロロエタン等)、アルコール(メタノール、エタノール、n−プロパノール、イソプロパノール、n−アミルアルコール、イソアミルアルコール、n−ヘキサノール、n−ヘプタノール、2−オクタノール、n−ドデカノール、ノナノール、シクロヘキサノール、グリシドール等)、エーテル、アセタール(エチルエーテル、ジクロロエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソアミルエーテル、メチルフェニルエーテル、エチルベンジルエーテル、フラン、フルフラール、2−メチルフラン、シネオール、メチラール)、ケトン(アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−アミルケトン、ジイソブチルケトン、ホロン、イソホロン、シクロヘキサノン、アセトフェノン等)、エステル(ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸−n−アミル、酢酸メチルシクロヘキシル、酪酸メチル、酪酸エチル、酪酸プロピル、ステアリン酸ブチル等)、多価アルコールとその誘導体(エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、メトキシメトキシエタノール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノエチルエーテル等)、脂肪酸及びフェノール(ギ酸、酢酸、無水酢酸、プロピオン酸、無水プロピオン酸、酪酸、イソ吉草酸、フェノール、クレゾール、o−クレゾール、キシレノール等)、窒素化合物(ニトロメタン、ニトロエタン、1−ニトロプロパン、ニトロベンゼン、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジアミルアミン、アニリン、モノメチルアニリン、o−トルイジン、o−クロロアニリン、シクロヘキシルアミン、ジシクロヘキシルアミン、モノエタノールアミン、ホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、アセトニトリル、ピリジン、α−ピコリン、2,4−ルチジン、キノリン、モルホリン等)、硫黄、リン、その他化合物(二硫化炭素、ジメチルスルホキシド、4,4−ジエチル−1,2−ジチオラン、ジメチルスルフィド、ジメチルジスルフィド、メタンチオール、プロパンスルトン、リン酸トリエチル、リン酸トリフェニル、炭酸ジエチル、炭酸エチレン、ホウ酸アミル等)、無機溶剤(液体アンモニア、シリコーンオイル等)、液体金属、水等の液体を例示できる。   Foamable substances that boil when they reach a certain temperature include hydrocarbons (propane, n-butane, n-pentane, isohexane, cyclohexane, n-octane, isooctane, benzene, toluene, xylene, ethylbenzene, amylbenzene, turpentine oil. , Pinene, etc.), halogenated hydrocarbons (methyl chloride, chloroform, carbon tetrachloride, ethylene chloride, methyl bromide, ethyl bromide, chlorobenzene, chlorobromomethane, bromobenzene, fluorodichloromethane, dichlorodifluoromethane, difluorochloroethane, etc.) Alcohol (methanol, ethanol, n-propanol, isopropanol, n-amyl alcohol, isoamyl alcohol, n-hexanol, n-heptanol, 2-octanol, n-dodecanol, nonanol, Lohexanol, glycidol, etc.), ether, acetal (ethyl ether, dichloroethyl ether, isopropyl ether, n-butyl ether, diisoamyl ether, methylphenyl ether, ethylbenzyl ether, furan, furfural, 2-methylfuran, cineol, methylal) , Ketones (acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n-amyl ketone, diisobutyl ketone, phorone, isophorone, cyclohexanone, acetophenone, etc.), esters (methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, Propyl acetate, n-amyl acetate, methyl cyclohexyl acetate, methyl butyrate, ethyl butyrate, propyl butyrate, butyl stearate, etc.), polyhydric alcohols and their derivatives ( Tylene glycol, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether, methoxymethoxyethanol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol monomethyl ether, propylene glycol, propylene glycol monoethyl ether, etc.), fatty acids and phenols ( Formic acid, acetic acid, acetic anhydride, propionic acid, propionic anhydride, butyric acid, isovaleric acid, phenol, cresol, o-cresol, xylenol, etc., nitrogen compounds (nitromethane, nitroethane, 1-nitropropane, nitrobenzene, monomethylamine, dimethyl) Amine, trimethylamine, monoethylamine, diamylamine, aniline, monomethyl Aniline, o-toluidine, o-chloroaniline, cyclohexylamine, dicyclohexylamine, monoethanolamine, formamide, N, N-dimethylformamide, acetamide, acetonitrile, pyridine, α-picoline, 2,4-lutidine, quinoline, morpholine, etc. ), Sulfur, phosphorus, other compounds (carbon disulfide, dimethyl sulfoxide, 4,4-diethyl-1,2-dithiolane, dimethyl sulfide, dimethyl disulfide, methanethiol, propane sultone, triethyl phosphate, triphenyl phosphate, carbonic acid Examples thereof include liquids such as diethyl, ethylene carbonate, and amyl borate), inorganic solvents (such as liquid ammonia and silicone oil), liquid metals, and water.

発泡性物質から発生した気体は、難燃性であることが好ましく、異常発熱の結果燃焼した場合の損傷を最小限にとどめることができる。   The gas generated from the foamable material is preferably flame retardant, and damage when burned as a result of abnormal heat generation can be minimized.

発泡性物質は、前記所定の温度以上で軟化する軟化性物質で被覆できる。この軟化性物質の被膜が発泡性物質の発泡の結果破裂せず、内部で発生した気体を閉じ込めて膨らむものが好ましく、軟化性物質を発泡により風船のように膨らませることで発泡効率を高めることができる。また、発泡後に温度が下がったり外部から応力が掛かったりした場合に、収縮してしまうことを膨らんだ軟化性物質によって防げる。   The foamable material can be coated with a softening material that softens above the predetermined temperature. It is preferable that this softening material coating does not rupture as a result of foaming of the foaming material, and confines and expands the gas generated inside, and the foaming efficiency is increased by inflating the softening material like a balloon by foaming. Can do. Further, when the temperature drops after foaming or when stress is applied from the outside, shrinkage can be prevented by the expanded softening substance.

この軟化性物質が、軟化する温度は発泡する温度に近いほど好ましく、発泡する温度よりも高いほうが更に好ましい。軟化する温度と発泡する温度の温度差は100℃以内が好ましい。このような軟化する物質として、有機物である各種熱可塑性高分子をあげることができ、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリビニルアルコール、ポリ酢酸ビニル、アクリロニトリルブタジエンスチレン樹脂等を例示することができる。   The softening temperature of the softening material is preferably as close as possible to the foaming temperature, and more preferably higher than the foaming temperature. The temperature difference between the softening temperature and the foaming temperature is preferably within 100 ° C. Examples of such softening substances include various thermoplastic polymers that are organic substances, and examples thereof include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl alcohol, polyvinyl acetate, and acrylonitrile butadiene styrene resin. .

更に、発泡性物質の表面を導電性材料で緻密に被覆することにより発泡前の発泡性物質から徐徐に発生するガスを封じ込めることができ、長期間にわたって発泡性物質の発泡特性を維持できる。長期にわたって発泡特性の維持が求められる用途(家電製品や車載用の電子装置等)に対しては、上述のような処方は有効である。なお、発泡性物質の発泡に伴い被覆した導電性材料は破断するが、発泡性材料が軟化性物質で被覆されている場合には、軟化性物質が発泡性物質から発生した気体の漏れにより発泡効率が低下することを防ぎ発泡効率を維持できる。   Furthermore, the surface of the foamable substance is densely covered with a conductive material, so that the gas generated gradually from the foamable substance before foaming can be contained, and the foaming characteristics of the foamable substance can be maintained over a long period of time. The prescription as described above is effective for applications that require maintenance of foaming characteristics over a long period of time (such as home appliances and in-vehicle electronic devices). The conductive material covered with foaming of the foamable material breaks, but when the foamable material is covered with a softening material, the softening material foams due to the leakage of gas generated from the foamable material. It is possible to prevent the efficiency from decreasing and maintain the foaming efficiency.

発泡性物質は任意の量を添加することが可能だが、特に電池やキャパシタの熱時の暴走を発泡によって電流の流れを遮断して止める用途に用いる場合は、導電性組成物が発泡によって絶縁性、すなわち少なくとも発泡前よりも電気的な抵抗が大きい状態、もしくは使用条件において実質的に電流が流れない状態になるために必要な量を添加する。この量は、導電性材料の種類、粒径、形状等、発泡性物質の種類、粒径、形状等、発泡温度、発泡温度までの昇温速度、発泡温度での保持時間、発泡環境の気圧、発泡環境中の水分量等で異なり、特に導電性粒子の種類、発泡性物質の種類、発泡温度によって異なるが、電気的な抵抗値の変化は発泡前後の抵抗値を測定することで簡単に求めることができる。   Any amount of foamable material can be added, but the conductive composition is insulative by foaming, especially when it is used for applications where the current runaway of the battery or capacitor is blocked by foaming to block the current flow. That is, an amount necessary for at least an electric resistance higher than that before foaming, or a state in which a current does not flow substantially under use conditions is added. This amount is the type of conductive material, particle size, shape, etc., type of foamable material, particle size, shape, etc., foaming temperature, rate of temperature rise to foaming temperature, holding time at foaming temperature, pressure in foaming environment Depends on the amount of moisture in the foaming environment, etc., especially depending on the type of conductive particles, the type of foaming material, and the foaming temperature, but the change in electrical resistance can be easily measured by measuring the resistance before and after foaming. Can be sought.

一例として、導電性材料に銀粉、発泡性物質に所定の温度で化学的に分解して気化する物質(例えば、炭酸水素ナトリウム)、絶縁体に合成樹脂(例えば、エポキシ樹脂)を使用する場合には、導電性材料1重量部に対して好ましい発泡性物質の添加量は0.1〜0.8重量部、より好ましくは0.16〜0.24重量部である。次の例として、導電性材料に銀粉、発泡性物質に所定の温度以上で軟化する軟化性物質で所定の温度で化学的に分解して気化する物質を被覆しているもの(例えば、日本フィライト株式会社、商品名:EXPANCEL)、絶縁体に合成樹脂(例えば、エポキシ樹脂)を使用する場合には、導電性材料1重量部に対して、好ましい発泡性物質の添加量は0.3〜0.5重量部、より好ましくは0.36〜0.44重量部である。他の例としては、導電性材料に銀粉、発泡性物質に所定の温度以上で軟化する軟化性物質で所定の温度で化学的に分解して気化する物質を軟化性物質で被覆しているもの(例えば、日本フィライト株式会社、商品名:EXPANCEL)を導電性材料(例えば、ニッケル−リンめっき)で更に被覆したもの、絶縁体に合成樹脂(エポキシ樹脂)を使用する場合には、導電性材料1重量部に対して、好ましい発泡性物質の添加量は0.4〜1.6重量部、より好ましくは0.4〜0.6重量部である。上述の例において、合成樹脂の添加量は0.1〜0.2重量部であることが好ましい。   As an example, when using silver powder as a conductive material, a substance that decomposes and vaporizes at a predetermined temperature into a foamable substance (for example, sodium bicarbonate), and a synthetic resin (for example, an epoxy resin) as an insulator Is preferably 0.1 to 0.8 part by weight, more preferably 0.16 to 0.24 part by weight, based on 1 part by weight of the conductive material. In the following example, the conductive material is silver powder, and the foaming material is a softening material that softens at a predetermined temperature or higher and is coated with a material that is chemically decomposed and vaporized at a predetermined temperature (for example, Nippon Philite) Co., Ltd., trade name: EXPANCEL), when using a synthetic resin (for example, epoxy resin) as an insulator, the preferred amount of foaming material added is 0.3 to 0 with respect to 1 part by weight of the conductive material. 0.5 parts by weight, more preferably 0.36 to 0.44 parts by weight. As another example, the conductive material is silver powder, the foamable material is a softening material that softens at a predetermined temperature or more, and the material that is chemically decomposed and vaporized at a predetermined temperature is coated with the softening material. (For example, Nihon Philite Co., Ltd., trade name: EXPANCEL) further coated with a conductive material (for example, nickel-phosphorus plating), or when using a synthetic resin (epoxy resin) for the insulator, the conductive material The amount of the foamable material added is preferably 0.4 to 1.6 parts by weight, more preferably 0.4 to 0.6 parts by weight with respect to 1 part by weight. In the above example, the amount of synthetic resin added is preferably 0.1 to 0.2 parts by weight.

これらの発泡性物質は、必要に応じて単体でも、2種以上を適宜組み合わせても使用することができる。   These foamable substances can be used alone or in appropriate combination of two or more as required.

図5の(a)は、セパレーターが発泡性物質11を含み、電解液を含浸させた多孔質パターンの孔10を通って電極9間をイオン12が行き来し、電気が流れている状態を示す模式図であり、(b)は、発泡後の発泡性物質13によって電極間距離が押し広げられ導通が妨げられる様子を示した例である。   FIG. 5 (a) shows a state in which electricity is flowing between the electrodes 9 through the pores 10 of the porous pattern in which the separator includes the foamable substance 11 and impregnated with the electrolytic solution, and between the electrodes 9. It is a schematic diagram, and (b) is an example showing a state in which the distance between the electrodes is expanded by the foamable substance 13 after foaming to prevent conduction.

図5(b)に示す様に、発泡により電極間距離を大きく引き離すことでイオン伝導を止めることができる。また、コアシェル型の発泡剤を用いれば、発泡後の発泡剤が空気を含む絶縁体になるため、更に確実に電極間の電気の流れを止めることができる。ここでいう絶縁とは、少なくとも発泡前よりも抵抗値が大きい状態を指し、好ましくは実質電気を流さない状態を指す。   As shown in FIG. 5B, ionic conduction can be stopped by largely separating the distance between the electrodes by foaming. Further, if a core-shell type foaming agent is used, the foaming agent after foaming becomes an insulator containing air, so that the flow of electricity between the electrodes can be more reliably stopped. The term “insulation” as used herein refers to a state where the resistance value is at least larger than that before foaming, and preferably refers to a state where no substantial electricity flows.

好ましく適用できる電池もしくはキャパシタとしては、セパレーターに電解液を染み込ませたタイプが例示でき、具体的には、マンガン乾電池、アルカリマンガン乾電池、リチウムイオン二次電池、色素増感型太陽電池、電気二重層型キャパシタなどを例示することができる。   Examples of the battery or capacitor that can be preferably applied include a type in which a separator is impregnated with an electrolyte. Specifically, a manganese dry battery, an alkaline manganese dry battery, a lithium ion secondary battery, a dye-sensitized solar cell, and an electric double layer A type capacitor etc. can be illustrated.

本発明のネガパターンを有する物品を製造する方法のその他の実施態様は、少なくとも固化後に導電性を有する固化可能で流動性がある材料を用いて導電性を有する物品を製造することを特徴とする。   Another embodiment of the method for producing an article having a negative pattern according to the present invention is characterized in that the electrically conductive article is produced using at least a solidifiable and flowable material having electrical conductivity after solidification. .

この導電性粒子は、電場あるいは磁場あるいはその両方によって配向可能な扁平な形状であることが好ましく、その場合導電性粒子を配向させた状態で導電性組成物を固化させることができる。この導電性組成物の固化物は、電場及び/又は磁場によって配向した方向に対応して電気的な抵抗値に異方性を有し、かつ電気的な抵抗値が低い部材を形成することは、電子装置の電気的な効率を高める上で好ましい実施態様である。また、発泡性物質が扁平な形状の粒子であり、磁気的な異方性や誘電率の異方性がある場合、電場及び/又は磁場によって配向させることもできる。   The conductive particles preferably have a flat shape that can be oriented by an electric field, a magnetic field, or both. In that case, the conductive composition can be solidified in a state where the conductive particles are oriented. The solidified product of the conductive composition has anisotropy in the electrical resistance value corresponding to the direction oriented by the electric field and / or magnetic field, and forms a member having a low electrical resistance value. This is a preferred embodiment for increasing the electrical efficiency of the electronic device. Further, when the foamable substance is a flat particle and has magnetic anisotropy or dielectric anisotropy, it can be oriented by an electric field and / or a magnetic field.

また、本発明のネガパターンを有する物品が表面に形成された電極の製造方法のその他の実施態様は、固化可能で流動性がある材料が少なくとも固化後に導電性を示すものであって、(1)電極に塗布した前記材料の表面又は表面から内部にかけて、気相由来の固体の昇華性物質のポジパターンを形成する工程、(2)前記材料を固化する工程、(3)前記昇華性物質を除去する工程、をこの順で行う。例えば、電池の活物質層を固化形成可能な流動性を有する物質をバインダーとして集電体表面に塗布形成する際、塗膜表面にネガパターンを形成することで比表面積の大きい電極を製造できる。このような電極を有する電池は、表面積が大きくなることにより、充放電レートなどの電池の電気的特性が向上する。また、この方法で製造されたネガパターンを有する物品が表面に形成された電極を含む電池もしくはキャパシタを製造できる。   In another embodiment of the method for producing an electrode having an article having a negative pattern of the present invention formed on the surface, a solidifiable and fluid material exhibits conductivity after at least solidification, (1 ) A step of forming a positive pattern of a solid sublimable substance derived from a gas phase from the surface of the material applied to the electrode or from the surface to the inside thereof; (2) a step of solidifying the material; and (3) the sublimable substance. The removal step is performed in this order. For example, when a material having fluidity capable of solidifying and forming an active material layer of a battery is applied and formed on the surface of the current collector, an electrode having a large specific surface area can be produced by forming a negative pattern on the surface of the coating film. A battery having such an electrode improves the electrical characteristics of the battery, such as the charge / discharge rate, by increasing the surface area. In addition, a battery or a capacitor including an electrode on the surface of which an article having a negative pattern manufactured by this method is formed can be manufactured.

流動性がある材料からなる多孔質材料が接着性を有し、活物質を含む場合について説明する。図6は電池の製造方法の模式図であり、(a)は活物質14と導電性フィラー15を含有し流動性がある材料である接着剤16の塗膜を電極9上に形成した状態、(b)は磁場を印加させた状態で活物質14と導電性フィラー15を含有する皮膜の表面又は表面から内部にかけてポジパターン4を配向させた状態、次いで(c)は固体の昇華性物質のポジパターン4を除去して配向した活物質と導電性材料と孔のパターンが形成された電極を作製した状態を示している。   A case where a porous material made of a fluid material has adhesiveness and includes an active material will be described. FIG. 6 is a schematic diagram of a battery manufacturing method, in which (a) shows a state in which a coating film of an adhesive 16, which is a fluid material containing the active material 14 and the conductive filler 15, is formed on the electrode 9. (B) is a state in which the positive pattern 4 is oriented from the surface of the film containing the active material 14 and the conductive filler 15 with the magnetic field applied or from the surface to the inside, and (c) is a solid sublimable material. The state is shown in which the positive pattern 4 is removed and an electrode in which an oriented active material, a conductive material, and a hole pattern are formed is produced.

ここで、活物質14として電池がリチウムイオン電池の場合、陽極にはコバルト酸リチウム、マンガン酸リチウム、リン酸鉄リチウムなどを用いることができ、陰極にはグラファイト、カーボンファイバー、Si合金、チタン酸リチウムなどを用いることができる。キャパシタの場合、活性炭などを用いることができる。太陽電池の場合、ルテニウム系色素が吸着したチタニア粒子、カチオン性ポルフィリンを層間に挿入したニオブ酸カリウムなどを用いることができる。これらの活物質のうち、磁気異方性及び/又は誘電率に異方性を有する材料の場合は、磁場及び/又は電場によって電気特性的に有利な、あるいは太陽電池については光吸収効率が向上する方向及び/又は電気特性的に有利な方向に配向できる。カチオン性ポルフィリンを層間に挿入したニオブ酸カリウムの場合、ニオブ酸カリウムの磁気異方性を利用して層間のポルフィリンを光吸収が有利な方向に磁場配向を行うことができる。導電性フィラー15については必要に合わせて任意の量を配合することが可能であり、前述の通り磁気異方性及び/又は誘電率に異方性を有する材料の場合は、磁場及び/又は電場によって電気特性的に有利な方向に配向できる。一方、磁気異方性がない導電性材料については、時間変動磁場を用いることによって磁場配向させることができる。ここでいう「時間変動磁場」とは、導電性材料を貫く磁束の量が時間変化する磁場のことを意味する。更に詳細に説明すると、時間変動磁場を導電性材料に印加することによって、導電性材料中に誘導電流が発生し、誘導電流は磁束の変化を打ち消す方向に誘導磁場を発生させる。このとき、発生した誘導磁場と時間変動磁場間で磁気的相互作用が起き、導電性物質は磁束の変化が少なくなる方向に移動又は回転する。誘導磁場を用いた配向を用いれば、磁気異方性を持たない材料であっても導電性があれば配向させることができる。例えば、ロッド形状の立方晶の金属粒子に一軸回転磁場を印加した場合、ロッドの長軸と回転磁場の軸とが平行になるように並ぶ。ディスク形状の金属粒子に一軸回転磁場を印加した場合、ディスクの法線と回転磁場の軸とが平行になるように並ぶ。このような誘導磁場を用いた配向は、磁気異方性が無い立方晶の金属などに対しても利用できるため適応の範囲が広く、電気的特性などに優れた材料を選択できる機会が増える。   Here, when the battery is a lithium ion battery as the active material 14, lithium cobalt oxide, lithium manganate, lithium iron phosphate, or the like can be used for the anode, and graphite, carbon fiber, Si alloy, titanic acid can be used for the cathode. Lithium or the like can be used. In the case of a capacitor, activated carbon or the like can be used. In the case of a solar cell, titania particles adsorbed with a ruthenium dye, potassium niobate with a cationic porphyrin inserted between layers, and the like can be used. Of these active materials, materials having magnetic anisotropy and / or dielectric anisotropy are advantageous in terms of electrical characteristics by a magnetic field and / or electric field, or light absorption efficiency is improved for solar cells. Orientation and / or orientation that is advantageous in terms of electrical properties. In the case of potassium niobate in which a cationic porphyrin is inserted between layers, the magnetic anisotropy of the interlayer porphyrin can be performed in a direction in which light absorption is advantageous by utilizing the magnetic anisotropy of potassium niobate. The conductive filler 15 can be blended in any amount as necessary. In the case of a material having magnetic anisotropy and / or dielectric constant anisotropy as described above, a magnetic field and / or an electric field is used. Can be oriented in an advantageous direction in terms of electrical characteristics. On the other hand, a conductive material having no magnetic anisotropy can be magnetically oriented by using a time-varying magnetic field. As used herein, “time-varying magnetic field” means a magnetic field in which the amount of magnetic flux penetrating the conductive material changes with time. More specifically, by applying a time-varying magnetic field to the conductive material, an induced current is generated in the conductive material, and the induced current generates an induced magnetic field in a direction that cancels the change in magnetic flux. At this time, a magnetic interaction occurs between the induced magnetic field and the time-varying magnetic field, and the conductive material moves or rotates in a direction in which the change in magnetic flux is reduced. If orientation using an induced magnetic field is used, even a material having no magnetic anisotropy can be oriented as long as it has conductivity. For example, when a uniaxial rotating magnetic field is applied to rod-shaped cubic metal particles, the long axis of the rod and the axis of the rotating magnetic field are arranged in parallel. When a uniaxial rotating magnetic field is applied to the disk-shaped metal particles, the normal line of the disk and the axis of the rotating magnetic field are arranged in parallel. Such an orientation using an induced magnetic field can be used for a cubic metal having no magnetic anisotropy, and therefore has a wide range of applications, increasing the chances of selecting a material having excellent electrical characteristics.

これらの活物質、導電性材料、昇華性物質の1以上が、誘電率及び/又は磁化率に異方性がある物質は電場及び/又は磁場で配向させることが可能で、形状的にあるいは電気的に有利な方向に前記部材を配向させ、電極の効率を高めることができる。   One or more of these active materials, conductive materials, and sublimable materials can be oriented in an electric field and / or magnetic field, and can be shaped or electrically The member can be oriented in a particularly advantageous direction to increase the efficiency of the electrode.

また、流動性がある材料が発泡剤を含有することにより、電池が充放電の際に異常発熱した際、発泡することで電極のどの部位であっても電流を安全に遮断できる。上述のような少なくとも固化形成後導電性を示す材料に発泡剤を配合する用途においては、導電性材料で被覆された発泡性物質を好ましく用いることができる。発泡性物質や前記軟化性物質で被覆した発泡性物質のうち絶縁性のものを導電性組成物中に混合すると、電気的な抵抗が上昇し電気的な効率が落ちる。しかし、発泡性物質や前記軟化性物質で被覆した発泡性物質の表面を導電性物質で被覆することで電気的な抵抗の上昇を抑えることができる。具体的には、発泡性物質又は軟化性物質で被覆した発泡性物質の表面に金属をめっきしたり導電性の粒子を付着させたりして得ることができる。導電性物質としては前述した金属、合金や炭素系材料、導電性を有する各種無機物を用いることができ、導電性物質が金属である場合、めっき法で発泡性物質表面に緻密な金属層を形成できる。このように、導電性を付与することにより、発泡性物質の含有量を増加させることができ、発泡倍率の選択の幅を広げることが可能になる。   Moreover, when the material having fluidity contains a foaming agent, when the battery abnormally generates heat during charging and discharging, the current can be safely interrupted at any part of the electrode by foaming. In the above-described use in which a foaming agent is blended with a material exhibiting conductivity at least after solidification, a foamable material coated with a conductive material can be preferably used. When an insulative material is mixed with a foamable material or a foamable material coated with the softening material, the electrical resistance increases and the electrical efficiency decreases. However, an increase in electrical resistance can be suppressed by coating the surface of the foamable material or the foamable material coated with the softening material with a conductive material. Specifically, it can be obtained by plating the surface of a foamable material coated with a foamable material or a softening material, or attaching conductive particles. As the conductive material, the aforementioned metals, alloys, carbon-based materials, and various inorganic materials having conductivity can be used. When the conductive material is a metal, a dense metal layer is formed on the surface of the foamable material by plating. it can. Thus, by providing conductivity, the content of the foaming substance can be increased, and the range of selection of the foaming ratio can be expanded.

固化可能で流動性がある材料の表面に形成した固体の昇華性物質が誘電率及び/又は磁化率に異方性を有する場合、同様に電場及び/又は磁場で配向させることができる。この場合、ポジパターン及びネガパターンの方向に異方性を持たせることが可能で、ネガパターンが多孔質パターンである場合、電解液を含浸させた多孔質パターンを通じてイオン電導などを起こすことができるので、多孔質パターンの向きをイオン電導がおきやすい方向に配向させることもできる。あるいは、任意の方向に配向させた多孔質パターンの孔の中にめっきしたり低融点金属を流し込んだりすることで、任意の方向に対して導電性に異方性を有する物品も製造できる。   When the solid sublimable substance formed on the surface of the solidifiable and flowable material has anisotropy in dielectric constant and / or magnetic susceptibility, it can be similarly oriented by an electric field and / or a magnetic field. In this case, it is possible to provide anisotropy in the direction of the positive pattern and the negative pattern. When the negative pattern is a porous pattern, ion conduction can be caused through the porous pattern impregnated with the electrolytic solution. Therefore, the orientation of the porous pattern can be oriented in a direction in which ion conduction is likely to occur. Alternatively, an article having conductivity anisotropy in an arbitrary direction can be manufactured by plating or pouring a low melting point metal into pores of a porous pattern oriented in an arbitrary direction.

また、インピーダンスを下げる目的で誘電率の高い粒子を複合することも可能で、チタン酸バリウムの粒子を複合することができる。また、磁場及び/又は電場を用いて前記誘電率の高い粒子を配向させることもできる。   In addition, particles with a high dielectric constant can be combined for the purpose of reducing impedance, and particles of barium titanate can be combined. Further, the particles having a high dielectric constant can be oriented using a magnetic field and / or an electric field.

また、本発明は、固化可能で流動性がある材料の表面又は表面から内部にかけてネガパターンを有する物品の製造装置であって、(1)固化可能で流動性がある材料の表面又は表面から内部にかけて気相由来の固体の昇華性物質のポジパターンを形成する手段、(2)前記材料を固化させる手段、(3)前記昇華性物質の除去手段を備えた、前記材料の表面又は表面から内部にかけてネガパターンを有する物品の製造装置に関する。   The present invention also relates to an apparatus for producing an article having a negative pattern from the surface or surface of a solidifiable and fluid material to the inside, and (1) the surface or surface of the solidifiable and fluid material from the inside. A means for forming a positive pattern of a solid sublimable substance derived from a gas phase, (2) a means for solidifying the material, and (3) a surface of the material or an interior from the surface provided with a means for removing the sublimable substance. The present invention relates to an apparatus for manufacturing an article having a negative pattern.

(1)の手段は、昇華性物質を昇華点以下の温度に冷却することにより行うことができる。(2)の手段は、材料を固化させ流動性がある物質の表面又は表面から内部にかけてネガパターンを形成する手段であって、エネルギー線照射もしくは加熱による材料の硬化、材料の冷却又は材料中の溶剤の揮発による固化により行うことができる。(3)の手段は、硬化した流動性がある物質からポジパターンを形成する昇華性物質を除去する手段であって、昇華性物質を加熱昇華、減圧昇華、又は昇華性物質を溶解することにより行うことができる。   The means (1) can be performed by cooling the sublimable substance to a temperature below the sublimation point. The means (2) is a means for solidifying the material to form a negative pattern from the surface of the substance having fluidity or from the surface to the inside, and curing of the material by irradiation with energy rays or heating, cooling of the material, or in the material It can be carried out by solidification by evaporation of the solvent. The means of (3) is a means for removing a sublimable substance that forms a positive pattern from a cured fluid substance, by heating the sublimable substance by heating sublimation, vacuum sublimation, or dissolving a sublimable substance. It can be carried out.

また、昇華性物質が誘電率及び/又は磁化率に異方性がある物質である場合には、上記装置に、更に、昇華性物質を電場及び/又は磁場で任意の方向に配向させる手段を備えることにより、昇華性物質のポジパターンを配向させることができる。   Further, when the sublimable substance is a substance having anisotropy in dielectric constant and / or magnetic susceptibility, the device further includes means for orienting the sublimable substance in an arbitrary direction with an electric field and / or a magnetic field. By providing, the positive pattern of the sublimable substance can be oriented.

図7は、多孔質膜をフィルム基板の表面に連続的に形成するための装置を模式的に示したもので、昇華性物質を磁場配向させるための磁石が設置されたタイプである。ロール17から送り出されたフィルム基板18の表面にコーター19を用いて流動性がある材料のUV硬化性樹脂を塗布し、次いで冷却ステージ20でフィルム基板を冷却することでUV硬化性樹脂の表面に昇華性物質である霜のポジパターンを形成させる(手段(1))。その間磁石21で磁場を印加し続けることで形成した霜を磁場配向させ、その状態でUV照射機22によりUVを照射してUV硬化性樹脂を固化し(手段(2))、次いでドライヤー23で付着した霜を蒸発させ、除去する(手段(3))。このように、連続的に膜状のネガパターンを有するフィルム24を形成することができる。なお、この装置は、上記のように1体として構成することができるが、各手段を複数体で分離して行うように構成することもできる。   FIG. 7 schematically shows an apparatus for continuously forming a porous film on the surface of a film substrate, and is a type in which a magnet for magnetically orienting a sublimable substance is installed. The coater 19 is used to apply a UV curable resin of a fluid material to the surface of the film substrate 18 fed from the roll 17, and then the film substrate is cooled by the cooling stage 20, whereby the surface of the UV curable resin is applied. A positive pattern of frost which is a sublimable substance is formed (means (1)). In the meantime, the frost formed by continuing to apply the magnetic field with the magnet 21 is magnetically oriented, and in that state, UV is irradiated by the UV irradiator 22 to solidify the UV curable resin (means (2)), and then with the dryer 23. The attached frost is evaporated and removed (means (3)). Thus, the film 24 having a film-like negative pattern can be formed continuously. In addition, although this apparatus can be comprised as one body as mentioned above, it can also be comprised so that each means may be isolate | separated and performed with multiple bodies.

以下に、実施例を用いて、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。添加量の表示は、断りのない限り重量部である。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. The amount added is in parts by weight unless otherwise noted.

実施例1では、昇華性物質のポジパターンを用いてエネルギー線硬化性樹脂の表面又は表面から内部にかけてネガパターンを有する物品を製造した。   In Example 1, an article having a negative pattern was manufactured from the surface of the energy ray-curable resin or from the surface to the inside using a positive pattern of a sublimable substance.

協立化学産業株式会社製光硬化型アクリル樹脂(製品名:ワールドロックNo. XFL−06L;1%以上は水を溶解することができない樹脂)をガラス板に厚み50μmで塗布したものを冷凍庫で−40℃まで冷却し、次いで25℃、湿度80%の雰囲気に30秒間静置後、紫外線を3000mJ/cm照射し膜状の硬化物を得た(工程(2))。硬化物を乾燥させて霜を除去した(工程(3))。 Photo-curing acrylic resin manufactured by Kyoritsu Chemical Industry Co., Ltd. (Product name: World Lock No. XFL-06L; 1% or more of resin that cannot dissolve water) is applied to a glass plate with a thickness of 50 μm in a freezer. After cooling to −40 ° C. and then standing in an atmosphere of 25 ° C. and 80% humidity for 30 seconds, ultraviolet rays were irradiated at 3000 mJ / cm 2 to obtain a film-like cured product (step (2)). The cured product was dried to remove frost (step (3)).

(パターンの観察)
図8は、走査型電子顕微鏡写真であり、(a)に示すように硬化物の内部に多数の孔が開いていることが確認できた。膜状の硬化物をガラス板から引き剥がし裏面を同様に走査型電子顕微鏡で観察したところ、(b)に示すようにネガパターンは裏面まで達していることが確認できた。硬化樹脂膜の断面を観察したところ(c)に示すようにネガパターンが多孔質パターンであることが確認できた。空孔率は約30%である。
(Pattern observation)
FIG. 8 is a scanning electron micrograph, and it was confirmed that a large number of holes were opened inside the cured product as shown in (a). When the film-like cured product was peeled off from the glass plate and the back surface was similarly observed with a scanning electron microscope, it was confirmed that the negative pattern reached the back surface as shown in (b). When the cross section of the cured resin film was observed, it was confirmed that the negative pattern was a porous pattern as shown in (c). The porosity is about 30%.

実施例2では、実施例1のパターン作製条件で更に磁場を印加し、ネガパターンが配向する物品の製造を行った。   In Example 2, a magnetic field was further applied under the pattern production conditions of Example 1 to produce an article in which the negative pattern was oriented.

協立化学産業株式会社製光硬化型アクリル樹脂(製品名:ワールドロックNo. XFL−06L)をガラス板に厚み50μmで塗布したものを冷凍庫で−40℃まで冷却、次いで14.09T(テスラ)の磁場を印加しながら、25℃、湿度80%の雰囲気に60秒間静置し表面又は表面から内部にかけて霜を配向させた。この状態で紫外線を3000mJ/cm照射し硬化物を得た(工程(2))。硬化物を乾燥させて霜を除去した(工程(3))。 A photocurable acrylic resin (product name: World Rock No. XFL-06L) manufactured by Kyoritsu Chemical Sangyo Co., Ltd. coated on a glass plate with a thickness of 50 μm is cooled to −40 ° C. in a freezer, and then 14.09T (Tesla) While applying the magnetic field, the sample was allowed to stand in an atmosphere of 25 ° C. and 80% humidity for 60 seconds to orient the frost from the surface or from the surface to the inside. In this state, ultraviolet rays were irradiated at 3000 mJ / cm 2 to obtain a cured product (step (2)). The cured product was dried to remove frost (step (3)).

(パターンの観察)
図9は、走査型電子顕微鏡であり、(a)に示すように硬化物の内部に多数の孔が開いていることが確認できた。硬化樹脂膜をガラス板から引き剥がし裏面を同様に走査型電子顕微鏡で観察したところ、(b)に示すようにネガパターンは裏面まで達していることが確認できた。硬化樹脂膜の断面を観察したところ(c)に示すようにネガパターンが配向した多孔質パターンであることが確認できた。空孔率は約50%である。
(Pattern observation)
FIG. 9 shows a scanning electron microscope, and it was confirmed that a large number of holes were opened in the cured product as shown in (a). When the cured resin film was peeled off from the glass plate and the back surface was similarly observed with a scanning electron microscope, it was confirmed that the negative pattern reached the back surface as shown in (b). When the cross section of the cured resin film was observed, it was confirmed that the negative pattern was a porous pattern as shown in (c). The porosity is about 50%.

(Liイオン電池用部材の製造)
実施例3では、電極の製造方法を用いてLiイオン電池電極上にセパレーターを製造した。
(Manufacture of Li-ion battery components)
In Example 3, a separator was manufactured on a Li ion battery electrode by using an electrode manufacturing method.

(電極の製造)
大日本インキ化学工業株式会社製ビスフェノールA型エポキシ樹脂(製品名:エピクロン850)5部、ダイセル化学工業株式会社製脂環型エポキシ樹脂(製品名:セロキサイド2021P)5部、三新化学工業株式会社製光熱カチオン開始剤(製品名:サンエイドSI-100L)0.2部、信越化学工業株式会社製エポキシ変性シランカップリング剤(製品名:KBM−403)0.2部、電気化学工業株式会社製カーボンブラック(製品名:デンカブラック)5部、コバルト酸リチウム粉末80部、NMP500部を冷却ジャケットつきプラネタリーミキサーに入れ、均一な液体になるまで攪拌し陽極の活物質形成用の塗液を作製した。これを、厚さ30μmのアルミニウム集電体に塗布しアルミニウム集電体の面法線方向から2Tの磁場を印加しながら50℃×1時間乾燥させ、その後磁場の印加を取りやめて130℃×1時間加熱硬化して陽極を製造した。
大日本インキ化学工業株式会社製ビスフェノールA型エポキシ樹脂(製品名:エピクロン850)5部、ダイセル化学工業株式会社製脂環型エポキシ樹脂(製品名:セロキサイド2021P)5部、三新化学工業株式会社製光熱カチオン開始剤(製品名:サンエイドSI-100L)0.2部、信越化学工業株式会社製エポキシ変性シランカップリング剤(製品名:KBM−403)0.2部、日本黒鉛株式会社製グラファイト粉末10部、NMP500部を冷却ジャケットつきプラネタリーミキサーに入れ、均一な液体になるまで攪拌し陰極の活物質形成用の塗液を作製した。これを、厚さ50μmの銅集電体に塗布し、2Tの回転磁場を磁場の回転軸と銅集電体の面が平行になるように印加しながら50℃×1時間乾燥させ、その後磁場の印加を取りやめて130℃×1時間加熱して陰極を製造した。
(Manufacture of electrodes)
Dainippon Ink & Chemicals, Inc. bisphenol A epoxy resin (product name: Epicron 850) 5 parts, Daicel Chemical Industries, Ltd. alicyclic epoxy resin (product name: Celoxide 2021P), Sanshin Chemical Industry Co., Ltd. 0.2 parts of photothermal cation initiator (product name: Sun-Aid SI-100L), 0.2 part of epoxy-modified silane coupling agent (product name: KBM-403) manufactured by Shin-Etsu Chemical Co., Ltd., manufactured by Denki Kagaku Kogyo Co., Ltd. Put 5 parts of carbon black (product name: Denka Black), 80 parts of lithium cobaltate powder and 500 parts of NMP into a planetary mixer with a cooling jacket, and stir until a uniform liquid is formed to prepare a coating liquid for forming the anode active material. did. This was applied to an aluminum current collector having a thickness of 30 μm and dried at 50 ° C. for 1 hour while applying a 2 T magnetic field from the surface normal direction of the aluminum current collector. Thereafter, the application of the magnetic field was stopped and 130 ° C. × 1 An anode was produced by heat curing for a period of time.
Dainippon Ink & Chemicals, Inc. bisphenol A epoxy resin (product name: Epicron 850) 5 parts, Daicel Chemical Industries, Ltd. alicyclic epoxy resin (product name: Celoxide 2021P), Sanshin Chemical Industry Co., Ltd. 0.2 parts of photothermal cation initiator (product name: Sun-Aid SI-100L), 0.2 part of epoxy-modified silane coupling agent (product name: KBM-403) manufactured by Shin-Etsu Chemical Co., Ltd., graphite manufactured by Nippon Graphite Co., Ltd. 10 parts of powder and 500 parts of NMP were put into a planetary mixer with a cooling jacket, and stirred until a uniform liquid was formed to prepare a coating liquid for forming an active material for the cathode. This is applied to a copper current collector with a thickness of 50 μm, and dried at 50 ° C. for 1 hour while applying a 2T rotating magnetic field so that the rotation axis of the magnetic field and the surface of the copper current collector are parallel to each other. Was removed and heated at 130 ° C. for 1 hour to produce a cathode.

(多孔質膜の形成)
製造した陽極に日本フィライト株式会社製発泡性物質(製品名:EXPANCEL920DU40)50部と協立化学産業株式会社製光硬化性接着剤(製品名:ワールドロックNo.XFL−06L)50部とジエチルエーテル100部を混合した液を5μm厚みでコーティングし、−40℃まで冷却した(工程(1))。これを電極の面法線方向から14.09Tの磁場を印加しながら25℃、湿度80%の雰囲気に60秒間静置し霜を配向させた後、そのままUVを6000mJ/cm照射して硬化させた(工程(2))。磁場印加を取りやめ、硬化物を乾燥させて霜を除去した(工程(3))。
(Formation of porous film)
50 parts of foamable material (product name: EXPANCEL 920DU40) manufactured by Nippon Philite Co., Ltd., 50 parts of photocurable adhesive (product name: World Rock No. XFL-06L) manufactured by Kyoritsu Chemical Industry Co., Ltd. and diethyl ether The liquid which mixed 100 parts was coated by thickness of 5 micrometers, and it cooled to -40 degreeC (process (1)). This was left to stand in an atmosphere of 25 ° C. and 80% humidity for 60 seconds while applying a magnetic field of 14.09 T from the surface normal direction of the electrode to orient the frost, and then cured by UV irradiation at 6000 mJ / cm 2 as it was. (Step (2)). The application of the magnetic field was stopped, and the cured product was dried to remove frost (step (3)).

(電池の組み立て)
製造した多孔質パターンを有する硬化物でコートされた陽極と陰極に5%の六フッ化リン酸リチウムを含有するジメチルカーボネート溶液を含浸し、陰極と陽極を圧着して電池を組み立てた。
(Battery assembly)
A battery was assembled by impregnating a dimethyl carbonate solution containing 5% lithium hexafluorophosphate into an anode and a cathode coated with a cured product having a porous pattern, and then bonding the cathode and the anode together.

(充放電試験)
充放電試験を行った結果、陰極と陽極間でショートは起きておらず、製造した多孔質膜を通じて充放電を行うことができた。
(Charge / discharge test)
As a result of the charge / discharge test, no short circuit occurred between the cathode and the anode, and charge / discharge could be performed through the produced porous film.

(高温過熱試験)
電池の熱暴走を想定して、150℃×1分間上述の方法で製造したセルを加熱したところ、発泡剤が膨らみ充放電が起きなくなった。
(High temperature overheating test)
Assuming thermal runaway of the battery, when the cell produced by the above method was heated at 150 ° C. for 1 minute, the foaming agent swelled and charging / discharging did not occur.

以上の様に、本発明の昇華性物質を用いたパターン形成法を用いることで、簡便にパターンを形成することが可能である。本発明によると、流動性がある材料を貫通する多孔質パターンも形成できるため、電池やキャパシタ用のセパレーターとして利用することが可能である。更に、発泡性物質を配合することによって電池の異常発熱に対する安全装置として用いることも可能である。   As described above, a pattern can be easily formed by using the pattern forming method using the sublimable substance of the present invention. According to the present invention, a porous pattern penetrating a fluid material can also be formed, so that it can be used as a battery or capacitor separator. Furthermore, it can be used as a safety device against abnormal heat generation of the battery by blending a foaming substance.

(a)は、気化した昇華性物質雰囲気中に固化可能で流動性がある材料からなる塗膜が形成された基板を設置した状態を示す図であり、(b)は、固体の昇華性物質のポジパターンを固化可能で流動性がある材料からなる塗膜の表面又は表面から内部にかけて形成した状態を示す図であり、(c)流動性がある材料を固化した後、昇華性物質を除去しネガパターンを形成した物品が得られた状態を示す図である。(A) is a figure which shows the state which installed the board | substrate with which the coating film consisting of the material which can be solidified and fluidized was installed in the vaporized sublimable substance atmosphere, (b) is a solid sublimable substance. It is a figure which shows the state formed from the surface or the surface to the inside of the coating film which consists of a fluid material which can be solidified, and (c) after sublimating a substance is solidified after solidifying the fluid material It is a figure which shows the state from which the article | item in which the negative pattern was formed was obtained. (a)は、気化した昇華性物質雰囲気中に固化可能で流動性がある材料からなる塗膜が形成された基板を設置した状態を示す図であり、(b)は、固体の昇華性物質のポジパターンを固化可能で流動性がある材料からなる塗膜の表面又は表面から内部にかけて形成し、更にポジパターンが塗膜の裏面まで達した状態を示す図であり、(c)は、流動性がある材料を固化した後、塗膜を貫通した昇華性物質を除去し、塗膜を貫通したネガパターンを形成した物品が得られた状態を示す図である。(A) is a figure which shows the state which installed the board | substrate with which the coating film consisting of the material which can be solidified and fluidized in the vaporized sublimable substance atmosphere was installed, (b) is a solid sublimable substance. It is a figure which shows the state which formed from the surface or the surface to the inside of the coating film which consists of a fluid material which can be solidified, and reached the inside, and also the positive pattern reached the back surface of the coating film, (c) It is a figure which shows the state from which the sublimable substance which penetrated the coating film was removed after solidifying the material with the property, and the article which formed the negative pattern which penetrated the coating film was obtained. (a)は、固体の昇華性物質のポジパターンを固化可能で流動性がある材料からなる塗膜の表面又は表面から内部にかけて形成した状態を示す図であり、(b)は、電場及び/又は磁場によって流動性がある材料の表面又は表面から内部にかけて形成した固体の昇華性物質のポジパターンを配向させた状態を示す図であり、(c)は、配向した昇華性物質のポジパターンによりネガパターンを形成した状態を示す図である。(A) is a figure which shows the state formed from the surface or surface to the inside of the coating film which consists of a solid material and the fluidity | liquidity which can solidify the positive pattern of a solid sublimable substance, (b) is an electric field and / or Or it is a figure which shows the state which orientated the positive pattern of the solid sublimable substance formed from the surface of the material which has fluidity by a magnetic field, or the inside from the surface to the inside, (c) is according to the positive pattern of the oriented sublimable substance It is a figure which shows the state which formed the negative pattern. (a)は、電極表面を固化可能で流動性がある材料からなる塗膜でコーティングした状態を示す図であり、(b)は、電極表面を覆った塗膜の表面に固体の昇華性物質のポジパターンを形成した状態を示す図であり、(c)は、電極表面を本発明によって製造した多孔質材料で全面コーティングした状態を示す図である。(A) is a figure which shows the state which coated the electrode surface with the coating film which consists of a material which can be solidified and has fluidity, (b) is a solid sublimable substance on the surface of the coating film which covered the electrode surface. (C) is a figure which shows the state which coat | covered the electrode surface entirely with the porous material manufactured by this invention. (a)は、発泡性物質を含有するセパレーターを本発明の方法で製造した状態を示す図であり、(b)は、発泡性物質が発泡することで電極間の距離が広がった状態を示す図である。(A) is a figure which shows the state which manufactured the separator containing a foamable material with the method of this invention, (b) shows the state which the distance between electrodes spread because foamable material foamed. FIG. (a)は、活物質と導電性材料を含有し固化可能で流動性がある材料である接着剤の塗膜を集電体上に形成した状態を示す図であり、(b)は、電場及び/又は磁場によって配向した活物質と導電性材料を含む塗膜の表面又は表面から内部にかけて固体の昇華性物質のポジパターン4を配向させた状態を示す図であり、(c)は、配向した活物質と導電性材料と孔のパターンが形成された電極を示す図である。(A) is a figure which shows the state which formed the coating film of the adhesive agent which is an active material and an electroconductive material, and is a solidified and fluid material on a collector, (b) is an electric field And / or shows a state in which the positive pattern 4 of the solid sublimation substance is oriented from the surface of the coating film containing the active material and the conductive material or the surface to the inside, which is oriented by a magnetic field, and (c) is an orientation It is a figure which shows the electrode in which the pattern of the active material and electroconductive material which were made and the hole was formed. ネガパターンを有する物品の製造装置を模式的に示した図である。It is the figure which showed typically the manufacturing apparatus of the articles | goods which have a negative pattern. (a)は、本発明の方法で製造した多孔質パターンを有する物品の表面の走査型電子顕微鏡写真であり、(b)は、本発明の方法で製造した多孔質パターンを有する物品の裏面の走査型電子顕微鏡写真であり、(c)は、本発明の方法で製造した多孔質パターンを有する物品の断面の走査型電子顕微鏡写真である。(A) is a scanning electron micrograph of the surface of an article having a porous pattern manufactured by the method of the present invention, and (b) is a back surface of the article having a porous pattern manufactured by the method of the present invention. It is a scanning electron micrograph, (c) is a scanning electron micrograph of the cross section of the article | item which has the porous pattern manufactured with the method of this invention. (a)は、磁場を印加して昇華性物質を配向させて製造した多孔質パターンを有する物品の表面の走査型電子顕微鏡写真であり、(b)は、磁場を印加して昇華性物質を配向させて製造した多孔質パターンを有する物品の裏面の走査型電子顕微鏡写真であり、(c)は、磁場を印加して昇華性物質を配向させて製造した多孔質パターンを有する物品の断面の走査型電子顕微鏡写真である。(A) is a scanning electron micrograph of the surface of an article having a porous pattern manufactured by orienting a sublimable substance by applying a magnetic field, and (b) is a sublimation substance applied by applying a magnetic field. It is a scanning electron micrograph of the back surface of an article having a porous pattern produced by orientation, (c) is a cross-sectional view of an article having a porous pattern produced by orienting a sublimable substance by applying a magnetic field. It is a scanning electron micrograph.

符号の説明Explanation of symbols

1 昇華性物質雰囲気
2 固化可能で流動性がある材料
3 基板
4 固体の昇華性物質のポジパターン
5 ネガパターン
6 電場及び/又は磁場の印加方向
7 電場及び/又は磁場で配向した昇華性物質
8 印加した電場及び/又は磁場に対応した方向に配向したネガパターン
9 電極
10 貫通した多孔質パターンの孔
11 発泡性物質
12 イオン
13 発泡後の発泡性物質
14 活物質
15 導電性フィラー
16 接着剤
17 ロール
18 フィルム基板
19 コーター
20 冷却ステージ
21 磁石
22 UV照射機
23 ドライヤー
24 ネガパターンを有するフィルム
DESCRIPTION OF SYMBOLS 1 Sublimable substance atmosphere 2 Solidifiable and fluid material 3 Substrate 4 Positive pattern of solid sublimable substance 5 Negative pattern 6 Direction of application of electric field and / or magnetic field 7 Sublimable substance oriented by electric field and / or magnetic field 8 Negative pattern oriented in the direction corresponding to the applied electric field and / or magnetic field 9 Electrode 10 Porous hole in porous pattern 11 Foamable material 12 Ion 13 Foamed material after foaming 14 Active material 15 Conductive filler 16 Adhesive 17 Roll 18 Film substrate 19 Coater 20 Cooling stage 21 Magnet 22 UV irradiator 23 Dryer 24 Film having negative pattern

Claims (8)

(1)固化可能で流動性がある材料の表面又は表面から内部にかけて気相由来の固体の昇華性物質のポジパターンを形成する工程、(2)前記材料を固化する工程、(3)前記昇華性物質を除去する工程、をこの順で行い、前記材料の表面又は表面から内部にかけてネガパターンを有する物品を製造する方法。   (1) forming a positive pattern of a solid sublimable substance derived from a gas phase from the surface of the solidifiable and fluid material or from the surface to the inside; (2) solidifying the material; and (3) the sublimation. The method of manufacturing the articles | goods which have a negative pattern from the surface of the said material or the inside to the inside, performing the process of removing a sexual substance in this order. 前記昇華性物質が誘電率及び/又は磁化率に異方性がある物質であり、少なくとも前記材料が固化する前に、更に、前記昇華性物質を電場及び/又は磁場で任意の方向に配向させる工程を含む、請求項1に記載の方法。   The sublimable substance is a substance having anisotropy in dielectric constant and / or magnetic susceptibility, and at least before the material is solidified, the sublimable substance is further oriented in an arbitrary direction by an electric field and / or a magnetic field. The method of claim 1, comprising a step. 前記材料が任意の温度で発泡する発泡性物質を含有し、得られた物品が任意の温度で発泡することを特徴とする、請求項1又は2に記載の方法。   3. A method according to claim 1 or 2, characterized in that the material contains a foamable substance that foams at any temperature and the resulting article foams at any temperature. ネガパターンが、前記材料の表面から内部にかけての孔の体積分率を連続的に変化させたパターンであることを特徴とする、請求項1〜3のいずれか1項記載の方法。   The method according to claim 1, wherein the negative pattern is a pattern in which the volume fraction of the pores from the surface to the inside of the material is continuously changed. (1)電極に塗布した固化可能で流動性がある材料の表面又は表面から内部にかけて、気相由来の固体の昇華性物質のポジパターンを形成する工程、(2)前記材料を固化する工程、(3)前記昇華性物質を除去する工程、をこの順で行う、前記材料の表面又は表面から内部にかけてネガパターンを有する物品が表面に形成された電極の製造方法。   (1) a step of forming a positive pattern of a solid sublimable substance derived from a gas phase from the surface of the solidifiable and fluid material applied to the electrode or from the surface to the inside; (2) a step of solidifying the material; (3) A method for producing an electrode in which an article having a negative pattern is formed on the surface of the material or from the surface to the inside, wherein the step of removing the sublimable substance is performed in this order. (1)固化可能で流動性がある材料の表面又は表面から内部にかけて気相由来の固体の昇華性物質のポジパターンを形成する手段、(2)前記材料を固化させる手段、(3)前記昇華性物質を除去する手段を備え、場合により、更に、昇華性物質を電場及び/又は磁場で任意の方向に配向させる手段を備えた、前記材料の表面又は表面から内部にかけてネガパターンを有する物品の製造装置。   (1) means for forming a positive pattern of a solid sublimable substance derived from a gas phase from the surface of the solidifiable and fluid material or from the surface to the inside thereof; (2) means for solidifying the material; and (3) the sublimation. Of an article having a negative pattern from the surface of the material or from the surface to the inside thereof, further comprising means for removing the active substance, and optionally further comprising means for orienting the sublimable substance in an arbitrary direction with an electric field and / or magnetic field. Manufacturing equipment. 請求項1〜4のいずれか1項記載の方法により製造されたパターンを有する物品を用いる電池もしくはキャパシタ。   The battery or capacitor using the articles | goods which have the pattern manufactured by the method of any one of Claims 1-4. 請求項5記載の方法により製造された電極を含む電池もしくはキャパシタ。   A battery or capacitor comprising an electrode produced by the method according to claim 5.
JP2008078129A 2008-03-25 2008-03-25 Manufacturing method for article having negative pattern Pending JP2009227923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008078129A JP2009227923A (en) 2008-03-25 2008-03-25 Manufacturing method for article having negative pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078129A JP2009227923A (en) 2008-03-25 2008-03-25 Manufacturing method for article having negative pattern

Publications (1)

Publication Number Publication Date
JP2009227923A true JP2009227923A (en) 2009-10-08

Family

ID=41243684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078129A Pending JP2009227923A (en) 2008-03-25 2008-03-25 Manufacturing method for article having negative pattern

Country Status (1)

Country Link
JP (1) JP2009227923A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165404A (en) * 2010-02-05 2011-08-25 Toyota Motor Corp Method of manufacturing electrode for battery, electrode obtained by this method, and battery with this electrode
WO2013125007A1 (en) * 2012-02-23 2013-08-29 株式会社日立製作所 Separator for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell
JP2015111530A (en) * 2013-12-06 2015-06-18 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Microcapsule for nonaqueous electrolyte secondary batteries, separator for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, electrode active material layer for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2020191464A (en) * 2017-01-12 2020-11-26 株式会社村田製作所 Magnetic particles, dust core, and coil component
CN112787033A (en) * 2021-01-29 2021-05-11 东莞新能德科技有限公司 Thermal anti-sticking protective film and electronic device using same
US11128015B2 (en) 2017-11-01 2021-09-21 Lg Chem, Ltd. Secondary battery
CN115548583A (en) * 2022-11-24 2022-12-30 合肥长阳新能源科技有限公司 High-safety lithium ion battery composite diaphragm and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411141A (en) * 1987-07-03 1989-01-13 Nippi Collagen Kogyo Kk Production of porous article of hydrophilic polymer
JPH06287348A (en) * 1991-07-11 1994-10-11 Lignyte Co Ltd Production of porous silicone
JPH08508755A (en) * 1992-01-31 1996-09-17 セメノヴィッチ ワイネルマン,エフィム Porous polymer material and method for producing the same
JPH1112385A (en) * 1997-06-25 1999-01-19 Daicel Chem Ind Ltd Production of polymer porous material
JP2003321570A (en) * 2002-04-29 2003-11-14 Atofina Chemicals Inc New foam and coating
JP2005317930A (en) * 2004-04-01 2005-11-10 Kyoritsu Kagaku Sangyo Kk Pattern forming method using magnetic field and method of manufacturing electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411141A (en) * 1987-07-03 1989-01-13 Nippi Collagen Kogyo Kk Production of porous article of hydrophilic polymer
JPH06287348A (en) * 1991-07-11 1994-10-11 Lignyte Co Ltd Production of porous silicone
JPH08508755A (en) * 1992-01-31 1996-09-17 セメノヴィッチ ワイネルマン,エフィム Porous polymer material and method for producing the same
JPH1112385A (en) * 1997-06-25 1999-01-19 Daicel Chem Ind Ltd Production of polymer porous material
JP2003321570A (en) * 2002-04-29 2003-11-14 Atofina Chemicals Inc New foam and coating
JP2005317930A (en) * 2004-04-01 2005-11-10 Kyoritsu Kagaku Sangyo Kk Pattern forming method using magnetic field and method of manufacturing electronic equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165404A (en) * 2010-02-05 2011-08-25 Toyota Motor Corp Method of manufacturing electrode for battery, electrode obtained by this method, and battery with this electrode
US8518584B2 (en) 2010-02-05 2013-08-27 Toyota Jidosha Kabushiki Kaisha Production method for electrode for battery, electrode produced by production method, and battery including electrode
WO2013125007A1 (en) * 2012-02-23 2013-08-29 株式会社日立製作所 Separator for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell
JP2015111530A (en) * 2013-12-06 2015-06-18 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Microcapsule for nonaqueous electrolyte secondary batteries, separator for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, electrode active material layer for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2020191464A (en) * 2017-01-12 2020-11-26 株式会社村田製作所 Magnetic particles, dust core, and coil component
JP7124850B2 (en) 2017-01-12 2022-08-24 株式会社村田製作所 Magnetic particles, dust cores, and coil parts
US11495387B2 (en) 2017-01-12 2022-11-08 Murata Manufacturing Co, , Ltd. Magnetic particles, dust core, and coil component
US11128015B2 (en) 2017-11-01 2021-09-21 Lg Chem, Ltd. Secondary battery
CN112787033A (en) * 2021-01-29 2021-05-11 东莞新能德科技有限公司 Thermal anti-sticking protective film and electronic device using same
CN115548583A (en) * 2022-11-24 2022-12-30 合肥长阳新能源科技有限公司 High-safety lithium ion battery composite diaphragm and application thereof

Similar Documents

Publication Publication Date Title
JP5809740B2 (en) Conductive composition
JP6058783B2 (en) Battery electrode or separator coating film composition, battery electrode or separator having a coating film obtained by using the same, and battery having this battery electrode or separator
JP2009227923A (en) Manufacturing method for article having negative pattern
Tong et al. Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry
Dong et al. Polymer electrolyte glue: a universal interfacial modification strategy for all-solid-state Li batteries
Yan et al. Tough Hydrogel Electrolytes for Anti‐Freezing Zinc‐Ion Batteries
Du et al. Free‐standing nanostructured architecture as a promising platform for high‐performance lithium–sulfur batteries
JPWO2012081543A1 (en) Battery electrode or separator surface protecting agent composition, battery electrode or separator protected with the same, and battery having this battery electrode or separator
Shi et al. An Anti‐Freezing Hydrogel Electrolyte for Flexible Zinc‐Ion Batteries Operating at− 70° C
Hosseini et al. Electrochemical behavior of a Nafion‐membrane‐based solid‐state supercapacitor with a graphene oxide—multiwalled carbon nanotube—polypyrrole nanocomposite
Han et al. Direct electrophoretic deposition of an ultra-strong separator on an anode in a surfactant-free colloidal system for lithium ion batteries
JP2014067632A (en) Ceramic slurry for protecting battery electrode or separator
US10804004B2 (en) Conducting film and method for producing the same
Wang et al. Expandable graphite encapsulated by magnesium hydroxide nanosheets as an intumescent flame retardant for rigid polyurethane foams
Zhang et al. Oxidation− reduction reaction driven approach for hydrothermal synthesis of polyaniline hollow spheres with controllable size and shell thickness
Wang et al. Functional separator enabled by covalent organic frameworks for high‐performance Li metal batteries
Lu et al. Enhanced Electrochemical Properties and Optimized Li+ Transmission Pathways of PEO/LLZTO‐Based Composite Electrolytes Modified by Supramolecular Combination
JP2016103439A (en) Slurry composition, method for manufacturing the same, and coated body formed by use thereof
JP2015041502A (en) Coating material composition for nonaqueous storage devices, and nonaqueous storage device
Li et al. High‐rate alkaline water electrolysis at industrially relevant conditions enabled by superaerophobic electrode assembly
Wu et al. Fast Ion Conduction Nanofiber Matrix Composite Electrolyte for Dendrite‐Free Solid‐State Sodium‐Ion Batteries with Wide Temperature Operation
Guo et al. A dual force cross-linked γ-PGA-PAA binder enhancing the cycle stability of silicon-based anodes for lithium-ion batteries
Zhang et al. Metallized Plastic Foils: A Promising Solution for High‐Energy Lithium‐Ion Battery Current Collectors
Li et al. Thermo‐responsive polymers for thermal regulation in electrochemical energy devices
JP2016197598A (en) Ceramic slurry for protecting battery electrode or separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625