JPH01174378A - Novel microorganism of genus pseudomonas - Google Patents

Novel microorganism of genus pseudomonas

Info

Publication number
JPH01174378A
JPH01174378A JP32999887A JP32999887A JPH01174378A JP H01174378 A JPH01174378 A JP H01174378A JP 32999887 A JP32999887 A JP 32999887A JP 32999887 A JP32999887 A JP 32999887A JP H01174378 A JPH01174378 A JP H01174378A
Authority
JP
Japan
Prior art keywords
microorganism
proteins
producing
strain
pseudomonas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32999887A
Other languages
Japanese (ja)
Other versions
JPH0588106B2 (en
Inventor
Juzo Udaka
重三 鵜高
Hiroaki Takagi
広明 高木
Osamu Shinoda
信太 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Higeta Shoyu Co Ltd
Original Assignee
Higeta Shoyu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Higeta Shoyu Co Ltd filed Critical Higeta Shoyu Co Ltd
Priority to JP32999887A priority Critical patent/JPH01174378A/en
Publication of JPH01174378A publication Critical patent/JPH01174378A/en
Publication of JPH0588106B2 publication Critical patent/JPH0588106B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

NEW MATERIAL:A microorganism capable of extracellularly producing a remarkable amount of proteins. EXAMPLE:Pseudomonas sp. H53 (FERM P-9741). USE:A microorganism capable of producing proteins useful as medicines, food proteins, etc., or host microorganism in genetic recombination without producing a proteolytic enzyme. PREPARATION:A microorganism separated from soil, etc., is initially inoculated into a T2 agar plate culture medium to select a microorganism in which the periphery of a colony is clouded with 5% perchloric acid. The resultant microorganism is then cultivated in a T2 liquid culture medium by a shaking culture method to provide a strain capable of producing >=1.2g/l amount of produced proteins in a cultivation filtrate. The obtained strain is subsequently cultivated in a culture medium for highly producing proteins to select the aimed microorganism.

Description

【発明の詳細な説明】 本発明は、新規なシュードモナス属菌に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel Pseudomonas bacterium.

従来、一般に蛋白質を微生物によって生産させるという
場合、微生物を培養し、微生物菌体を磨砕後、蛋白質を
抽出、精製することにより得ていた。
Conventionally, when proteins were produced by microorganisms, they were generally obtained by culturing the microorganisms, grinding the microbial cells, and then extracting and purifying the proteins.

また、一般に遺伝子組換えの微生物生産の宿主としては
、大腸菌が主に使用されているが、大腸菌では、組換え
遺伝子によって合成されるペプチドや蛋白質は細胞内に
とどまり培地中に分泌生産されないため、自づとその生
産量は制限されていた。
In addition, Escherichia coli is generally used as a host for genetically modified microorganism production, but in Escherichia coli, the peptides and proteins synthesized by recombinant genes remain within the cells and are not secreted into the culture medium. Naturally, its production was limited.

その上、細胞磨砕によりペプチド、蛋白質を抽出精製す
ることは、操作が煩雑になるなどの欠点が指摘されてい
る。
Furthermore, it has been pointed out that extracting and purifying peptides and proteins by cell grinding has drawbacks such as complicated operations.

鵜高は、先に、遺伝子組換えにおける宿主菌として蛋白
質を菌体外に分泌する微生物を求めて研究した結果、蛋
白質を多量に分泌生産する微生物として、約1200株
のなかからバチルス・プレビス(Bacillus b
revis) 4株、新菌株バチルス・プロテア−マン
ス(Bacillus proteiformans)
 1株の計5株を分離同定するに至った。(Agric
、 Biol。
Udaka had previously researched microorganisms that secrete proteins outside of their cells as host bacteria for genetic recombination, and as a result, selected Bacillus plebis (Bacillus plebis) from among about 1,200 strains as microorganisms that secrete and produce large amounts of proteins. Bacillus b
Bacillus revis) 4 strains, new strain Bacillus proteiformans
A total of 5 strains (1 strain) were isolated and identified. (Agric
, Biol.

Chem、、40 (3)、 523−528(197
6))また、一方、分泌宿主−ベクターとして枯草菌も
利用され、 α−アミラーゼ、インターフェロンなど各
種異種蛋白質を培地中に蓄積させることに成功している
が、菌体内外の強いプロテアーゼにより生産量が制限さ
れたり、分解されたりして、良好な結果は得られていな
い。
Chem, 40 (3), 523-528 (197
6)) On the other hand, Bacillus subtilis has also been used as a secretory host-vector and has been successful in accumulating various heterologous proteins such as α-amylase and interferon in the culture medium, but the production volume is limited due to strong proteases inside and outside the bacterial body. are limited or degraded, and good results have not been achieved.

先に、鵜高らは、バチルス・ステアロサーモフィルス(
Bacillus stearotharmophil
us) DY−5の耐熱性α−アミラーゼ遺伝子をプラ
スミドpUB110に組込んだPBAMIOIを保有す
るバチルス・プレビス47及び枯草菌を37℃、48時
間培養した時、バチルス・プレビス47では約15 、
0000/ mQ、 枯草菌では3,000U/mfl
程度の α−アミラーゼレそれぞれ培地中に生産蓄積す
るのを確認した。[J、 Bacterj、ol、、1
6C(3)、1182−11.8’7(1985))。
Previously, Udaka et al.
Bacillus stearothermophil
us) When Bacillus plevis 47 and Bacillus subtilis carrying PBAMIOI, in which the thermostable α-amylase gene of DY-5 was incorporated into plasmid pUB110, and Bacillus subtilis were cultured at 37°C for 48 hours, Bacillus plevis 47 had a concentration of about 15%,
0000/mQ, 3,000U/mfl for Bacillus subtilis
It was confirmed that a certain amount of α-amylase was produced and accumulated in each medium. [J, Bacterj,ol,,1
6C(3), 1182-11.8'7 (1985)).

ここに、全く同一のプラスミドを保有するバチルス・プ
レビス47(後述)と枯草菌とでは、耐熱性α−アミラ
ーゼの生産においてバチルス・プレビス47の方が約5
倍も生産効率のよいという事実から蛋白質生産菌の有す
る蛋白質分泌能を用いることにより異種遺伝子産物を効
率良く分泌生産させうろことが判明した。
Here, between Bacillus plevis 47 (described later) and Bacillus subtilis, which carry exactly the same plasmid, Bacillus plevis 47 is approximately 5 times more efficient in producing heat-stable α-amylase.
The fact that the production efficiency is twice as high indicates that a heterologous gene product can be efficiently secreted and produced by using the protein secretion ability of protein-producing bacteria.

しかしながら、先に蛋白質を多量に菌体外に分泌生産す
る細菌として分離同定したバチルス・プレビス47.1
44.48]、 899、バチルス・プロテイホーマン
ス444の5株は、いずれも培地中に牛血清アルブミン
(以下BSAという。)を添加して生育させるとBSA
 を分解し、更に、バチルス・プレビス144、481
.899、及びバチルス・プロテイホーマンス444の
4株はカゼイン分解活性も有していることが確認された
。従って、これら蛋白質を多基に菌体外に分泌生産する
細菌を宿主として組換え遺伝子によって異種遺伝子産物
を分泌生産させる時、効率良く分泌生産されたペプチド
、蛋白質が蛋白質分解酵素によって分解されると考えら
れた。
However, Bacillus plevis 47.1, which was previously isolated and identified as a bacterium that secretes and produces large amounts of protein outside the bacterial body.
44.48], 899, and Bacillus proteihomans 444, when grown in the medium with bovine serum albumin (hereinafter referred to as BSA), BSA
Bacillus plebis 144, 481
.. It was confirmed that four strains, B. 899 and Bacillus proteihomans 444, also had casein-degrading activity. Therefore, when a heterologous gene product is secreted and produced by a recombinant gene using a bacterium that secretes and produces many of these proteins outside the bacterial body, the secreted and produced peptides and proteins are efficiently degraded by proteolytic enzymes. it was thought.

そこで、本発明者らは、蛋白質を著量分泌し、かつ、蛋
白質分解酵素を菌体外に全く生産しない菌株が見い出さ
れれば、遺伝子組換えにおける宿主菌としてすぐれたも
のであるとの発想から、このような菌株を求めて鋭意選
別を行ったところ、各種試料から分離した約1.00,
000株のなかから、菌体外に著量の蛋白質を生産する
が、蛋白質分解酵素を菌体外に生産しない株を単離する
ことに成功したのである。
Therefore, the present inventors came up with the idea that if a strain could be found that secretes a significant amount of protein and does not produce any proteolytic enzymes outside the cell, it would be an excellent host strain for genetic recombination. As a result of intensive selection in search of such strains, approximately 1.00,000 strains were isolated from various samples.
Among the 000 strains, they succeeded in isolating a strain that produces a significant amount of protein extracellularly, but does not produce proteolytic enzymes extracellularly.

ここに単離された株について、種の同定を行ったところ
、はとんどはバチルス属に属するものと同定された。
When the strains isolated here were identified, most of them were identified as belonging to the genus Bacillus.

本発明者等は、更に鋭意選別を行ったところ、バチルス
属以外にも、蛋白質を著量に菌体外に分泌生産する菌株
を単離することに成功したのである。
After further intensive selection, the present inventors succeeded in isolating a strain other than the genus Bacillus that secretes and produces a significant amount of protein outside the bacterial cell.

ここに単離された株について、種の同定を行ったところ
、シュードモナス属に属するものと同定され、本発明を
完成するに到った。
When the species of the strain isolated here was identified, it was identified as belonging to the genus Pseudomonas, leading to the completion of the present invention.

本発明は、菌体外に著量の蛋白質を生産するが、蛋白質
分解酵素を生産しないシュードモナス属菌である。
The present invention is a Pseudomonas bacterium that produces a significant amount of protein extracellularly, but does not produce proteolytic enzymes.

従来、バチルス属において、蛋白質を生産する菌株は知
られているが、シュードモナス属菌で蛋白質を著量菌体
外に生産する菌株は全く知られていない。
Bacterial strains of the genus Bacillus that produce protein have been known, but no strains of the genus Pseudomonas that produce a significant amount of protein outside their cells have been known.

また、本発明の新規シュードモナス属菌は蛋白質分解酵
素を菌体外に分泌しないが、このようなシュードモナス
属菌についても全く知られていなし1゜ 本発明においてはしめて分離された新菌株、即ち、菌体
外に著量の蛋白質を生産し、蛋白質分解酵素を菌体外に
分泌しないシュードモナス属の新菌株は全く新規である
Furthermore, although the novel Pseudomonas bacterium of the present invention does not secrete proteolytic enzymes outside the bacterial body, nothing is known about such Pseudomonas bacterium. A new strain of the genus Pseudomonas that produces a significant amount of protein extracellularly and does not secrete proteolytic enzymes extracellularly is completely new.

本発明においては、蛋白質を5g/Ω以上培地中に−ζ
 − 分泌生産しかつBSA、 カゼインのいずれの蛋白質を
も分解しない菌株を目標に選択分離された。
In the present invention, 5 g/Ω or more of protein is added to the medium in -ζ
- Bacterial strains that secrete and produce proteins and do not degrade either BSA or casein proteins were selected and isolated.

まず、土壌などの試料から分離された約100000株
の菌株をT2寒天平板培地(1%グルコース、1%ペプ
トン、0.5%肉エキス、0.2%酵母エキス、1.5
%寒天末、pH7、0)に接種し、平板培地上でコロニ
ー周辺が5%過塩素酸に白濁する細菌を選択した。次に
、ここに分離した細菌株をT2液体培地(150mQ容
三角フラスコ、培地量10mQ)で振盪培養(30℃、
48時間)シ、その培養濾液中に1..2g/f1以上
の蛋白質を生産する菌株を80株得た。
First, approximately 100,000 bacterial strains isolated from samples such as soil were grown on a T2 agar plate medium (1% glucose, 1% peptone, 0.5% meat extract, 0.2% yeast extract, 1.5%
% agar powder, pH 7.0), and bacteria around the colony that became cloudy with 5% perchloric acid were selected on a plate culture medium. Next, the bacterial strain isolated here was cultured with shaking (30°C,
1.48 hours) in the culture filtrate. .. We obtained 80 strains that produced 2 g/f1 or more of protein.

菌体外蛋白質の測定においては、培養液に等量の0.2
N NaOHを加え攪拌後10,000rpmX 5分
遠心分離処理して菌体を除き、上清に等量の10%トリ
クロル酢酸を加えて10分後3.OOOrpm X 1
0分間遠心分離して沈澱を集め、IN NaOHで溶解
した後Lowry法(J、 Biol、 Chem、 
193.265(1951))によって定量し、蛋白質
量は牛血清アルブミンとして換算した。
When measuring extracellular proteins, add an equal amount of 0.2
Add N NaOH, stir, and centrifuge at 10,000 rpm for 5 minutes to remove bacterial cells.Add an equal amount of 10% trichloroacetic acid to the supernatant, and after 10 minutes, 3. OOOrpm X 1
The precipitate was collected by centrifugation for 0 min, dissolved in IN NaOH, and then subjected to the Lowry method (J, Biol, Chem,
193.265 (1951)), and the protein amount was converted into bovine serum albumin.

蛋白質高生産培地として第1表に示す培地を選んだ。The media shown in Table 1 were selected as high protein production media.

6一 これらの5種類の培地のすべての培地に、先に得られた
80株の菌を振盪培養し、いずれかの培地で菌体外蛋白
質を5g/Q以上生産する菌株を31株選択した。
6. The 80 strains obtained earlier were cultured with shaking in all of these 5 types of media, and 31 strains were selected that produced 5 g/Q or more of extracellular protein in any of the media. .

得られた31株について、次に示す、BSAの分解性の
測定及びミルクカゼインの分解性の測定を行った・ (BSAの分解性の測定) T2培地を150mfl三角フラスコに10朧ρ分注後
オートクレーブ殺菌し、無菌濾過したBSA (Sig
maA4503)溶液を最終濃度3.2mg/mflに
なるように添加し、1晩前培養した菌株を0.2mρ接
種後37℃で20Orpmにて振盪培養した。
Regarding the obtained 31 strains, the following measurements of BSA degradability and milk casein degradability were performed. Autoclaved and sterile filtered BSA (Sig
maA4503) solution was added to give a final concentration of 3.2 mg/mfl, and the strain was pre-cultured overnight. After inoculation with 0.2 mρ, the strain was cultured with shaking at 37° C. and 20 Orpm.

培養24時間、48時間、72時間後にサンプリングし
た培養濾液を10.00Orpm 5分間遠心分離した
培養上清625 p Qに0.5M Tris−C1(
p)16.8) 125μΩ、10%SDS 200μ
Q β−メルカプトエタノール50μQを添加し撹拌後
沸騰水中で3分間熱処理後0.05%BPBと70%グ
リセロールを含む0.062’5M Tris−C1(
pH6,8)の0.In+Rを加え5DS−ポリアクリ
ルアミドゲル電気泳動(SDS−P、AGE)用の試料
とした。スラブ5O3−PAGEは10%のアクリルア
ミド濃度で行なった。
The culture filtrate sampled after 24 hours, 48 hours, and 72 hours of culture was centrifuged at 10.00 rpm for 5 minutes. 0.5M Tris-C1 (
p)16.8) 125μΩ, 10%SDS 200μ
Q 0.062'5M Tris-C1 containing 0.05% BPB and 70% glycerol after stirring and heat treatment in boiling water for 3 minutes after adding 50 μQ of β-mercaptoethanol (
pH 6,8) 0. In+R was added to prepare a sample for 5DS-polyacrylamide gel electrophoresis (SDS-P, AGE). Slab 5O3-PAGE was performed at a 10% acrylamide concentration.

蛋白質の検出はクーマシブリリアントブルーによる染色
により行なった。培養24時間、48時間、72時間す
べてにおいてBSAを分解しなかった菌株を、BSAの
分解性のない菌株とした。
Protein detection was performed by staining with Coomassie brilliant blue. A strain that did not degrade BSA during all 24, 48, and 72 hours of culture was designated as a strain that does not have the ability to degrade BSA.

(ミルクカゼインの分解性の測定) スキムミルク5g、2g、1gを各々50mM純水に懸
濁した液と寒天1gを純水50+dに溶かした液を別々
にオートクレーブで殺菌後面者を混合後シャーレにに分
注して、5%、2%、1%ミルク寒天平板培地を作った
。平板培地に菌株を植苗後37℃にて3日間培養しコロ
ニーの周りが透明になるかどうか観察した。5%、2%
、1%ミルク寒天平板培地のすべてに全く透明円をつく
らない菌株をミルクカゼインの分解性のない菌株とした
(Measurement of degradability of milk casein) A solution in which 5g, 2g, and 1g of skim milk were each suspended in 50mM pure water, and a solution in which 1g agar was dissolved in 50+d pure water were sterilized separately in an autoclave, then mixed and placed in a petri dish. The mixture was divided into 5%, 2%, and 1% milk agar plates. After seedlings of the bacterial strain were planted on a plate medium, they were cultured at 37°C for 3 days, and it was observed whether the area around the colony became transparent. 5%, 2%
A strain that did not produce any transparent circles on any of the 1% milk agar plates was designated as a strain that did not have the ability to decompose milk casein.

以上の測定の結果、853株をBSA及びミルクカゼイ
ンをともに分解しないことから、蛋白質分解酵素を菌体
外に生産しない菌株として選定した。
As a result of the above measurements, strain 853 was selected as a strain that does not produce proteolytic enzymes outside the bacterial cells because it does not degrade both BSA and milk casein.

)153株を、Bergey’ sにanual of
 DeterminativeBacteriolog
y (第8版)、Bergey’s Manual、o
f Systematic Bacterioligy
 vol、1及び、The Prokaryote (
A Handbook on Habitats、 l
5olation andIdentificatio
n of Bacteria)によって同定したところ
、本菌株は、まず、好気性、ダラム染色陰性、桿菌、胞
子を形成しない点においてシュードモナス属に属するも
のと認められた。
) 153 stocks to Bergey's annual of
Determinative Bacteriolog
y (8th edition), Bergey's Manual, o
f Systematic Bacteriology
vol.1 and The Prokaryote (
A Handbook on Habitats, l
5olation and identity
As a result of identification using the method (n of Bacteria), this strain was first recognized to belong to the genus Pseudomonas in that it is aerobic, negative for Durham staining, does not form bacilli, and does not form spores.

また、その他の、形態的性質、各培地における生育状態
、生理学的性質について、シュードモナス属の従来知ら
れている菌種と比較検討した結果、シュードモナス属の
どの菌種とも異っていた。また、本菌種にはカゼイン、
BSAを分解する能力もなかった。
In addition, as a result of comparing other morphological properties, growth conditions in various media, and physiological properties with conventionally known bacterial species of the genus Pseudomonas, it was found that it was different from any other bacterial species of the genus Pseudomonas. In addition, this bacterial species also contains casein,
It also lacked the ability to break down BSA.

従って、本菌種はシュードモナス属の新菌種として同定
された。
Therefore, this bacterial species was identified as a new bacterial species of the genus Pseudomonas.

かくて、本菌株はシュードモナスsp、 853と命名
された。シュードモナス8p、 H53はFORM P
−9741として微工研に寄託されている。
Thus, this strain was named Pseudomonas sp. 853. Pseudomonas 8p, H53 is FORM P
-9741 and has been deposited with the Institute of Fine Technology.

次にシュードモナスsp、 H53の菌学的性質を示す
Next, the mycological properties of Pseudomonas sp. H53 will be shown.

(A)形態的性質 (B)各培地における生育状態 (C)生理学的性質 つつく 一11= (E)炭素源の要求性 Acetate          +5uccina
te         +Fumarate     
          −L−Malate      
    +β−Hydroxybutylate   
  +Lactate          +C1tr
ate          +a −Ketoglut
arate      −Grycerol     
         +L−Alanine      
        +L−Asparate      
      −L−Glutamate 十 L−Arginine            −L−
Proline              +L−T
yrosine            +D−Fuc
osa               ±Maltos
e                ±Ce1lobi
ose             ±Lactose 
               ±D−Arabino
se            ±Arabitol  
            +5tarch      
          ±Inulin        
        +0xalate         
      −Etylen grycol     
     ±L−Threonine        
    −D−Riboge            
   ±Mannitol             
  ±D−Xylose             ±
L−Arabinose            +L
−Rhamnose              +G
lucose                +D−
Mannose              ±D−G
alactose             +L−)
1ydroxyproline        +In
osine                +Bet
aine                −D″Fr
actose             ±5ucro
se               +Treharo
se             ±Gluconate
              −Propionate
            −Malonate    
           −D(−)−Tartrate
         +5orbito1士 Propylene glycol       +E
thanol               +n−B
utanol             +0xala
te              +m−Hydrox
ybenzoate       −p−Hydrox
ybenzoate       −Phenol  
              −Glycine   
          +L−5erine 十 1−16ucine             ±L−
Isoleucine           fL−V
aline               −L−Ly
sine            +L−Ornith
ine           ±L−Histidin
e            +L−Phenylala
nine        +L−Tryptophan
          ±N−^cety1glucos
amine     ±Raff1nose     
        ±Creatine        
     ±Deoxycholate       
   +D−Glucronate         
   −Free                ±
本発明は、菌体外に著量の蛋白質を生産するが。
(A) Morphological properties (B) Growth status in each medium (C) Physiological properties = (E) Requirement for carbon source Acetate +5uccina
te +Fumarate
-L-Malate
+β-Hydroxybutylate
+Lactate +C1tr
ate +a - Ketoglut
arate-Grycerol
+L-Alanine
+L-Apart
-L-Glutamate 10L-Arginine -L-
Proline +LT
yrosine +D-Fuc
osa ±Maltos
e ±Ce1lobi
ose ±Lactose
±D-Arabino
se ±Arabitol
+5tarch
±Inulin
+0xalate
-Etylene glycol
±L-Threonine
-D-Riboge
±Mannitol
±D-Xylose ±
L-Arabinose +L
-Rhamnose +G
lucose +D-
Mannose ±D-G
alactose +L-)
1ydroxyproline +In
osine +Bet
aine-D″Fr
actose ±5ucro
se + Treharo
se ±Gluconate
-Propionate
-Malonate
-D(-)-Tartrate
+5orbito1 Propylene glycol +E
thanol +n-B
utanol +0xala
te +m-Hydrox
ybenzoate-p-Hydrox
ybenzoate-Phenol
-Glycine
+L-5erine 11-16ucine ±L-
Isoleucine fL-V
aline-L-Ly
sine +L-Ornith
ine ±L-Histidin
e +L-Phenylala
nine +L-Tryptophan
±N-^cety1glucos
amine ±Raff1nose
±Creatine
±Deoxycholate
+D-Glucronate
-Free ±
The present invention produces a significant amount of protein outside the bacterial cells.

蛋白質分解酵素を菌体外に生産しないシュードモナス属
菌で、特にシュードモナスsp、 H53である。
Pseudomonas bacteria that do not produce proteolytic enzymes outside the bacterial body, especially Pseudomonas sp. H53.

本発明のシュードモナスsp、 H53を培養すること
により著量生産した蛋白質の性質次第では、それ自体食
糧蛋白質やゲル化剤、膨化剤等の食品加工素材または、
ガラス様素材、紙、人工皮革等の表面加工等の工業素材
としての利用等産業上の有用性が非常に高い。
Depending on the properties of the protein produced in large quantities by culturing Pseudomonas sp.
It has great industrial utility, such as use as an industrial material for surface treatment of glass-like materials, paper, artificial leather, etc.

また、本発明のシュードモナスsp、 853を遺伝子
組換えの宿主菌として利用した場合遺伝子組換えによる
生産物を効率良く菌体外に分泌することができ、そして
遺伝子組換えによる生産物を分解することができないの
で、遺伝子組換えにおける宿主菌としてきわめてすぐれ
たものになるであろう。
Furthermore, when Pseudomonas sp. 853 of the present invention is used as a host bacterium for genetic recombination, the genetically recombinant product can be efficiently secreted outside the bacterial body, and the genetically recombinant product can be degraded. This makes it an excellent host for genetic recombination.

この系は、医薬品、良質な食糧蛋白質やゲル化剤、膨化
剤等の食品加工素材または、ガラス探索材、紙、人工皮
革等の表面加工の工業素材などの生産手段としての活用
が期待出来る。
This system can be expected to be used as a production means for pharmaceuticals, food processing materials such as high-quality food proteins, gelling agents, and leavening agents, and industrial materials for surface treatment such as glass exploration materials, paper, and artificial leather.

以上の様に本発明の有用性は産業上極めて意義深いもの
である。
As described above, the usefulness of the present invention is extremely significant industrially.

以下に、実施例を挙げて本発明を更に具体的に説明する
The present invention will be explained in more detail below by giving Examples.

実施例1 前記第1表記載の5YKC培地500−を2n容のジャ
ーファーメンタ−に分注し、常法により121℃20分
滅菌した後、冷却した。
Example 1 The 5YKC medium 500-ml listed in Table 1 above was dispensed into 2N jar fermenters, sterilized at 121°C for 20 minutes by a conventional method, and then cooled.

別に、5’/KC培地5d分注した試験管をオートクレ
ーブすることにより滅菌し、これにシュードモナスsp
、 H53を1白金耳接種し、37℃で14時間振盪培
養した。この前培養物5mMをジャーファーメンタ−に
接種し、37℃48時間通気量0.釘/分回転数40O
rpm+で培養した。培養終了後、培養物に等量の0.
2N NaOHを加え攪拌後110000rp X 5
分遠心分離処理して菌体を除き、上清100m11に等
量の10%トリクロル酢酸を加え10分後3000rp
a+ X 10分間遠心分離して沈澱を集めた。5%ト
リクロル酢酸で洗浄し、遠心分離に沈澱を集めIN N
aOHで溶解した後LOνry法によって定量した。蛋
白質は牛血清アルブミンに換算して示した。その結果、
菌体外に生産された蛋白質量は1g/flであった。
Separately, a test tube containing 5d of 5'/KC medium was sterilized by autoclaving, and Pseudomonas sp.
, H53 was inoculated into one platinum loop, and cultured with shaking at 37°C for 14 hours. 5mM of this preculture was inoculated into a jar fermenter at 37°C for 48 hours with no aeration rate. Nail/min rotation speed 40O
Cultured at rpm+. After incubation, add an equal amount of 0.
After adding 2N NaOH and stirring, 110,000 rpm x 5
After centrifuging to remove bacterial cells, add an equal amount of 10% trichloroacetic acid to 100ml of supernatant, and after 10 minutes, spin at 3000 rpm.
A+X Centrifugation was performed for 10 minutes to collect the precipitate. Wash with 5% trichloroacetic acid and collect the precipitate by centrifugation.
After dissolving with aOH, it was quantified by the LOvry method. Proteins are expressed in terms of bovine serum albumin. the result,
The amount of protein produced outside the bacterial cells was 1 g/fl.

代理人 弁理士 戸 1)親 男 手続補正書 昭和63年 2月19日Agent Patent Attorney 1) Parent Male Procedural amendment February 19, 1988

Claims (1)

【特許請求の範囲】[Claims] 菌体外に著量の蛋白質を生産する新規シュードモナス属
菌。
A new Pseudomonas bacterium that produces a significant amount of protein outside the bacterial body.
JP32999887A 1987-12-28 1987-12-28 Novel microorganism of genus pseudomonas Granted JPH01174378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32999887A JPH01174378A (en) 1987-12-28 1987-12-28 Novel microorganism of genus pseudomonas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32999887A JPH01174378A (en) 1987-12-28 1987-12-28 Novel microorganism of genus pseudomonas

Publications (2)

Publication Number Publication Date
JPH01174378A true JPH01174378A (en) 1989-07-10
JPH0588106B2 JPH0588106B2 (en) 1993-12-21

Family

ID=18227625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32999887A Granted JPH01174378A (en) 1987-12-28 1987-12-28 Novel microorganism of genus pseudomonas

Country Status (1)

Country Link
JP (1) JPH01174378A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.BACTERIOL=1983 *

Also Published As

Publication number Publication date
JPH0588106B2 (en) 1993-12-21

Similar Documents

Publication Publication Date Title
CN110551661B (en) Bacillus belgii LfF-1 strain and application thereof in production of protease
Odu et al. Protease production capabilities of Micrococcus luteus and Bacillus species isolated from abattoir environment
CA1277618C (en) Bacteriolytic enzyme product from streptomyces, a process for its preparation, and a strain suitable for this purpose
US3677900A (en) Method of producing collagenase with a species of vibrio
CN116286565B (en) Bacillus subtilis strain for high yield of alkaline protease and application thereof
JPS6356277A (en) Novel bacillus brevis and use thereof
EP0268452B1 (en) Novel hydrolase and method of production
WO2001016302A1 (en) Novel thermostable collagen-digesting enzyme, novel microorganism producing the enzyme and process for producing the enzyme
JPH01174378A (en) Novel microorganism of genus pseudomonas
CZ308157B6 (en) Clostridium histolyticum strain, collagenase prepared using this strain and its use
JPS60153791A (en) Bacillus subtilis dsm2704 and production of alpha-amylase using same
JPS6363375A (en) Novel bacillus sp h023
CN117070394B (en) Alkalophilic strain for producing alkaline protease, alkaline protease and application thereof
JP4643873B2 (en) Heat-resistant laccase and method for producing the same
JPH0586184B2 (en)
JPS6363374A (en) Novel bacillus sp h1402
RU2684220C1 (en) Strain clostridium histolyticum - producer of collagenase
Yonemoto et al. Characterization of microbial system for degradation of bacterial endospores
JPH01235582A (en) Novel pseudomonas bacteria
JPH07236482A (en) Alkaline protease, its production and microorganism producing the protease
JPH01235581A (en) Novel pseudomonas bacteria
JPH01235583A (en) Novel pseudomonas bacteria
JP4752024B2 (en) Cell wall degrading enzyme, producing microorganism, and protoplast preparation method using the same
JPH01235585A (en) Novel pseudomonas bacteria
RU2244741C1 (en) Method for production of protheolytic reagent for structural protein hydrolysis