JPH0588106B2 - - Google Patents

Info

Publication number
JPH0588106B2
JPH0588106B2 JP62329998A JP32999887A JPH0588106B2 JP H0588106 B2 JPH0588106 B2 JP H0588106B2 JP 62329998 A JP62329998 A JP 62329998A JP 32999887 A JP32999887 A JP 32999887A JP H0588106 B2 JPH0588106 B2 JP H0588106B2
Authority
JP
Japan
Prior art keywords
strain
protein
pseudomonas
bacterial
bacillus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62329998A
Other languages
Japanese (ja)
Other versions
JPH01174378A (en
Inventor
Juzo Udaka
Hiroaki Takagi
Osamu Shinoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Higeta Shoyu Co Ltd
Original Assignee
Higeta Shoyu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Higeta Shoyu Co Ltd filed Critical Higeta Shoyu Co Ltd
Priority to JP32999887A priority Critical patent/JPH01174378A/en
Publication of JPH01174378A publication Critical patent/JPH01174378A/en
Publication of JPH0588106B2 publication Critical patent/JPH0588106B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、新規なシユードモナス属菌に関する
ものである。 従来、一般に蛋白質を微生物によつて生産させ
るという場合、微生物を培養し、微生物菌体を磨
砕後、蛋白質を抽出、精製することにより得てい
た。 また、一般に遺伝子組換えの微生物生産の宿主
としては、大腸菌が主に使用されているが、大腸
菌では、組換え遺伝子によつて合成されるペプチ
ドや蛋白質は細胞内にとどまり培地中に分泌生産
されないため、自づとその生産量は制限されてい
た。 その上、細胞磨砕によりペプチド、蛋白質を抽
出精製することは、操作が煩雑になるなどの欠点
が指摘されている。 鵜高は、先に、遺伝子組換えにおける宿主菌と
して蛋白質を菌体外に分泌する微生物を求めて研
究した結果、蛋白質を多量に分泌生産する微生物
として、約1200株のなかからバチルス・ブレビス
(Bacillus brevis)4株、新菌株バチルス・プロ
テイホーマンス(Bacillus proteiformans)1株
の計5株を分離同定するに至つた。〔Agric.Biol.
Chem.40(3),523−528(1976)〕 また、一方、分泌宿主−ベクターとして枯草菌
も利用され、α−アミラーゼ、インターフエロン
など各種異種蛋白質を培地中に蓄積させることに
成功しているが、菌体内外の強いプロテアーゼに
より生産量が制限されたり、分解されたりして、
良好な結果は得られていない。 先に、鵜高らは、バチルス.ステアロサーモフ
イルス(Bacillus stearothermophilus)DY−5
の耐熱性α−アミラーゼ遺伝子をプラスミド
pUB110に組込んだpBAM101を保有するバチル
ス・ブレビス47及び枯草菌を37℃、48時間培養し
た時、バチルス・ブレビス47では約15000U/ml、
枯草菌では3000U/ml程度のα−アミラーゼをそ
れぞれ培地中に生産蓄積するのを確認した。〔J.
Bacteriol.,164,(3),1182−1187(1985)〕。 ここに、全く同一のプラスミドを保有するバチ
ルス・ブレビス47(後述)と枯草菌とでは、耐熱
性α−アミラーゼの生産においてバチルス・ブレ
ビス47の方が約5倍も生産効率のよいという事実
から蛋白質生産菌の有する蛋白質分泌能を用いる
ことにより異種遺伝子産物を効率良く分泌生産さ
せうることが判明した。 しかしながら、先に蛋白質を多量に菌体外に分
泌生産する細菌として分離同定したバチルス・ブ
レビス47,144,481,899、バチルス・プロテイ
ホーマンス444の5株は、いずれも培地中に牛血
清アルブミン(以下BSAという。)を添加して生
育させるとBSAを分解し、更に、バチルス・ブ
レビス144,481,899、及びバチルス・プロテイ
ホーマンス444の4株はカゼイン分解活性も有し
ていることが確認された。従つて、これら蛋白質
を多量に菌体外に分泌生産する細菌を宿主として
組換え遺伝子によつて異種遺伝子産物を分泌生産
させる時、効率良く分泌生産されたペプチド、蛋
白質が蛋白質分解酵素によつて分解されると考え
られた。 そこで、本発明者らは、蛋白質を著量分泌し、
かつ、蛋白質分解酵素を菌体外に全く生産しない
菌株が見い出されれば、遺伝子組換えにおける宿
主菌としてすぐれたものであるとの発想から、こ
のような菌株を求めて鋭意選別を行つたところ、
各種試料から分離した約100000株のなかから、菌
体外に著量の蛋白質を生産するが、蛋白質分解酵
素を菌体外に生産しない株を単離することに成功
したのである。 ここに単離された株について、種の同定を行つ
たところ、ほとんどはバチルス属に属するものと
同定された。 本発明者等は、更に鋭意選別を行つたところ、
バチルス属以外にも、蛋白質を著量に菌体外に分
泌生産する菌体を単離することに成功したのであ
る。 ここに単離された株について、種の同定を行つ
たところ、シユードモナス属に属するものと同定
され、本発明を完成するに到つた。 本発明は、菌体外に著量の蛋白質を生産する
が、蛋白質分解酵素を生産しない新規シユードモ
ナス属菌である。 従来、バチルス属において、蛋白質を生産する
菌株は知られているが、シユードモナス属菌で蛋
白質を5g/以上もの著量菌体外に生産する菌
株は知られていない。 また、本発明の新規シユードモナス属菌は蛋白
質分解酵素を菌体外に分泌しないが、このような
シユードモナス属菌についても全く知られていな
い。 本発明においてはじめて分離された新菌株、即
ち、菌体外に著量の蛋白質を生産し、蛋白質分解
酵素を菌体外に分泌しないシユードモナス属の新
菌株は全く新規である。 本発明においては、蛋白質を5g/以上培地
中に分泌生産しかつBSA、カゼインのいずれの
蛋白質をも分解しない菌株を目標に選択分離され
た。 まず、土壌などの試料から分離された約100000
株の菌株をT2寒天平板培地(1%グルコース、
1%ペプトン、0.5%肉エキス、0.2%酵母エキ
ス、1.5%寒天末、PH7.0)に接種し、平板培地上
でコロニー周辺が5%過塩素酸に白濁する細菌を
選択した。次に、ここに分離した細菌株をT2液
体培地(150ml容三角フラスコ、培地量10ml)で
振盪培養(30℃、48時間)し、その培養濾液中に
1.2g/以上の蛋白質を生産する菌株を80株得
た。 菌体外蛋白質の測定においては、培養液に等量
の0.2N NaOHを加え撹拌後10000rpm×5分遠
心分離処理して菌体を除き、上清に等量の10%ト
リクロル酢酸を加えて10分後3000rpm×10分間遠
心分離して沈澱を集め、、1N NaOHで溶解した
後Lowry法〔J.Biol.Chem.193,265(1951)〕によ
つて定量し、蛋白質量は牛血清アルブミンとして
換算した。 蛋白質高生産培地として第1表に示す培地を選
んだ。
The present invention relates to a novel Pseudomonas bacterium. Conventionally, when proteins were produced by microorganisms, they were generally obtained by culturing the microorganisms, grinding the microbial cells, and then extracting and purifying the proteins. Additionally, Escherichia coli is generally used as a host for the production of genetically modified microorganisms, but in Escherichia coli, the peptides and proteins synthesized by recombinant genes remain within the cells and are not secreted into the culture medium. Therefore, its production volume was naturally limited. Furthermore, it has been pointed out that extracting and purifying peptides and proteins by cell grinding has drawbacks such as complicated operations. Udaka had previously researched microorganisms that secrete proteins outside of their cells as host bacteria for genetic recombination, and as a result, he selected Bacillus brevis (from about 1,200 strains) as a microorganism that secretes and produces large amounts of proteins. A total of five strains, four strains of Bacillus brevis and one new strain of Bacillus proteiformans, were isolated and identified. [Agric.Biol.
Chem. 40(3), 523-528 (1976)] On the other hand, Bacillus subtilis has also been used as a secretion host-vector, and has been successful in accumulating various heterologous proteins such as α-amylase and interferon in the culture medium. However, the production amount is limited or degraded by strong proteases inside and outside the bacterial body.
Good results have not been obtained. First, Udaka et al. Bacillus stearothermophilus DY-5
Plasmid containing the thermostable α-amylase gene of
When Bacillus brevis 47 carrying pBAM101 incorporated into pUB110 and Bacillus subtilis were cultured at 37°C for 48 hours, Bacillus brevis 47 produced approximately 15,000 U/ml,
In Bacillus subtilis, it was confirmed that approximately 3000 U/ml of α-amylase was produced and accumulated in each culture medium. [J.
Bacteriol., 164, (3), 1182-1187 (1985)]. Here, between Bacillus brevis 47 (described later) and Bacillus subtilis, which carry exactly the same plasmid, Bacillus brevis 47 is approximately 5 times more efficient in producing heat-stable α-amylase. It has been found that a heterologous gene product can be secreted and produced efficiently by using the protein secretion ability of the producing bacterium. However, five strains, Bacillus brevis 47, 144, 481, 899 and Bacillus proteihomans 444, which were previously isolated and identified as bacteria that secrete and produce large amounts of protein outside the bacterial body, all contained bovine serum albumin in the culture medium. Bacillus brevis 144, 481, 899, and Bacillus proteihomans 444 have also been shown to have casein-degrading activity when grown with the addition of BSA (hereinafter referred to as BSA). confirmed. Therefore, when a foreign gene product is secreted and produced by a recombinant gene using a bacterium that secretes and produces large amounts of these proteins outside the bacterial body, the secreted and produced peptides and proteins are efficiently digested by proteolytic enzymes. It was thought that it would be decomposed. Therefore, the present inventors secreted a significant amount of protein,
Moreover, if we could find a strain that does not produce any proteolytic enzymes outside the cell, it would be an excellent host for genetic recombination, so we carried out extensive selection in search of such a strain.
Out of approximately 100,000 strains isolated from various samples, they succeeded in isolating a strain that produces a significant amount of protein outside the bacterial body, but does not produce proteolytic enzymes outside the bacterial body. Upon species identification of the strains isolated here, most were identified as belonging to the genus Bacillus. The inventors conducted further thorough selection and found that
In addition to the genus Bacillus, they succeeded in isolating a bacterial cell that secretes and produces a significant amount of protein outside the bacterial cell. When the strain isolated here was identified as belonging to the genus Pseudomonas, the present invention was completed. The present invention is a novel Pseudomonas bacterium that produces a significant amount of protein extracellularly, but does not produce proteolytic enzymes. Bacterial strains of the genus Bacillus that produce protein have been known, but no strain of the genus Pseudomonas that produces protein in significant amounts of 5 g or more extracellularly has been known. Furthermore, although the novel Pseudomonas bacterium of the present invention does not secrete proteolytic enzymes outside the bacterial body, nothing is known about such Pseudomonas bacterium. The new bacterial strain isolated for the first time in the present invention, ie, the new strain of the genus Pseudomonas that produces a significant amount of protein extracellularly and does not secrete proteolytic enzymes extracellularly, is completely new. In the present invention, strains that secrete and produce 5 g or more of protein into the medium and do not degrade either BSA or casein proteins were selected and isolated. First, about 100,000 cells were isolated from soil and other samples.
strains on T2 agar plates (1% glucose,
The bacteria were inoculated into 1% peptone, 0.5% meat extract, 0.2% yeast extract, 1.5% agar powder, pH 7.0), and bacteria whose periphery became cloudy with 5% perchloric acid were selected on a plate medium. Next, the bacterial strain isolated here was cultured with shaking (30℃, 48 hours) in a T2 liquid medium (150ml Erlenmeyer flask, medium volume 10ml), and the culture filtrate was
We obtained 80 strains that produced 1.2g/or more of protein. To measure extracellular proteins, add an equal volume of 0.2N NaOH to the culture solution, stir, centrifuge at 10,000 rpm for 5 minutes to remove the bacterial cells, and add an equal volume of 10% trichloroacetic acid to the supernatant. After that, the precipitate was collected by centrifugation at 3000 rpm for 10 minutes, dissolved in 1N NaOH, and then quantified by the Lowry method [J. Biol. Chem. 193, 265 (1951)]. The protein amount was determined as bovine serum albumin. Converted. The medium shown in Table 1 was selected as a high protein production medium.

【表】【table】

【表】 これらの5種類の培地のすべての培地に、先に
得られた80株の菌を振盪培養し、いずれかの培地
で菌体外蛋白質を5g/以上生産する菌株を31
株選択した。 得られた31株について、次に示す、BSAの分
解性の測定及びミルクカゼインの分解性の測定を
行つた。 (BSAの分解性の測定) T2培地を150ml三角フラスコに10ml分注後オー
トクレーブ殺菌し、無菌濾過したBSA(Sigma
A4503)溶液を最終濃度3.2mg/mlになるように
添加し、1晩前培養した菌株を0.2ml接種後37℃
で200rpmにて振盪培養した。 培養24時間、48時間、72時間後にサンプリング
した培養濾液を10000rpm5分間遠心分離した培養
上清625μに0.5M Tris−HCl(PH6.8)125μ、
10%SDS200μ β−メルカプトエタノール50μ
を添加し撹拌後沸騰水中で3分間熱処理後0.05
%BPBと70%グリセロールを含む0.0625M Tris
−HCl(PH6.8)の0.1mlを加えSDS−ポリアクリル
アミドゲル電気泳動(SDS−PAGE)用の試料し
た。スラブSDS−PAGEは10%のアクリルアミド
濃度で行なつた。蛋白質の検出はクーマシブリリ
アントブルーによる染色により行なつた。培養24
時間、48時間、72時間すべてにおいてBSAを分
解しなかつた菌株を、BSAの分解性のない菌株
とした。 (ミルクカゼインの分解性の測定) スキムミルク5g、2g、1gを各々50ml純水に懸
濁した液と寒天1gを純水50mlに溶かした液を
別々にオートクレーブで殺菌後両者を混合後シヤ
ーレに分注して、5%、2%、1%ミルク寒天平
板培地を作つた。平板培地に菌株を植菌後37℃に
て3日間培養しコロニーの周りが透明になるかど
うか観察した。5%、2%、1%ミルク寒天平板
培地のすべてに全く透明円をつくらない菌株をミ
ルクカゼインの分解性のない菌株とした。 以上の測定の結果、H53株をBSA及びミルク
カゼインをともに分解しないことから、蛋白質分
解酵素を菌体外に生産しない菌株として選定し
た。 H53株を、Bergey's Manual of
Determinative Bacteriology(第8版)、
Bergey's Manual of Sys tematic Bacterioligy
vol.1及び、The Prokaryote(A Handbook on
Habitats,Isolation and Idenification of
Bacteria)によつて同定したところ、本菌株は、
まず、好気性、グラム染色陰性、桿菌、胞子を形
成しない点においてシユードモナス属に属するも
のと認められた。 また、その他の、形態的性質、各培地における
生育状態、生理学的性質について、シユードモナ
ス属の従来知られている菌種と比較検討した結
果、、シユードモナス属のどの菌種とも異つてい
た。また、本菌種にはカゼイン、BSAを分解す
る能力もなかつた。 従つて、本菌種はシユードモナス属の新菌種と
して同定された。 かくて、本菌株はシユードモナスsp.H53と命
名された。シユードモナスsp.H53はFERM P−
9741として微工研に寄託されている。 次にシユードモナスsp.H53の菌学的性質を示
す。
[Table] The 80 strains previously obtained were cultured with shaking in all of these five types of media, and 31 strains that produced 5 g or more of extracellular protein were cultured in any of the media.
Selected stocks. Regarding the obtained 31 strains, the following measurements of BSA degradability and milk casein degradability were performed. (Measurement of BSA degradability) Pour 10 ml of T2 medium into a 150 ml Erlenmeyer flask, sterilize it in an autoclave, and aseptically filter BSA (Sigma
A4503) solution was added to a final concentration of 3.2 mg/ml, and 0.2 ml of the strain was pre-cultured overnight at 37°C.
Shaking culture was performed at 200 rpm. The culture filtrate sampled after 24, 48, and 72 hours of culture was centrifuged at 10,000 rpm for 5 minutes, and 625μ of the culture supernatant was mixed with 125μ of 0.5M Tris-HCl (PH6.8).
10% SDS 200μ β-mercaptoethanol 50μ
0.05 after stirring and heat treatment in boiling water for 3 minutes.
0.0625M Tris with %BPB and 70% Glycerol
-0.1 ml of HCl (PH6.8) was added to prepare a sample for SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Slab SDS-PAGE was performed at a 10% acrylamide concentration. Protein detection was performed by staining with Coomassie brilliant blue. culture 24
A strain that did not degrade BSA for 48 hours or 72 hours was defined as a strain that does not have the ability to degrade BSA. (Measurement of degradability of milk casein) A solution in which 5 g, 2 g, and 1 g of skim milk were each suspended in 50 ml of pure water, and a solution in which 1 g of agar was dissolved in 50 ml of pure water were sterilized separately in an autoclave, then mixed and separated into sieves. 5%, 2%, and 1% milk agar plates were prepared. After inoculating the bacterial strain onto a plate medium, it was cultured at 37°C for 3 days, and it was observed whether the area around the colony became transparent. A strain that did not produce any transparent circles on all of the 5%, 2%, and 1% milk agar plates was designated as a strain that did not have the ability to decompose milk casein. As a result of the above measurements, strain H53 was selected as a strain that does not produce proteolytic enzymes outside the bacterial cells, since it does not degrade both BSA and milk casein. H53 strain, Bergey's Manual of
Determinative Bacteriology (8th edition),
Bergey's Manual of Sys tematic Bacteriology
vol.1 and The Prokaryote (A Handbook on
Habitats, Isolation and Identification of
Bacteria), this strain was identified as
First, it was recognized that it belonged to the genus Pseudomonas in that it was aerobic, Gram stain negative, bacillus, and did not form spores. In addition, as a result of comparing other morphological properties, growth conditions in various media, and physiological properties with conventionally known bacterial species of the genus Pseudomonas, it was found that it was different from any species of the genus Pseudomonas. Furthermore, this bacterial species did not have the ability to degrade casein and BSA. Therefore, this bacterial species was identified as a new bacterial species of the genus Pseudomonas. Therefore, this bacterial strain was named Pseudomonas sp.H53. Pseudomonas sp.H53 is FERM P-
It has been deposited with the Institute of Fine Technology as 9741. Next, the mycological properties of Pseudomonas sp.H53 are shown.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 (E) 炭素源の資化性 H53 Acetate + Succinate + Fumarate − L−Malate + β−Hydroxybutylate + Lactate + Citrate + α−Ketoglutarate − Glycerol + L−Alanine + L−Aspartate − L−Glutamate + L−Arginine − L−Proline + L−Tyrosine + D−Fucose − Maltose − Cellobiose − Lactose − D−Arabinose − Arabitol + Starch − Inulin + Oxalate − Ethylene glycol − L−Threonine − D−Ribose − Mannitol − D−Xylose − L−Arabinose + L−Rhamnose + Glucose + D−Mannose − D−Galactose + L−Hydroxyproline + Inosine + Betaine − D−Fructose − Sucrose + Treharose − Gluconate − Propionate − Malonate − D(−)−Tartrate + Sorbitol − Propylene glycol + Ethanol + n−Butanol + Benzoate + m−Hydroxybenzoate − p−Hydroxybenzoate − Phenol − Glycine + L−Serine + L−Leucine − L−Isoleucine − L−Valine − L−Lysine + L−Ornithine − L−Histidine + L−Phenylalamine + L−Tryptophan − N−Acetylglucosamine − Raffinose − Creatine − Deoxycholate + D−Glucuronate − 本発明は、菌体外に著量の蛋白質を生産する
が、蛋白質分解酵素を菌体外に生産しないシユー
ドモナス属菌で、例えばシユードモナスsp.H53
(FERM P−9741)が例示される。 本発明のシユードモナスsp.H53を培養するこ
とにより著量生産した蛋白質の性質次第では、そ
れ自体食糧蛋白質やゲル化剤、膨化剤等の食品加
工素材または、ガラス様素材、紙、人工皮革等の
表面加工等の工業素材としての利用等産業上の有
用性が非常に高い。 また、本発明のシユードモナスsp.H53を遺伝
子組換えの宿主菌として利用した場合遺伝子組換
えによる生産物を効率良く菌体外に分泌すること
ができ、そして遺伝子組換えによる生産物を分解
することができないので、遺伝子組換えにおける
宿主菌としてきわめてすぐれたものになるであろ
う。 この系は、医薬品、良質な食糧蛋白質やゲル化
剤、膨化剤等の食品加工素材または、ガラス様素
材、紙、人工皮革等の表面加工の工業素材などの
生産手段としての活用が期待出来る。 以上の様に本発明の有用性は産業上極めて意義
深いものである。 以下に、実施例を挙げて本発明を更に具体的に
説明する。 実施例 1 前記第1表記載の5YKC培地500mlを2容の
ジヤーフアーメンターに分注し、常法により121
℃20分滅菌した後、冷却した。 別に、5YKC培地5ml分注した試験管をオート
クレーブすることにより滅菌し、これにシユード
モナスsp.H53を1白金耳接種し、37℃で14時間
振盪培養した。この前培養物5mlをジヤーフアー
メンターに接種し、37℃48時間通気量0.5/分
回転数400rpmで培養した。培養終了後、培養物
に等量の0.2N NaOHを加え撹拌後10000rpm×
5分遠心分離処理して菌体を除き、上清100mlに
等量の10%トリクロル酢酸を加え10分後3000rpm
×10分間遠心分離して沈澱を集めた。5%トリク
ロル酢酸で洗浄し、遠心分離にて沈澱を集め1N
NaOHで溶解した後Lowry法によつて定量した。
蛋白質は牛血清アルブミンに換算して示した。そ
の結果、菌体外に生産された蛋白質量は7g/
であつた。
[Table] (E) Assimilation of carbon sources H53 Acetate + Succinate + Fumarate - L-Malate + β-Hydroxybutylate + Lactate + Citrate + α-Ketoglutarate - Glycerol + L-Alanine + L-Aspartate - L-Glutamate + L -Arginine - L-Proline + L-Tyrosine + D-Fucose - Maltose - Cellobiose - Lactose - D-Arabinose - Arabitol + Starch - Inulin + Oxalate - Ethylene glycol - L-Threonine - D-Ribose - Mannitol - D-Xylose - L-Arabinose + L-Rhamnose + Glucose + D-Mannose - D-Galactose + L-Hydroxyproline + Inosine + Betaine - D-Fructose - Sucrose + Treharose - Gluconate - Propionate - Malonate - D(-)-Tartrate + Sorbitol - Propylene glycol + Ethanol + n-Butanol + Benzoate + m-Hydroxybenzoate − p-Hydroxybenzoate − Phenol − Glycine + L-Serine + L-Leucine − L-Isoleucine − L-Valine − L-Lysine + L-Ornithine − L-Histidine + L-Phenylalamine + L-Tryptophan - N-Acetylglucosamine - Raffinose - Creatine - Deoxycholate + D-Glucuronate - The present invention uses Pseudomonas, which produces a significant amount of protein extracellularly but does not produce proteolytic enzymes extracellularly. For example, Pseudomonas sp.H53
(FERM P-9741) is exemplified. Depending on the properties of the protein produced in large quantities by culturing Pseudomonas sp. It has very high industrial utility, such as its use as an industrial material for surface finishing. Furthermore, when the Pseudomonas sp.H53 of the present invention is used as a host bacterium for genetic recombination, the genetically recombinant product can be efficiently secreted outside the bacterial body, and the genetically recombinant product can be degraded. This makes it an excellent host for genetic recombination. This system can be expected to be used as a production means for pharmaceuticals, high-quality food proteins, food processing materials such as gelling agents and swelling agents, and industrial materials for surface treatment such as glass-like materials, paper, and artificial leather. As described above, the usefulness of the present invention is extremely significant industrially. The present invention will be explained in more detail below by giving examples. Example 1 500 ml of the 5YKC medium listed in Table 1 above was dispensed into a 2-volume jar fermenter, and 121
After sterilization at ℃ for 20 minutes, it was cooled. Separately, a test tube into which 5 ml of 5YKC medium was dispensed was sterilized by autoclaving, one platinum loop of Pseudomonas sp. 5 ml of this preculture was inoculated into a jar fermenter and cultured at 37°C for 48 hours at an aeration rate of 0.5/min and a rotational speed of 400 rpm. After culturing, add an equal amount of 0.2N NaOH to the culture and stir at 10,000 rpm.
Centrifuge for 5 minutes to remove bacterial cells, add an equal volume of 10% trichloroacetic acid to 100ml of supernatant, and after 10 minutes, spin at 3000 rpm.
The precipitate was collected by centrifugation for ×10 minutes. Wash with 5% trichloroacetic acid and collect the precipitate by centrifugation to 1N
After dissolving with NaOH, it was quantified by the Lowry method.
Proteins are expressed in terms of bovine serum albumin. As a result, the amount of protein produced outside the bacterial body was 7g/
It was hot.

Claims (1)

【特許請求の範囲】[Claims] 1 菌体外に著量の蛋白質を生産するシユードモ
ナスsp.H53。
1 Pseudomonas sp.H53 produces a significant amount of protein outside the bacterial body.
JP32999887A 1987-12-28 1987-12-28 Novel microorganism of genus pseudomonas Granted JPH01174378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32999887A JPH01174378A (en) 1987-12-28 1987-12-28 Novel microorganism of genus pseudomonas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32999887A JPH01174378A (en) 1987-12-28 1987-12-28 Novel microorganism of genus pseudomonas

Publications (2)

Publication Number Publication Date
JPH01174378A JPH01174378A (en) 1989-07-10
JPH0588106B2 true JPH0588106B2 (en) 1993-12-21

Family

ID=18227625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32999887A Granted JPH01174378A (en) 1987-12-28 1987-12-28 Novel microorganism of genus pseudomonas

Country Status (1)

Country Link
JP (1) JPH01174378A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.BACTERIOL=1983 *

Also Published As

Publication number Publication date
JPH01174378A (en) 1989-07-10

Similar Documents

Publication Publication Date Title
TW526268B (en) Method for producing a fermented milk product
US4480037A (en) Alkaline protease and preparation method thereof
US3932671A (en) Process for producing protein hydrolyzate
US3871963A (en) Microbial protease and preparation thereof
JPH05219942A (en) Variant of clostridium and histolyticum method for production thereof and usage thereof
JPH084515B2 (en) Method for producing organic compound
JP2657383B2 (en) Novel hydrolase and its production method
JPH0588106B2 (en)
JPH0474997B2 (en)
JPH0325157B2 (en)
JPH0819392A (en) Fermentation method
JPH0783706B2 (en) How to improve the quality of alcoholic beverages
JPH0586183B2 (en)
JPH0586184B2 (en)
JPH0586182B2 (en)
JP4054577B2 (en) Alkaline protease producing bacteria
JP3609102B2 (en) Novel protease, process for producing the same and novel microorganism of the genus Alteromonas
JPH0324199B2 (en)
JPH0523741B2 (en)
JP2713720B2 (en) Method for producing acid urease
JPH07236482A (en) Alkaline protease, its production and microorganism producing the protease
Bracquart et al. Uptake of glutamic acid by Streptococcus salivarius subsp. thermophilus CNRZ 302
EP0252216B1 (en) Microbiologically produced alpha-acetylamino cinnamic acid acylase, method of its production and its use
RU2078812C1 (en) Method of preparing the nitrogen-containing component of nutrient medium
JPH01235581A (en) Novel pseudomonas bacteria