JPH01173680A - Excimer laser apparatus - Google Patents

Excimer laser apparatus

Info

Publication number
JPH01173680A
JPH01173680A JP33178787A JP33178787A JPH01173680A JP H01173680 A JPH01173680 A JP H01173680A JP 33178787 A JP33178787 A JP 33178787A JP 33178787 A JP33178787 A JP 33178787A JP H01173680 A JPH01173680 A JP H01173680A
Authority
JP
Japan
Prior art keywords
mirror
front mirror
excimer laser
face
laser chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33178787A
Other languages
Japanese (ja)
Other versions
JP2662963B2 (en
Inventor
Osamu Wakabayashi
理 若林
Masahiko Kowaka
雅彦 小若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18247633&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01173680(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP62331787A priority Critical patent/JP2662963B2/en
Publication of JPH01173680A publication Critical patent/JPH01173680A/en
Application granted granted Critical
Publication of JP2662963B2 publication Critical patent/JP2662963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To prevent an interference from being generated between both faces of a front mirror by a method wherein one side of the front mirror is formed as a non-reflection plane. CONSTITUTION:An excimer laser beam generated inside a laser chamber 1 is resonated by a rear mirror 4 and a front mirror 5 which have been arranged on both sides of the laser chamber 1 via windows 2, 3; its band is narrowed by means of a wavelength selection element 6 inserted between the laser chamber 1 and the rear mirror 4 in this resonant circuit; after that, it is radiated from the front mirror 5. Because a face B of the front mirror 5 on the side of the laser chamber is constituted by a partially reflecting mirror and a face A opposite to the face is constituted by a non-reflection plane mirror, a laser beam incident from the side of the face B is transmitted and is not returned to the side of the face B. By this setup, an interference between the face A and the face B of the front mirror 5 is not generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明もよ、縮小投影露光装置の光源として用いるエキ
シマレーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention also relates to an excimer laser device used as a light source of a reduction projection exposure apparatus.

(従来の技術) エキシマレーザ光は、例えばKrFレーザ光ではその波
長が248.4nn+と短いこと、同じ解椴度なら水銀
ランプのg線やi線に比べて焦点深度が深いこと、レン
ズの開口数が小さくてすみ、露光領域を大きくできるこ
と、大きなパワーが得られること、等の利点から半導体
M2C用の縮小投影露光装置の光源として多用されるよ
うになってきている。
(Prior art) Excimer laser light, for example KrF laser light, has a short wavelength of 248.4 nn+, has a deeper focal depth than the g-line and i-line of a mercury lamp at the same resolution, and has a lens aperture. Due to the advantages of being small in number, allowing a large exposure area, and being able to obtain large power, they are increasingly being used as a light source in reduction projection exposure apparatuses for semiconductor M2C.

ところが、エキシマレーザ光はその波長が短いため、こ
の波長を透過する材料が石英、 CaF2およびMqF
2Lかなく、均一性および加工稍度の点でレンズ素材と
しては石英しか用いることができない。このため、色収
差補正をした縮小投影レンズの設計が不可能となる。し
たがって、この色収差が無視し得る程度状で狭帯域化す
る必要がある。
However, since the wavelength of excimer laser light is short, the materials that transmit this wavelength are quartz, CaF2, and MqF.
2L, and in terms of uniformity and processing precision, only quartz can be used as the lens material. This makes it impossible to design a reduction projection lens with chromatic aberration correction. Therefore, it is necessary to narrow the band so that this chromatic aberration can be ignored.

そこで、レーザチャンバ内で発生させたエキシマレーザ
光をレーザチャンバの両側に配置したリアミラーとフロ
ントミラーにより共振させ、さらにその共振回路中に配
置した波長選択素子により狭帯域化する構造のエキシマ
レーザ装置が縮小投影露光装置の光源として用いられて
いる。
Therefore, an excimer laser device has a structure in which the excimer laser light generated in the laser chamber is resonated by a rear mirror and a front mirror placed on both sides of the laser chamber, and the band is narrowed by a wavelength selection element placed in the resonant circuit. It is used as a light source for reduction projection exposure equipment.

この場合、フロントミラーの反射率を高くすると、共振
回路中におけるレーザビームの折り返し数が多くなり、
光強度の高い波長でパワーが集中するため、波長選択素
子の設計値よりも線幅を狭くすることができる。しかし
、レーザパワーが減少してしまうという矛盾が生じる。
In this case, increasing the reflectance of the front mirror increases the number of times the laser beam is turned back in the resonant circuit.
Since the power is concentrated at wavelengths with high optical intensity, the linewidth can be made narrower than the designed value of the wavelength selection element. However, a contradiction arises in that the laser power decreases.

従って、適切な線幅とレーザパワーを得るためには、フ
ロントミラーの反則率の適当な範囲が存在する。この反
射率Rの範囲は1≦R≦49%であることが本発明等の
実験によって判明している。
Therefore, in order to obtain an appropriate line width and laser power, there is an appropriate range of front mirror fouling rate. It has been found through experiments in the present invention that the range of reflectance R is 1≦R≦49%.

ここで、エキシマレーザの光学部品として用いられてい
る合成石英、CaF2 、MgF2等はコーティング無
しのもので片面的4%の表面反射率が1qられる。従っ
て、上記材料でフロントミラーを構成し、かつ両面をコ
ーティングしなければ、両面で4%ずつ合計的8%の反
射率がtqられ、上記の1≦R≦49%の条件に合うフ
ロントミラーとして使用することができる。
Here, the synthetic quartz, CaF2, MgF2, etc. used as the optical parts of the excimer laser are uncoated and have a surface reflectance of 1q of 4% on one side. Therefore, if the front mirror is made of the above material and both sides are not coated, the reflectance will be tq of 4% on both sides for a total of 8%, and the front mirror will meet the above condition of 1≦R≦49%. can be used.

(発明が解決しようとする問題点) ところが、上記のように片面ずつ約4%の反射率を有す
るフロントミラーをそのま法相込んだ場合、このフロン
トミラーの2つの反射面間での干渉が起り、第5図のス
ペクトル図に示すように発振波長のピークが多数説われ
、これを狭帯域化したとしても第6図のスペクトル図に
示すような波形となった。しかも、この場合の発振波長
のピークは極めて近接しているために、通常使用されて
いる分光装置では識別することが困難である。このため
、分光装置の検出結果によって発振波長を制御するよう
に構成したとしても、その結rA得られる波長は不安定
となり、安定した波長のエキシマレーザ光が1qられな
いという問題がある。
(Problem to be Solved by the Invention) However, when a front mirror having a reflectance of approximately 4% on each side is directly inserted as described above, interference occurs between the two reflecting surfaces of the front mirror. , as shown in the spectrum diagram of FIG. 5, there were many peaks of oscillation wavelength, and even if the peaks were narrowed, the waveform would be as shown in the spectrum diagram of FIG. 6. Furthermore, since the peaks of the oscillation wavelengths in this case are extremely close to each other, it is difficult to distinguish them using a commonly used spectroscopic device. Therefore, even if the configuration is such that the oscillation wavelength is controlled based on the detection result of the spectrometer, the wavelength obtained by the resultant rA becomes unstable, and there is a problem that 1q of excimer laser light of a stable wavelength cannot be obtained.

本発明の目的は、安定した発振出力が香られるエキシマ
レーザ装置を提供することにある。
An object of the present invention is to provide an excimer laser device with stable oscillation output.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、フロントミラーとして片面が部分反射、他
方の片面が無反射のミラーを用いることにより、上記の
目的を達成している。
In the present invention, the above object is achieved by using a mirror with one side partially reflective and the other side non-reflective as a front mirror.

〔作用〕[Effect]

フロントミラーの片面を無反射とすることにより、他方
の片面との間での干渉は生じなくなる。
By making one side of the front mirror non-reflective, no interference occurs between the front mirror and the other side.

この結果、発振波長のピークは1つになり、安定した発
振出力をtqることができる。
As a result, the oscillation wavelength has one peak, and stable oscillation output can be achieved.

(実施例〕 第1図は本発明の一実施例を示す構成図であり、レーザ
チャンバ1内で発生されたエキシマレーザ光は、ウィン
ドウ2,3を介してレーザチャンバ1の両側に配置され
たリアミラー4とフロントミラー5により:l(振し、
この共振回路中のレーザチャンバ1とリアミラー4との
間に挿入された波長選択素子6によって狭帯域化された
後、フロントミラー5から出射される。
(Embodiment) FIG. 1 is a configuration diagram showing an embodiment of the present invention, in which excimer laser light generated within a laser chamber 1 is arranged on both sides of the laser chamber 1 via windows 2 and 3. By rear mirror 4 and front mirror 5: l (shaking,
After being narrowed by the wavelength selection element 6 inserted between the laser chamber 1 and the rear mirror 4 in this resonant circuit, the light is emitted from the front mirror 5.

ここで、リアミラー4は反射率Rが8599%の全面反
射のミラーで構成されている。また、フロントミラー5
はレーザチャンバ側の面Bの反射率Rが1≦R≦49%
の部分反射、その反対の而Aが無反射面のミラーで構成
され、しかもA面はレーザビーム断面に対して所定角度
の傾お1を有している。
Here, the rear mirror 4 is composed of a full-surface reflective mirror with a reflectance R of 8599%. Also, front mirror 5
The reflectance R of surface B on the laser chamber side is 1≦R≦49%
, and its opposite, A, is composed of a mirror with a non-reflecting surface, and the A surface has an inclination of a predetermined angle 1 with respect to the laser beam cross section.

従って、フロントミラー5の8面側から入射したレーザ
ビームは透過し、8面側に戻ることはない。すなわち、
フロントミラー5のA面と8面との間での干渉は生じな
くなる。しかも、A面がビーム断面に対して傾斜してい
るために、A面で若干の反射が生じたとしてもその反射
光がウィンドウ2を介してレーザチャンバ1内に戻るこ
とはない。これによって、フロンドラ−5のA面と8面
での干渉をほぼ完全になくすことができ、第2図のスペ
クトル図に示すような発振波長とすることができ、これ
をさらに狭帯域化することによって第3図に示すように
1つのピークの′31振波長に絞ることが可能になる。
Therefore, the laser beam incident on the 8th surface side of the front mirror 5 is transmitted and does not return to the 8th surface side. That is,
No interference occurs between the A side and the 8th side of the front mirror 5. Moreover, since the A plane is inclined with respect to the beam cross section, even if some reflection occurs at the A plane, the reflected light will not return into the laser chamber 1 through the window 2. As a result, interference between the A and 8 surfaces of Frondra-5 can be almost completely eliminated, and the oscillation wavelength can be set as shown in the spectrum diagram in Figure 2, which can be further narrowed. As a result, it becomes possible to narrow down the wavelength to a single peak '31 wavelength, as shown in FIG.

なお、フロントミラー5のA面に設けた傾斜は精度を上
げるために設けたものであり、A面を無反射面とするだ
けでも8面との間の干渉を防止できることは言うまでも
ない。また、ウィンドウ2゜3についてもレーザガスと
接触しない面を無反射面とし、かつ傾斜を付けることに
より、このウィンドウ2.3の両面で生じる不要な干渉
を防止し、さらに良好なスペクトル分布の波長を1!?
ることができる。なお、このウィンドウ2,3はレーザ
ガスを隔離するものであるため、レーザガス中のF2に
耐え得るフッ化物(CaF2 、M(?F2 )の材料
が用いられる。
Note that the slope provided on the A surface of the front mirror 5 is provided to improve accuracy, and it goes without saying that interference with the 8 surfaces can be prevented by simply making the A surface a non-reflective surface. In addition, by making the surface of the window 2.3 that does not come into contact with the laser gas a non-reflective surface and slanting it, unnecessary interference that occurs on both sides of the window 2.3 can be prevented, and wavelengths with a better spectral distribution can be obtained. 1! ?
can be done. Note that since the windows 2 and 3 are for isolating the laser gas, a material such as fluoride (CaF2, M(?F2)) is used that can withstand F2 in the laser gas.

さらに、波長選択素子6はファブリペローエタロンを2
枚重ね合セたもので@成されるが、この波長選択素子6
においても反射が不要な面は無反射面としたり、傾斜を
付けることにより、さらに効率良く必要とする狭帯域エ
キシマレーザ光を得ることができる。
Furthermore, the wavelength selection element 6 has two Fabry-Perot etalons.
This wavelength selection element 6 is formed by stacking two layers.
Also, by making surfaces that do not require reflection non-reflecting or slanting them, the necessary narrow band excimer laser light can be obtained more efficiently.

一方、フロントミラー5は第4図の他の実施例に示すよ
うに第1図のウィンドウ2を兼用させるように構成して
もよい。この場合、反射面は汚れる心配のない外側に配
置するのが望ましり。
On the other hand, the front mirror 5 may be configured to double as the window 2 in FIG. 1, as shown in another embodiment shown in FIG. In this case, it is desirable to place the reflective surface on the outside where it will not get dirty.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明においては、フロントミラー片面は
無反射面としたため、フロントミラーの両面間で生じて
いた干渉を防ぐことができる。この結果、発振波長のピ
ークを安定的に絞ることが可能となり、投影露光装置に
おいてはその解像力をさらに向上さゼることかできると
いう効果がある。
As described above, in the present invention, since one side of the front mirror is a non-reflecting surface, interference that occurs between both sides of the front mirror can be prevented. As a result, it becomes possible to stably narrow down the peak of the oscillation wavelength, which has the effect of further improving the resolution of the projection exposure apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は実施
例における中程度に狭帯域化したときの発振波長スペク
トルを示すスペクトル図、第3図は所望の幅に狭帯域化
した後の発振波長スペクトルを示すスペクトル図、第4
図は本発明の他の実施例を示ず構成図、第5図は従来袋
Uにおける中程度に狭帯域化したときの発振波長スペク
トルを承りスペクトル図、第6図は従来装置における所
望の幅に狭帯域化した後の発振波長スペクトルを示すス
ペクトル図である。 1・・・レーザヂャンバ、2,3・・・ウィンドウ、4
・・・リアミラー、5・・・フロントミラー、6・・・
波長選択素子。 第1図 一→−波長 第2図 □ボ5隨 第3図 一一肢長 −−〉皮長
Fig. 1 is a configuration diagram showing an embodiment of the present invention, Fig. 2 is a spectrum diagram showing the oscillation wavelength spectrum when the band is narrowed to a moderate level in the embodiment, and Fig. 3 is a spectrum diagram showing the oscillation wavelength spectrum when the band is narrowed to a desired width. Spectrum diagram showing the oscillation wavelength spectrum after
The figure shows the configuration of another embodiment of the present invention, FIG. 5 is a spectrum diagram showing the oscillation wavelength spectrum when the band is narrowed to a medium level in the conventional bag U, and FIG. 6 is a spectrum diagram showing the desired width in the conventional device. FIG. 2 is a spectrum diagram showing an oscillation wavelength spectrum after narrowing the band. 1... Laser chamber, 2, 3... Window, 4
...Rear mirror, 5...Front mirror, 6...
Wavelength selection element. Figure 1 1 → - Wavelength Figure 2 □ Bo 5 Figure 3 11 Limb length --> Skin length

Claims (3)

【特許請求の範囲】[Claims] (1) レーザチャンバ内で発生させたエキシマレーザ
光をレーザチャンバの両側に配置したリアミラーとフロ
ントミラーにより共振させ、さらにその共振回路中に配
置した波長選択素子により狭帯域化して出力するエキシ
マレーザ装置において、前記フロントミラーとして、片
面が部分反射、他方の片面が無反射のミラーを用いたこ
とを特徴とするエキシマレーザ装置。
(1) An excimer laser device that causes excimer laser light generated in a laser chamber to resonate with a rear mirror and a front mirror placed on both sides of the laser chamber, and further outputs a narrow band using a wavelength selection element placed in the resonant circuit. An excimer laser device characterized in that, as the front mirror, a mirror is used in which one side is partially reflective and the other side is non-reflective.
(2) 前記フロントミラーの無反射面はエキシマレー
ザ光の発振ビーム断面に対して所定角度の傾斜を有して
いることを特徴とする特許請求の範囲第(1)項記載の
エキシマレーザ装置。
(2) The excimer laser device according to claim (1), wherein the non-reflection surface of the front mirror has an inclination of a predetermined angle with respect to the oscillation beam cross section of the excimer laser light.
(3) 前記フロントミラーの部分反射面の反射率Rを
1≦R≦49%に設定したことを特徴とする特許請求の
範囲第(1)項記載のエキシマレーザ装置。
(3) The excimer laser device according to claim (1), wherein the reflectance R of the partial reflection surface of the front mirror is set to 1≦R≦49%.
JP62331787A 1987-12-26 1987-12-26 Narrow band laser device Expired - Lifetime JP2662963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62331787A JP2662963B2 (en) 1987-12-26 1987-12-26 Narrow band laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62331787A JP2662963B2 (en) 1987-12-26 1987-12-26 Narrow band laser device

Publications (2)

Publication Number Publication Date
JPH01173680A true JPH01173680A (en) 1989-07-10
JP2662963B2 JP2662963B2 (en) 1997-10-15

Family

ID=18247633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62331787A Expired - Lifetime JP2662963B2 (en) 1987-12-26 1987-12-26 Narrow band laser device

Country Status (1)

Country Link
JP (1) JP2662963B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098814A (en) * 2018-12-17 2020-06-25 住友重機械工業株式会社 Optical resonator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155326U (en) * 1986-03-25 1987-10-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155326U (en) * 1986-03-25 1987-10-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098814A (en) * 2018-12-17 2020-06-25 住友重機械工業株式会社 Optical resonator

Also Published As

Publication number Publication date
JP2662963B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US4829536A (en) Multi-mode narrow-band oscillation excimer laser
US4856018A (en) Light source for reduced projection
US6154470A (en) Molecular fluorine (F2) laser with narrow spectral linewidth
US5978409A (en) Line narrowing apparatus with high transparency prism beam expander
KR20010023805A (en) Line narrowing device with double duty grating
US6567451B2 (en) Narrow band excimer or molecular fluorine laser having an output coupling interferometer
US6181724B1 (en) Narrow-band oscillation excimer laser and optics thereof
JP2001144355A (en) Narrow-band excimer laser
US6795473B1 (en) Narrow band excimer laser with a prism-grating as line-narrowing optical element
EP0383586B1 (en) Laser device
JPH01173680A (en) Excimer laser apparatus
JPS6345875A (en) Multimode narrow band oscillation excimer laser
JPH03173486A (en) Narrow bandwidth laser
JP2000357836A (en) Super narrow frequency band fluorine laser device
JPS62211977A (en) Narrow-band oscillation excimer laser
JPS6329758A (en) Light source for exposing device
JPS62111228A (en) Light source for reduction projection
JP2931116B2 (en) Tunable laser device
JPH0243786A (en) Laser device
JPS6386588A (en) Narrow band oscillation eximer laser
JPH01225186A (en) Narrow band laser
JPH06138507A (en) Higher harmonic generator
JPH0499389A (en) Narrow band excimer laser
JPH0595155A (en) Narrow-band excimer laser
JPH0384981A (en) Narrow-band oscillation laser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11