JPH01225186A - Narrow band laser - Google Patents

Narrow band laser

Info

Publication number
JPH01225186A
JPH01225186A JP63051023A JP5102388A JPH01225186A JP H01225186 A JPH01225186 A JP H01225186A JP 63051023 A JP63051023 A JP 63051023A JP 5102388 A JP5102388 A JP 5102388A JP H01225186 A JPH01225186 A JP H01225186A
Authority
JP
Japan
Prior art keywords
wavelength
laser beam
laser
etalon
optical resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63051023A
Other languages
Japanese (ja)
Inventor
Hitoshi Wakata
若田 仁志
Hajime Nakatani
元 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63051023A priority Critical patent/JPH01225186A/en
Publication of JPH01225186A publication Critical patent/JPH01225186A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression

Abstract

PURPOSE:To suppress a wavelength distribution in a laser beam and to improve the quality of a narrow band laser by providing an aperture out of an optical resonator, and so reducing the diameter of the beam to be radiated from the resonator to an effective diameter falling in an allowable range of the wavelength of the beam. CONSTITUTION:An aperture 6 is provided out of an optical resonator, and the diameter of a laser beam 5 to be radiated from the resonator is reduced to an effective diameter falling in an allowable range of the wavelength of the beam 5. That is, an unallowable part of the wavelength distribution in the beam 5 generated due to the manufacturing accuracy or a thermal strain of an etalon 4 is suppressed by the aperture 6. Thus, the wavelength distribution in the beam is reduced so that the wavelength shift falls within the allowable range of the whole beam 5.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は狭帯域化レーザ、とくにそのレーザビームの
波長分布の抑制に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a narrowband laser, and particularly to suppression of the wavelength distribution of the laser beam.

[従来の技術] 第3図は例えば雑誌rOPTIcs LETTER5J
 1(’ 77)199に示された従来の狭帯域化レー
ザの構成図であり、図において(1)はレーザ媒質、(
2)は全反射鏡、(3)は部分反射鏡であり、これらミ
ラー(2) (:l)はレーザ媒質(1)をはさんで対
向配置される。(4)はエタロン、(5)はレーザビー
ム、(7)はスペーサである。
[Prior art] Figure 3 shows, for example, the magazine rOPTIcs LETTER5J.
1 ('77) 199, in which (1) is the laser medium, (
2) is a total reflection mirror, and (3) is a partial reflection mirror, and these mirrors (2) (:l) are arranged opposite to each other with the laser medium (1) in between. (4) is an etalon, (5) is a laser beam, and (7) is a spacer.

次に動作について説明する。レーザ媒質(1)をはさん
で、全反射鏡(2)と部分反射鏡(3)からなる光共振
器を構成すると光はこの光共振器内を往復するうちに増
幅されレーザビーム(5)を発する。ところで、このよ
うな構成を持つレーザのある種のもの、例えば半導体レ
ーザや、アレキサンドライトレーザ、色素レーザ、エキ
シマレーザ等では増幅可能な波長域が広く、そのために
レーザビームの波長幅も広い。そこでこの種のレーザの
光共振器中に分光素子であるエタロン、グレーティング
、プリズム等を入れると、光は選択され、狭い波長幅を
持つレーザビームを得ることができる。
Next, the operation will be explained. When an optical resonator consisting of a total reflection mirror (2) and a partial reflection mirror (3) is constructed with a laser medium (1) in between, the light is amplified as it travels back and forth within this optical resonator and becomes a laser beam (5). emits. By the way, some types of lasers having such a configuration, such as semiconductor lasers, alexandrite lasers, dye lasers, excimer lasers, etc., have a wide wavelength range that can be amplified, and therefore the wavelength width of the laser beam is also wide. Therefore, by inserting a spectroscopic element such as an etalon, grating, or prism into the optical resonator of this type of laser, light can be selected and a laser beam with a narrow wavelength width can be obtained.

内でもエタロンは、ロスが少ないことと振動に対する許
容度が大きいことか非常に良く利用される素子である。
Of these, etalons are very commonly used elements because of their low loss and high tolerance to vibration.

エタロンは高精度に磨かれた2枚の反射面を持つ干渉計
で、2枚の反射面の光学的な距離から決められる一連の
波長のみを通す。
An etalon is an interferometer with two highly precisely polished reflective surfaces, allowing only a range of wavelengths to pass, determined by the optical distance between the two reflective surfaces.

第3図に示したエタロンはエタロンのうちエアギャップ
タイプと言われるもので、2枚の基板を磨き、反射コー
ティングをほどこした後、それぞれの反射面を、スペー
サ(8)をはさんで、接着したものである。その際に生
ずるすきまの平行度は、レーザビームが通る面内にわた
って、レーザビームの波長にくらべても充分に小さな誤
差しか許されない−そのため、何枚かのスペーサを極限
まで同し厚さに磨き、しかもそれぞれのスペーサはでき
るたけ離してとりつけることが必要である。
The etalon shown in Figure 3 is an air-gap type of etalon, and after polishing two substrates and applying a reflective coating, the reflective surfaces of each are glued together with a spacer (8) in between. This is what I did. The parallelism of the gap that occurs at this time allows only a sufficiently small error in the plane through which the laser beam passes, even compared to the wavelength of the laser beam.Therefore, several spacers are polished to the same thickness as possible. Moreover, it is necessary to attach the spacers as far apart as possible.

[発明か解決しようとする課題] 従来の狭帯域化レーザは以上のように構成されているの
で、スペーサ間の距離が広く、従ってレーザビームの大
きさに対して数倍の大きさを持つエタロンを利用してい
た。ところで、レーザ出力が増してくると、エタロンは
発熱し、温度分布を持つようになる。するとエタロン基
板もそれに応じてふくらみ、波長シフトとレーザビーム
内での発振波長分4iか生ずることになる。前者は温度
変化の最大値に、後者は温度勾配に対応した変化を示す
。ところで前者はエタロンを傾けたり、すきまの長さを
かえたり、すきま中にあるガスの屈折率を換えることに
よって補正することができるが、後者はエタロンの中心
から冷却することが難しいため、補正することが容易で
はない。しかも、従来装置ではエタロンの径にくらべて
、ビーム径が小さいので、温度勾配が大きく、従ってレ
ーザビーム内での波長分布も顕著であった。
[Problem to be solved by the invention] Since the conventional narrowband laser is configured as described above, the distance between the spacers is wide, and therefore the etalon has a size several times the size of the laser beam. was using. By the way, as the laser output increases, the etalon generates heat and has a temperature distribution. Then, the etalon substrate also swells accordingly, resulting in a wavelength shift and an oscillation wavelength of 4i within the laser beam. The former shows the maximum temperature change, and the latter shows the change corresponding to the temperature gradient. By the way, the former can be corrected by tilting the etalon, changing the length of the gap, or changing the refractive index of the gas in the gap, but the latter can be corrected because it is difficult to cool from the center of the etalon. It's not easy. Moreover, in the conventional device, since the beam diameter is small compared to the etalon diameter, the temperature gradient is large, and therefore the wavelength distribution within the laser beam is also significant.

この発明は上記のような問題点を解消するためになされ
たものでレーザビーム内での波長分布を小さくし、レー
ザビームの全体にわたって波長シフトが許容範囲内には
いるようにしたものである。
This invention has been made to solve the above-mentioned problems, and is designed to reduce the wavelength distribution within a laser beam so that the wavelength shift is within an allowable range over the entire laser beam.

[課題を解決するための手段] この発明に係る狭帯域化レーザは、光共振器外にアパー
チャを設けて、光共振器より出射するレーザビームの径
を、レーザビームの波長が許容範囲にある有効径になる
ように絞ったものである。
[Means for Solving the Problems] The narrowband laser according to the present invention is provided with an aperture outside the optical resonator so that the diameter of the laser beam emitted from the optical resonator can be adjusted so that the wavelength of the laser beam is within an allowable range. It is narrowed down to the effective diameter.

[作用] この発明における狭帯域化レーザは、エタロンの製作精
度や、熱歪によって生じたレーザビーム内での波長分布
に対して、許容できない部分をアパーチャでさえぎる。
[Function] The band-narrowing laser according to the present invention uses an aperture to block portions that are unacceptable due to etalon manufacturing accuracy or wavelength distribution within the laser beam caused by thermal strain.

[実施例] 以下、この発明の一実施例を図について説明する。第1
4において、(1)はレーザ媒質、(2)は全反射鏡、
(3)は部分反射鏡、(4)はエタロン、(5) はレ
ーザビーム、(6)はアパーチャ、(7)はエタロンの
スペーサである。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
4, (1) is a laser medium, (2) is a total reflection mirror,
(3) is a partial reflecting mirror, (4) is an etalon, (5) is a laser beam, (6) is an aperture, and (7) is an etalon spacer.

次に動作について説明する。従来例と同様ある種のレー
ザにおいては光共振器内に分光素子を入れるとレーザ波
長の狭帯域化をはかることができる。ところで、レーザ
ビーム内の各点で波長を調べてみると必ず波長分布が生
じている。
Next, the operation will be explained. Similar to the conventional example, in some types of lasers, the laser wavelength band can be narrowed by inserting a spectroscopic element into the optical resonator. By the way, when examining the wavelength at each point within a laser beam, a wavelength distribution always occurs.

第2図はその一例を示したものである。横軸は径方向の
位置、縦軸は波長を示す。まず破線Aは発掘直後の波長
分布であり、主にエタロンの2枚の基板の反射面か゛ト
行に保たれていないことから生ずるものである。また、
一般に波長分布には波長人、に対し、許容範囲がある。
FIG. 2 shows an example of this. The horizontal axis shows the radial position, and the vertical axis shows the wavelength. First, the broken line A is the wavelength distribution immediately after excavation, which is mainly caused by the fact that the reflective surfaces of the two substrates of the etalon are not kept in a straight line. Also,
In general, wavelength distribution has a tolerance range for different wavelengths.

たとえばこのレーザビームを用いて精密加工をする際、
波長分イnがあると、加工光学系において色収差が生じ
、レーザビームがボケでしまう。この許容範囲を一点鎖
線Bで示した。図より明らかなようにレーザビームの径
を広げると発振直後でも許容範囲をこえることが予想さ
れる。
For example, when performing precision processing using this laser beam,
If there is a wavelength in, chromatic aberration will occur in the processing optical system, and the laser beam will become blurred. This allowable range is indicated by a dashed line B. As is clear from the figure, if the diameter of the laser beam is increased, it is expected that the permissible range will be exceeded even immediately after oscillation.

一方、実線Cは定常運転時の波長分布である。定常運転
時には、エタロンがレーザビームを吸収し、熱歪が生ず
るためにこのように極端な波長分布が生ずるのである。
On the other hand, the solid line C is the wavelength distribution during steady operation. During steady operation, the etalon absorbs the laser beam and thermal distortion occurs, resulting in such an extreme wavelength distribution.

この分布は、およそ温度分布に比例している。This distribution is approximately proportional to the temperature distribution.

ただし、この図では全体的に生ずる波長シフトを引いた
ものを示している。図よりわかる様に、レーザビーム径
「に対して、波長が許容範囲にある有効径r、は小さく
なる。この有効径は、レーザ出力と、エタロンの吸収率
に対して一意的に決まるから、あらかじめ試験を行ない
波長分布を調べ、波長が許容範囲をこえる部分をアパー
チャによりさえぎフてやればよい。
However, in this figure, the overall wavelength shift is subtracted. As can be seen from the figure, the effective diameter r, where the wavelength is within the allowable range, is small relative to the laser beam diameter.This effective diameter is uniquely determined by the laser output and the absorption rate of the etalon, so All you have to do is conduct a test in advance to find out the wavelength distribution, and use an aperture to block out the portions where the wavelength exceeds the allowable range.

ところで、アパーチャを置く位置であるが、光共振器内
に置くとレーザビーム径が小さくなり、従ってエタロン
径との差がますますでき、温度分布が著しくなるために
波長分布も極端になる。
By the way, regarding the location where the aperture is placed, if it is placed inside an optical resonator, the laser beam diameter will become smaller, so there will be an increased difference from the etalon diameter, and the temperature distribution will become significant and the wavelength distribution will also become extreme.

従って光共振器外に置き、でてくる光をカットする方が
よい。この場合カットされる光は、エタロンをあたため
、温度分布をなだらかにするのに役立つ。同じ理由で、
エタロンを小さくして、エタロン径とビーム径の比を小
さくすれば温度分布をなたらかにできる。ただ、この場
合は、スペーサ間の距離が小さくなって、平行度が劣化
するから、第2図の破線Aで示した波長分布の傾きが急
になるから、やはり有効径をこえた分はアパーチャによ
ってカットしなければならない。
Therefore, it is better to place it outside the optical resonator and cut the emitted light. In this case, the cut light serves to warm the etalon and smooth out the temperature distribution. For the same reason,
By making the etalon smaller and reducing the ratio of the etalon diameter to the beam diameter, the temperature distribution can be made more gentle. However, in this case, the distance between the spacers becomes smaller and the parallelism deteriorates, so the slope of the wavelength distribution shown by the broken line A in Figure 2 becomes steeper, so the aperture exceeds the effective diameter. must be cut by.

[発明の効果] 以上のように、この発明によれば狭帯域化レーザの光共
振器外にアパーチャを設け、光共振器より出射するレー
ザビームの径を、レーザビームの波長が許容範囲にある
有効径になるように絞ったので、レーザビーム内の波長
分布をおさえ、ビーム品質が向上する効果がある。
[Effects of the Invention] As described above, according to the present invention, an aperture is provided outside the optical resonator of a narrowband laser, and the diameter of the laser beam emitted from the optical resonator can be adjusted so that the wavelength of the laser beam is within an allowable range. Since the diameter is narrowed to the effective diameter, the wavelength distribution within the laser beam is suppressed, which has the effect of improving beam quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による狭帯域化レーザを示
す構成図、第2図は狭帯域化レーザの波長分布を説明す
る説明図、及び第3図は従来の狭帯域化レーザを示す構
成図である。 (1)−・・レーザ媒質、(2)−・・全反射鏡、(3
) −・・部分反射鏡、(4)−・・エタロン、(5)
・・・レーザビーム、(6)・・・アパーチャ なお、図中、同一符号は同−又は相当部分を示す。 代理人  大  岩  増  雄
FIG. 1 is a block diagram showing a narrowband laser according to an embodiment of the present invention, FIG. 2 is an explanatory diagram illustrating the wavelength distribution of the narrowband laser, and FIG. 3 is a conventional narrowband laser. FIG. (1)--Laser medium, (2)--Total reflection mirror, (3
) - Partial reflector, (4) - Etalon, (5)
. . . Laser beam, (6) . . . Aperture In the drawings, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa

Claims (1)

【特許請求の範囲】[Claims] レーザ媒質をはさんで対向配置するミラーにより構成さ
れた光共振器、この光共振器内に設けられ、発振波長を
選択するエタロン、及び上記光共振器外に設けられ、上
記光共振器より出射するレーザビームの径を、上記レー
ザビームの波長が許容範囲にある有効径になるように絞
るアパーチャを備えた狭帯域化レーザ。
An optical resonator constituted by mirrors arranged facing each other with a laser medium in between, an etalon provided within the optical resonator to select the oscillation wavelength, and an etalon provided outside the optical resonator to emit light from the optical resonator. A band-narrowing laser includes an aperture that narrows down the diameter of a laser beam to an effective diameter within an allowable range of the wavelength of the laser beam.
JP63051023A 1988-03-03 1988-03-03 Narrow band laser Pending JPH01225186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051023A JPH01225186A (en) 1988-03-03 1988-03-03 Narrow band laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051023A JPH01225186A (en) 1988-03-03 1988-03-03 Narrow band laser

Publications (1)

Publication Number Publication Date
JPH01225186A true JPH01225186A (en) 1989-09-08

Family

ID=12875206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051023A Pending JPH01225186A (en) 1988-03-03 1988-03-03 Narrow band laser

Country Status (1)

Country Link
JP (1) JPH01225186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054490A2 (en) * 1999-05-10 2000-11-22 Cymer, Inc. Line narrowed laser with spatial filter
US7535013B2 (en) 2005-04-28 2009-05-19 Ushiodenki Kabushiki Kaisha Extreme UV radiation exposure tool and extreme UV radiation source device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054490A2 (en) * 1999-05-10 2000-11-22 Cymer, Inc. Line narrowed laser with spatial filter
EP1054490A3 (en) * 1999-05-10 2001-01-24 Cymer, Inc. Line narrowed laser with spatial filter
US7535013B2 (en) 2005-04-28 2009-05-19 Ushiodenki Kabushiki Kaisha Extreme UV radiation exposure tool and extreme UV radiation source device

Similar Documents

Publication Publication Date Title
US5761236A (en) Laser for generating narrow-band radiation
US6560254B2 (en) Line-narrowing module for high power laser
US6307872B1 (en) Compact solid-state laser and transmitter using the same
US6707838B2 (en) Stray light cutting structure for optical device
US6621847B1 (en) Narrow-band excimer laser apparatus
US6181724B1 (en) Narrow-band oscillation excimer laser and optics thereof
EP1041689A1 (en) Excimer laser
JPH0763943A (en) Multiplexer
JPH01225186A (en) Narrow band laser
US3484715A (en) Temperature compensating mounting for laser reflectors
EP0911924A2 (en) External cavity laser type light source
JP4822285B2 (en) Optical element for gas laser and gas laser apparatus using the same
JP4613272B2 (en) Laser resonator and adjustment method thereof
CN109565145A (en) Laser aid
US20050094681A1 (en) Tunable laser source
US11035992B1 (en) System and method for limiting the effective coherence length of a solid-state laser in holographic recording
JPH0567821A (en) Wavelength monitor for narrow-band laser
JPH01225184A (en) Narrow band laser
JPS6354235B2 (en)
JP2013065903A (en) Gas laser device
JP2652170B2 (en) Excimer laser wavelength controller
JPH03173486A (en) Narrow bandwidth laser
JP2001223422A (en) Ultranarrow-band mode laser device and narrow-band mode laser device
JP2662963B2 (en) Narrow band laser device
JP2586661B2 (en) Wavelength stabilized laser device