JPH01170946A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01170946A
JPH01170946A JP32913787A JP32913787A JPH01170946A JP H01170946 A JPH01170946 A JP H01170946A JP 32913787 A JP32913787 A JP 32913787A JP 32913787 A JP32913787 A JP 32913787A JP H01170946 A JPH01170946 A JP H01170946A
Authority
JP
Japan
Prior art keywords
group
charge
photoreceptor
layer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32913787A
Other languages
Japanese (ja)
Inventor
Masami Kuroda
昌美 黒田
Yoichi Nakamura
洋一 中村
Noboru Kosho
古庄 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP32913787A priority Critical patent/JPH01170946A/en
Publication of JPH01170946A publication Critical patent/JPH01170946A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0661Heterocyclic compounds containing two or more hetero rings in different ring systems, each system containing at least one hetero ring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • G03G5/067Dyes containing a methine or polymethine group containing only one methine or polymethine group containing hetero rings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

PURPOSE:To improve sensitivity and repetitive characteristics by incorporating a specific hydrazone compd. into a photosensitive layer. CONSTITUTION:The hydrazone compd. expressed by formula (I) is incorporated as a charge transfer material into the photosensitive layer. In formula, R1-R4 denote any of a hydrogen atom., halogen, atom., alkyl group, hydroxy group, alkoxy group, allyl group, aryl group, acyl group or nitro group; (m), (n) denote either of 0 and 1. The photosensitive body which has the high sensitivity in both positive and negative electrostatic charge and the excellent repetitive characteristics is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真用感光体に関し、詳しくは導電性基体
上に形成せしめた感光層の中に新規なヒドラゾン化合物
を含有することを特徴とする電子写真用感光体に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, and more specifically, it is characterized in that a novel hydrazone compound is contained in a photosensitive layer formed on a conductive substrate. The present invention relates to a photoreceptor for electrophotography.

〔従来の技術〕[Conventional technology]

従来より電子写真用感光体(以下感光体とも称する)の
感光材料としてはセレンまたはセレン合金などの無機光
導電性物質、酸化亜鉛あるいは硫化カドミウムなどの無
機光導電性物質を樹脂結着剤中に分散させたもの、ポリ
 N−ビニルカルバゾールまたはポリビニルアントラセ
ンなどの有機光導電性物質、フタロシアニン化合物ある
いはビスアゾ化合物などの有機光導電性物質を樹脂結着
剤中に分散させたものや真空蒸着させたものなどが利用
されている。
Conventionally, photosensitive materials for electrophotographic photoreceptors (hereinafter also referred to as photoreceptors) include inorganic photoconductive substances such as selenium or selenium alloys, or inorganic photoconductive substances such as zinc oxide or cadmium sulfide in a resin binder. Dispersions, organic photoconductive materials such as poly N-vinylcarbazole or polyvinylanthracene, organic photoconductive materials such as phthalocyanine compounds or bisazo compounds dispersed in a resin binder or vacuum deposited. etc. are used.

また、感光体には暗所で表面電荷を保持する機能、光を
受容して電荷を発生する機能、同じく光を受容して電荷
を輸送する機能とが必要であるが、一つの層でこれらの
機能をあわせもったいわゆる単層型感光体と、主として
電荷発生に寄与する層と暗所での表面電荷の保持と光受
容時の電荷輸送に寄与する層とに機能分離した層を積層
したいわゆる積層型感光体がある。これらの感光体を用
いた電子写真法による画像形成には、例えばカールソン
方式が適用される。この方式での画像形成は暗所での感
光体へのコロナ放電による帯電、帯電された感光体表面
上への露光による原稿の文字や絵などの静電潜像の形成
、形成された静電潜像のトナーによる現像、現像された
トナー像の紙などの支持体への定着により行われ、トナ
ー像転写後の感光体は除電、残留トナーの除去、光除電
などを行った後、再使用に供される。
In addition, a photoreceptor must have the function of retaining surface charge in the dark, the function of receiving light and generating charge, and the function of receiving light and transporting charge, all of which can be achieved in one layer. A so-called single-layer photoreceptor with the following functions is laminated with functionally separated layers: a layer that mainly contributes to charge generation, and a layer that contributes to surface charge retention in the dark and charge transport during light reception. There is a so-called laminated photoreceptor. For example, the Carlson method is applied to image formation by electrophotography using these photoreceptors. Image formation in this method involves charging the photoconductor in a dark place by corona discharge, forming electrostatic latent images such as letters and pictures on the document by exposing the surface of the charged photoconductor, and This is done by developing a latent image with toner and fixing the developed toner image on a support such as paper. After the toner image is transferred, the photoreceptor is subjected to static neutralization, residual toner removal, photostatic static elimination, etc., and then it is reused. served.

近年、可とう性1.熱安定性、膜形成性などの利点によ
り、有機材料を用いた電子写真用感光体が実用化されて
きている。例えば、ポリ−N−ビニルカルバゾールと2
.4.7−)ジニトロフルオレン−9〜オンとからなる
感光体(米国特許第3484237号明細書に記載)、
有機顔料を主成分とする感光体(特開昭47−3754
3号公報に記載)、染料と樹脂とからなる共晶錯体を主
成分とする感光体(特開昭47−10735号公報に記
載)などである。さらに、新規ヒドラゾン化合物も数多
く実用化されている。
In recent years, flexibility 1. Electrophotographic photoreceptors using organic materials have been put into practical use due to their advantages such as thermal stability and film-forming properties. For example, poly-N-vinylcarbazole and 2
.. 4.7-) dinitrofluorene-9-one (described in U.S. Pat. No. 3,484,237),
Photoreceptor containing organic pigment as main component (Japanese Patent Application Laid-Open No. 47-3754
3), and a photoreceptor whose main component is a eutectic complex consisting of a dye and a resin (described in JP-A-47-10735). Furthermore, many new hydrazone compounds have also been put into practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、有機材料は無機材料にない多くの長所を
持つが、また同時に電子写真用感光体に要求されるすべ
ての特性を充分に満足するものが得られていないのが現
状であり、高感度で繰り返し特性の優れた感光体が強く
望まれている。
However, although organic materials have many advantages that inorganic materials do not have, the current situation is that organic materials that fully satisfy all of the characteristics required for electrophotographic photoreceptors have not been obtained, such as high sensitivity and A photoreceptor with excellent repeatability is strongly desired.

本発明は、高感度で繰り返し特性に優れた複写機用およ
びプリンタ用の電子写真用感光体を提供することを目的
とする。
An object of the present invention is to provide an electrophotographic photoreceptor for copying machines and printers that has high sensitivity and excellent repeatability.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明によれば、下記一般
式(1)で示されるヒドラゾン化合物のうちの、少なく
とも一種類を含む感光層を有する電子写真用感光体とす
る。
In order to achieve the above object, the present invention provides an electrophotographic photoreceptor having a photosensitive layer containing at least one type of hydrazone compound represented by the following general formula (1).

〔式(1)中、R+、  R2,R3およびR1はそれ
ぞれ水素原子、ハロゲン原子、アルキル基、ヒドロキシ
基、アルコキシ基、アリル基、アリール基、アシル基ま
たはニトロ基のいずれかを表し、m、  nはそれぞれ
0および1のいずれかを表す。〕〔作用〕 前記一般式(1)で示されるヒドラゾン化合物を感光層
に用いた例は知られていない。本発明者ら、は、前記目
的を達成するために各種有機材料について鋭意検討を進
めるなかで、これらヒドラゾン化合物について数多くの
実験を行った結果、その技術的解明はまだ充分なされて
はいないが、このような前記一般式(1)で示される特
定のヒドラゾン化合物を電荷輸送物質として使用するこ
とが、電子写真特性の向上に極めて有効であることを見
出し、高感度で繰り返し特性の優れた感光体を得るに至
ったのである。
[In formula (1), R+, R2, R3 and R1 each represent a hydrogen atom, a halogen atom, an alkyl group, a hydroxy group, an alkoxy group, an allyl group, an aryl group, an acyl group or a nitro group, m, n represents either 0 or 1, respectively. [Function] There is no known example in which a hydrazone compound represented by the above general formula (1) is used in a photosensitive layer. In order to achieve the above object, the present inventors conducted a number of experiments on these hydrazone compounds while conducting intensive studies on various organic materials. It has been discovered that the use of a specific hydrazone compound represented by the above general formula (1) as a charge transport material is extremely effective in improving electrophotographic properties, and a photoreceptor with high sensitivity and excellent repeatability has been developed. I was able to obtain this.

〔実施例〕〔Example〕

本発明に用いられる前記一般式(I)のヒドラゾン化合
物は、通常の方法により合成することができる。すなわ
ち、必要に応じて縮合剤として少量の酸を用い、アルコ
ールなどの適当な有機溶媒中でアルデヒド類とヒドラジ
ン類を縮合させることにより得られる。
The hydrazone compound of general formula (I) used in the present invention can be synthesized by a conventional method. That is, it can be obtained by condensing aldehydes and hydrazines in a suitable organic solvent such as alcohol, using a small amount of acid as a condensing agent if necessary.

こうして得られる一般式(I)で表されるヒドラゾン化
合物の具体例を例示すると次のとおりである。
Specific examples of the hydrazone compound represented by the general formula (I) thus obtained are as follows.

H3 本発明の感光体は前述のようなヒドラゾン化合物を感光
層中に含有させたものであるが、これらヒドラゾン化合
物の応用の仕方によって、第1図。
H3 The photoreceptor of the present invention contains the above-described hydrazone compound in the photosensitive layer.

第2図、あるいは第3図に示したごとくに用いることが
できる。
It can be used as shown in FIG. 2 or 3.

第1図〜第3図は本発明の感光体の概念的断面図で、1
は導電性基体、20.21.22は感光層、3は電荷発
生物質、4は電荷発生層、5は電荷輸送物質、6は電荷
輸送層、7は被覆層である。
1 to 3 are conceptual cross-sectional views of the photoreceptor of the present invention.
20, 21 and 22 are a conductive substrate, 20, 21 and 22 are photosensitive layers, 3 is a charge generating material, 4 is a charge generating layer, 5 is a charge transporting material, 6 is a charge transporting layer, and 7 is a coating layer.

第1図は、導電性基体1上に電荷発生物質3と電荷輸送
物質5であるヒドラゾン化合物を樹脂バインダー(結着
剤)、中に分散した感光層20(通常単層型感光体と称
せられる構成)が設けられたものである。
FIG. 1 shows a photosensitive layer 20 (usually referred to as a single-layer photoreceptor) in which a charge-generating substance 3 and a hydrazone compound as a charge-transporting substance 5 are dispersed in a resin binder on a conductive substrate 1. configuration) is provided.

第2図は、導電性基体1上に電荷発生物質3を主体とす
る電荷発生層4と、電荷輸送物質5であるヒドラゾン化
合物を含有する電荷輸送層6との積層からなる感光層2
1(通常積層型感光体と称せられる構成)が設けられた
ものである。
FIG. 2 shows a photosensitive layer 2 formed by laminating a charge generation layer 4 mainly containing a charge generation substance 3 and a charge transport layer 6 containing a hydrazone compound as a charge transport substance 5 on a conductive substrate 1.
1 (a configuration commonly referred to as a laminated photoreceptor).

第3図は、第2図の逆の層構成のものである。FIG. 3 shows an inverse layer configuration to that in FIG.

この場合には、電荷発生層4を保護するためにさらに被
覆層7を設けるのが一般的である。
In this case, it is common to further provide a coating layer 7 to protect the charge generation layer 4.

第2図および第3図に示す二種類の層構成とする理由は
、負帯電方式として通常用いられる第2図の層構成で正
帯電方式で用いようとしても、これに適合する電荷輸送
物質がまだ見つかっておらず、したがって、現段階では
第3図に示した層構成の感光体とすることが必要なため
である。
The reason for the two types of layer configurations shown in Figures 2 and 3 is that even if you try to use the layer configuration in Figure 2, which is normally used for a negative charging system, in a positive charging system, there is no compatible charge transport material. This is because it has not been found yet, and therefore, at this stage, it is necessary to create a photoreceptor with the layer structure shown in FIG.

第1図の感光体は、電荷発生物質を電荷輸送物質および
樹脂バインダーを溶解した溶液中に分散せしめ、この分
散液を導電性基体上に塗布することによって作製できる
The photoreceptor shown in FIG. 1 can be produced by dispersing a charge generating material in a solution containing a charge transporting material and a resin binder, and applying this dispersion onto a conductive substrate.

第2図の感光体は、導電性基体上に電荷発生物質を真空
蒸着するか、あるいは電荷発生物質の粒子を溶剤または
樹脂バインダー中に分散して得た分散液を塗布、乾燥し
、その上に電荷輸送物質および樹脂バインダーを溶解し
た溶液を塗布、乾燥することにより作製できる。
The photoreceptor shown in Figure 2 is produced by vacuum-depositing a charge-generating substance on a conductive substrate, or by coating and drying a dispersion obtained by dispersing particles of a charge-generating substance in a solvent or resin binder, and then It can be produced by applying a solution containing a charge transporting substance and a resin binder to the surface of the substrate and drying the solution.

第3図の感光体は、電荷輸送物質および樹脂バインダー
を溶解した溶液を導電性基体上に塗布、乾燥し、その上
に電荷発生物質を真空蒸着するか、あるいは電荷発生物
質の粒子を溶剤または樹脂バインダー中に分散して得た
分散液を塗布、乾燥し、さらに被覆層を形成することに
より作製できる。
The photoreceptor shown in Figure 3 is produced by coating a conductive substrate with a solution containing a charge transporting substance and a resin binder and drying it, and then vacuum-depositing a charge generating substance thereon, or by depositing charge generating substance particles in a solvent or a solvent. It can be produced by applying a dispersion obtained by dispersing it in a resin binder, drying it, and further forming a coating layer.

導電性基体1は感光体の電極としての役目と同時に他の
各層の支持体となっており、円筒状、板状、フィルム状
のいずれでも良く、材質的にはアルミニウム、ステンレ
ス鋼、ニッケルナト(D 金属、あるいはガラス、樹脂
などの上に導電処理をほどこしたものでも良い。
The conductive substrate 1 serves as an electrode of the photoreceptor and at the same time serves as a support for other layers, and may be cylindrical, plate-shaped, or film-shaped, and may be made of aluminum, stainless steel, nickel (D) It may also be made of metal, glass, resin, or the like, which has been subjected to conductive treatment.

電荷発生層4は、前記したように電荷発生物質3の粒子
を樹脂バインダー中に分散させた材料を塗布するか、あ
るいは、真空蒸着などの方法により形成され、光を受容
して電荷を発生する。また、その電荷発生効率が高いこ
とと同時に発生した電荷の電荷輸送層6および被覆層7
への注入性が重要で、電場依存性が少なく低電場でも注
入の良いことが望ましい。電荷発生物質としては、無金
属フタロシアニン、チタニルフタロシアニンなどのフタ
ロシアニン化合物、各種アゾ、キノン、インジゴ顔料あ
るいは、シアニン1スクアリリウム。
The charge generation layer 4 is formed by applying a material in which particles of the charge generation substance 3 are dispersed in a resin binder as described above, or by a method such as vacuum deposition, and generates charges by receiving light. . In addition, the charge transport layer 6 and the coating layer 7 for the generated charges at the same time have a high charge generation efficiency.
It is important to have good injection properties even in low electric fields with little dependence on electric fields. As the charge generating substance, metal-free phthalocyanine, phthalocyanine compounds such as titanyl phthalocyanine, various azo, quinone, indigo pigments, or cyanine 1-squarylium.

アズレニウム、ビリリウム化合物などの染料や、セレン
またはセレン化合物などが用いられ、画像形成に使用さ
れる露光光源の光波長領域に応じて好適な物質を選ぶこ
とができる。電荷発生層は電荷発生機能を有すればよい
ので、その膜厚は電荷発生物質の光吸収係数より決まり
一般的には5μm以下であり、好適には1μm以下であ
る。電荷発生層は電荷発生物質を主体としてこれに電荷
輸送物質などを添加して使用することも可能である。
Dyes such as azulenium and biryllium compounds, selenium or selenium compounds, and the like are used, and suitable substances can be selected depending on the light wavelength range of the exposure light source used for image formation. Since the charge generation layer only needs to have a charge generation function, its thickness is determined by the light absorption coefficient of the charge generation substance and is generally 5 μm or less, preferably 1 μm or less. The charge generation layer is mainly composed of a charge generation substance, and a charge transport substance or the like may be added thereto.

樹脂バインダーとしては、ポリカーボネート、ポリエス
テル、ポリアミド、ポリウレタン、エポキシ、シリコン
樹脂、メタクリル酸エステルの重合体および共重合体な
どを適宜組み合わせて使用することが可能である。
As the resin binder, polycarbonate, polyester, polyamide, polyurethane, epoxy, silicone resin, polymers and copolymers of methacrylic acid ester, etc. can be used in appropriate combinations.

電荷輸送層6は樹脂バインダー中に有機電荷輸送物質と
して前記−最大(I)で示されるヒドラゾン化合物を分
散させた塗膜であり、暗所では絶縁体層として感光体の
電荷を保持し、光受容時には電荷発生層から注入される
電荷を輸送する機能を発揮する。樹脂バインダーとして
は、ポリカーボネート、ポリエステル、ポリアミド、ポ
リウレタン、エポキシ、シリコン樹脂、メタクリル酸エ
ステルの重合体および共重合体などを用いることができ
る。
The charge transport layer 6 is a coating film in which a hydrazone compound represented by the maximum (I) above is dispersed as an organic charge transport substance in a resin binder, and serves as an insulating layer in the dark to retain the charge on the photoreceptor and prevent light from entering. During reception, it functions to transport charges injected from the charge generation layer. As the resin binder, polycarbonate, polyester, polyamide, polyurethane, epoxy, silicone resin, polymers and copolymers of methacrylic acid ester, etc. can be used.

被覆層7は暗所ではコロナ放電の電荷を受容して保持す
る機能を有しており、かつ電荷発生層が感応する光を透
過する性能を有し、露光時に光を透過し、電荷発生層に
到達させ、発生した電荷の注入を受けて表面電荷を中和
消滅させることが必要である。被覆材料としては、ポリ
エステル、ポリアミドなどの有機絶縁性皮膜形成材料が
適用できる。また、これら有機材料とガラス樹脂、 5
in2などの無機材料さらには金属、金属酸化物などの
電気抵抗を低減せしめる材料とを混合して用いることも
できる。被覆材料としては有機絶縁性皮膜形成材料に限
定されることはな(Sin、などの無機材料さらには金
属、金属酸化物などを蒸着、スパッタリングなどの方法
により形成することも可能である。被覆材料は前述のと
おり電荷発生物質の光の吸収極大の波長領域においてで
きるだけ透明であるεとが望ましい。
The coating layer 7 has the function of receiving and retaining the charge of corona discharge in a dark place, and has the ability to transmit the light to which the charge generation layer is sensitive, and transmits the light upon exposure, and the charge generation layer It is necessary to neutralize and eliminate the surface charges by injecting the generated charges. As the coating material, organic insulating film-forming materials such as polyester and polyamide can be used. In addition, these organic materials and glass resin, 5
It is also possible to use a mixture of an inorganic material such as in2, or a material that reduces electrical resistance such as a metal or metal oxide. The coating material is not limited to organic insulating film forming materials (inorganic materials such as Sin, metals, metal oxides, etc. can also be formed by methods such as vapor deposition and sputtering.Coating materials As mentioned above, it is desirable that ε be as transparent as possible in the wavelength range of maximum light absorption of the charge generating material.

被覆層自体の膜厚は被覆層の配合組成にも依存するが、
繰り返し連続使用したとき残留電位が増大するなどの悪
影響が出ない範囲で任意に設定できる。
The thickness of the coating layer itself depends on the composition of the coating layer, but
It can be set arbitrarily within a range that does not cause adverse effects such as an increase in residual potential when used repeatedly and continuously.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 ボールミルで150時間粉砕した無金属フタロシアニン
(東京化成!11)50重量部と前記化合物No、1で
示されるヒドラゾン化合物100重量部をポリエステル
樹脂(商品名バイロン200:東洋紡!II) 100
重量部とテトラヒドロフラン(THF)溶剤とともに3
時間混合機により混練して塗布液を調製し、導電性基体
であるアルミ蒸着ポリエステルフィルム(A J −P
 E T )上に、ワイヤーバー法にて塗布して、乾燥
後の膜°厚が15μmになるように感光層を形成し、第
1図に示した構成の感光体を作製した。
Example 1 50 parts by weight of metal-free phthalocyanine (Tokyo Kasei! 11) ground for 150 hours in a ball mill and 100 parts by weight of the hydrazone compound represented by Compound No. 1 were mixed into a polyester resin (trade name Byron 200: Toyobo! II) 100 parts by weight
3 parts by weight with tetrahydrofuran (THF) solvent
A coating solution was prepared by kneading with a time mixer, and aluminum-deposited polyester film (A J-P
A photosensitive layer was formed on E T ) by a wire bar method so that the film thickness after drying was 15 μm, thereby producing a photoreceptor having the structure shown in FIG. 1.

実施例2 まず、α型無金属フタロシアニンを出発原料とし、二つ
のリニアモーターを対向して配置した間にα型無金属フ
タロシアニンと作用小片としてテフロン被覆磁性体ピー
スを内蔵した非磁性離体をおいて粉砕する電磁粉砕装置
(商品名LIMMAC;富士電機製)を用いて粉砕処理
を20分間行い微粉末化した。この微粉末化された試料
1重量部とDMF (’N、N−ジメチルホルムアミド
)溶剤50重量部とを超音波分散処理を行った。その後
、試料とDMFとを分離濾過し、乾燥して無金属フタロ
シアニンの処理を行った。
Example 2 First, α-type metal-free phthalocyanine was used as a starting material, and while two linear motors were placed facing each other, α-type metal-free phthalocyanine and a nonmagnetic separation body containing a Teflon-coated magnetic piece as a working piece were mixed. The mixture was pulverized for 20 minutes using an electromagnetic pulverizer (trade name: LIMMAC, manufactured by Fuji Electric) for pulverization. 1 part by weight of this finely powdered sample and 50 parts by weight of DMF ('N,N-dimethylformamide) solvent were subjected to ultrasonic dispersion treatment. Thereafter, the sample and DMF were separated and filtered, dried, and treated for metal-free phthalocyanine.

次に、前記化合物No、 2で示されるヒドラゾン化合
物100重量部をテトラヒドロフラン(THF)700
重量部に溶かした液とポリメタクリル酸メチルポリマー
(PMMA :東京化成製)100重量部をトルエン7
00重量部に溶かした液とを混合してできた塗液をアル
ミ蒸着ポリエステルフィルム基体上にワイヤーバー法に
て塗布し、乾燥後の膜厚が15μmになるように電荷輸
送層を形成した。このようにして得られた電荷輸送層上
に上記の処理をされた無金属フタロシアニン50重量部
、ポリエステル樹脂(商品名バイロン200:東洋紡製
)50重量部、P M M A50重量部をTHF溶剤
とともに3時間混合機により混練して塗布液を調製し、
ワイヤーバー法にて塗布し、乾燥後の膜厚が1μmにな
るように電荷発生層を形成し、第3図に示した構成に対
応する感光体を作製した。
Next, 100 parts by weight of the hydrazone compound represented by Compound No. 2 was added to 700 parts by weight of tetrahydrofuran (THF).
7 parts by weight of the solution and 100 parts by weight of polymethyl methacrylate polymer (PMMA: manufactured by Tokyo Kasei) were mixed with 7 parts by weight of toluene.
A coating solution prepared by mixing a solution of 0.00 parts by weight was applied onto an aluminum vapor-deposited polyester film substrate by a wire bar method to form a charge transport layer so that the film thickness after drying was 15 μm. On the charge transport layer thus obtained, 50 parts by weight of the above-treated metal-free phthalocyanine, 50 parts by weight of polyester resin (trade name: Vylon 200, manufactured by Toyobo Co., Ltd.), and 50 parts by weight of PMM A were added together with a THF solvent. A coating solution was prepared by kneading with a mixer for 3 hours,
A charge generation layer was formed by coating using a wire bar method so that the film thickness after drying was 1 μm, and a photoreceptor having the structure shown in FIG. 3 was prepared.

実施例3 実施例1の感光層の組成を、無金属フタロシアニン50
重量部、化合物No、 3で示されるヒドラゾン化合物
100重量部、ポリエステル樹脂(商品名バイロン20
0:東洋紡製)50重量部・PMMA50重量部とに変
更して実施例1と同様に感光層を形成し感光体を作製し
た。
Example 3 The composition of the photosensitive layer of Example 1 was changed to 50% metal-free phthalocyanine.
Parts by weight, Compound No. 100 parts by weight of a hydrazone compound represented by 3, Polyester resin (trade name: Vylon 20)
A photosensitive layer was formed in the same manner as in Example 1 except that 50 parts by weight of PMMA and 50 parts by weight of PMMA were used to prepare a photoreceptor.

実施例4 実施例3において、無金属フタロシアニンに変えて例え
ば特開昭47−37543に示されるようなビスアゾ顔
料であるクロログイアンプル−を用い実施例1と同様に
感光層を形成し感光体を作製した。
Example 4 In Example 3, a photosensitive layer was formed in the same manner as in Example 1 using, for example, a chlorodiapolymer, which is a bisazo pigment as disclosed in JP-A-47-37543, instead of metal-free phthalocyanine, and a photoreceptor was formed. Created.

このようにして得られた感光体の電子写真特性を川口電
機製静電記録紙試験装置r S P−428Jを用いて
測定した。
The electrophotographic properties of the photoreceptor thus obtained were measured using an electrostatic recording paper tester RSP-428J manufactured by Kawaguchi Electric.

感光体の表面電位V、(ボルト)は暗所で+6.OkV
のコロナ放電を10秒間行って感光体表面を正帯電せし
めたときの初期の表面電位であり、続いてコロナ放電を
中止した状態で2秒間暗所保持したときの表面電位Vd
(ボルト)を測定し、さらに続いて感光体表面に照度2
ルツクスの白色光を照射してV、が半分になるまでの時
間(秒)を求め半減衰露光量E1/2(ルックス・秒)
とした。また、照度2ルツクスの白色光を10秒間照射
したときの表面電位を残留電位V?(ボルト)とした。
The surface potential V (volts) of the photoreceptor is +6. OkV
This is the initial surface potential when corona discharge is performed for 10 seconds to positively charge the surface of the photoreceptor, and the surface potential Vd is then maintained in the dark for 2 seconds with corona discharge stopped.
(volts), and then the illuminance 2 on the photoreceptor surface.
Calculate the time (seconds) it takes for V to be halved after irradiating the lux white light, and find the half-attenuation exposure amount E1/2 (lux seconds)
And so. Also, the surface potential when irradiated with white light with an illuminance of 2 lux for 10 seconds is the residual potential V? (volt).

また、フタロシアニン化合物を電荷発生物質とした場合
、長波長光での高感度が期待できるので、波長780n
mの単色光を用いたときの電子写真特性も同時に測定し
た。すなわち、■、までは同様に測定し、次に白色光の
替わりに1μWの単色光(780nm)を照射して半減
衰露光量(μJ/crl)を求め、また、この光を10
秒間感光体表面に照射したときの残留電位V、(ボルト
)を測定した。測定結果を第1表に示す。
In addition, when a phthalocyanine compound is used as a charge generating substance, high sensitivity can be expected with long wavelength light, so the wavelength is 780 nm.
At the same time, electrophotographic characteristics were measured using m monochromatic light. That is, measurements are carried out in the same manner up to ■, then 1 μW monochromatic light (780 nm) is irradiated instead of white light to determine the half-attenuation exposure amount (μJ/crl), and this light is
The residual potential V, (volt) when the surface of the photoreceptor was irradiated for a second was measured. The measurement results are shown in Table 1.

第1表に見られるように、実施例1.2,3゜4は半減
衰露光量、残留電位ともに遜色はなく、また表面電位で
も良好な特性を示している。また、電荷発生物質として
フタロシアニン化合物を用いた実施例1,2.3は波長
780nmの長波長光でも高感度を示し、半導体レーザ
プリンタ用として充分使用可能であることが判る。
As seen in Table 1, Examples 1, 2, and 3°4 are comparable in half-attenuation exposure and residual potential, and also exhibit good characteristics in terms of surface potential. Furthermore, Examples 1 and 2.3 in which a phthalocyanine compound was used as the charge generating substance showed high sensitivity even with long wavelength light of 780 nm, and it was found that they could be sufficiently used for semiconductor laser printers.

実施例5 厚さ500μmのアルミニウム板上に、セレンを厚さ1
.5μmに真空蒸着し電荷発生層を形成し、次に、化合
物No、 4で示されるヒドラゾン化合物100重量部
をテトラヒドロフラン(THF)700重量部に溶かし
た液とポリメタクリル酸メチルポリマー(PMMA :
東京化成製)100重量部をトルエン700重量部に溶
かした液とを混合してできた塗液をワイヤーバー法にて
塗布し、乾燥後の膜厚が20μmになるように電荷輸送
層を形成し、第2図に示した。
Example 5 Selenium was deposited to a thickness of 1 on a 500 μm thick aluminum plate.
.. A charge generation layer was formed by vacuum evaporation to a thickness of 5 μm, and then a solution prepared by dissolving 100 parts by weight of a hydrazone compound represented by Compound No. 4 in 700 parts by weight of tetrahydrofuran (THF) and polymethyl methacrylate polymer (PMMA:
A coating liquid made by mixing 100 parts by weight of 100 parts by weight (manufactured by Tokyo Kasei) in 700 parts by weight of toluene is applied using the wire bar method to form a charge transport layer so that the film thickness after drying is 20 μm. and is shown in Figure 2.

構成の感光体を作製した。この感光体に−6,OkVの
コロナ帯電を0.2秒間行ったところ、V、 =−60
0V。
A photoreceptor with the following configuration was manufactured. When this photoreceptor was corona charged at -6, OkV for 0.2 seconds, V, = -60
0V.

Vr=−60V、 El/2 =4Jルックス・秒と良
好な結果が得られた。
Good results were obtained with Vr=-60V and El/2=4Jlux·sec.

実施例6 実施例1で処理された無金属フタロシアニン50重量部
、ポリエステル樹脂(商品名バイロン200:東洋紡!
11り50重量部、PMMA50重量部をTHF溶剤と
ともに3時間混合機により混練して塗布液を調製し、ア
ルミニウム支持体上に約1μmになるように塗布し、電
荷発生層を形成した。次に、化合物Nα5で示されるヒ
ドラゾン化合物100重量部、ポリカーボネート樹脂(
パンライトL−1250)100重量部、シリコンオイ
ル0.1重量部をTHF700重量部とトルエン700
重量部で混合し、電荷発生層の上に約15μmとなるよ
うに塗布し、電荷輸送層を形成した。
Example 6 50 parts by weight of metal-free phthalocyanine treated in Example 1, polyester resin (trade name Byron 200: Toyobo!)
A coating solution was prepared by kneading 50 parts by weight of No. 11 and 50 parts by weight of PMMA with a THF solvent in a mixer for 3 hours, and the coating solution was coated on an aluminum support to a thickness of about 1 μm to form a charge generation layer. Next, 100 parts by weight of a hydrazone compound represented by compound Nα5 and a polycarbonate resin (
Panlite L-1250) 100 parts by weight, 0.1 parts by weight of silicone oil, 700 parts by weight of THF and 700 parts by weight of toluene.
They were mixed in parts by weight and coated on the charge generation layer to a thickness of about 15 μm to form a charge transport layer.

このようにして得られた感光体に実施例5と同様にして
、−6,0kVのコロナ帯電を0.2秒間行ったところ
、V−=−620V 、  E l/2 =5.9ルツ
クス・秒と良好な結果が得られた。
When the photoreceptor thus obtained was corona charged at -6.0 kV for 0.2 seconds in the same manner as in Example 5, V- = -620 V, E l/2 = 5.9 Lux. Good results were obtained in seconds.

実施例7 化合物Nα6〜No、 18それぞれについて実施例4
と同様、感光層を形成し、感光体を作製しrSP−42
8」を用いて測定した結果を第2表に示す。この結果は
、暗所で+6.0kVのコロナ放電を10秒間行い正帯
電せしめ、照度2ルツクスの白色光を照射した場合の半
減衰露光量E l/2 (ルックス・秒)で示した。
Example 7 Example 4 for each of compounds Nα6 to No. 18
In the same manner as above, a photosensitive layer was formed, a photoreceptor was prepared, and rSP-42
Table 2 shows the results of the measurements using ``No. 8''. This result was expressed as a half-attenuation exposure amount E 1/2 (lux seconds) when the sample was positively charged by performing corona discharge at +6.0 kV for 10 seconds in a dark place and then irradiated with white light at an illuminance of 2 lux.

第  2  表  (その1) 第2表に見られるように、前記ヒドラゾン化合物No、
 5〜Nα18を電荷輸送物質として用いた感光体につ
いても、半減衰露光’IE1y2は良好であった。
Table 2 (Part 1) As seen in Table 2, the hydrazone compound No.
The half-attenuation exposure 'IE1y2 was also good for the photoreceptors using 5 to Nα18 as charge transport materials.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、導電性基体上に電荷輸送物質として前
記−最大(I)で示されるヒドラゾン化合物を用いるこ
ととしたため、正帯電および負帯電においても高感度で
しかも繰り返し特性の優れた感光体を得ることができる
。また、電荷発生物質は露光光源の種類に対応して好適
な物質を選ぶことができ、−例をあげるとフタロシアニ
ン化合物およびある種のビスアゾ化合物を用いれば半導
体レーザプリンタに使用可能な感光体を得ることができ
る。さらに、必要に応じて表面に被覆層を設置して耐久
性を向上することが可能である。
According to the present invention, since the hydrazone compound represented by -maximum (I) is used as a charge transport material on a conductive substrate, a photoreceptor with high sensitivity and excellent repeatability even in positive and negative charging can be obtained. can be obtained. In addition, a suitable charge-generating substance can be selected depending on the type of exposure light source; for example, by using phthalocyanine compounds and certain bisazo compounds, a photoreceptor that can be used in semiconductor laser printers can be obtained. be able to. Furthermore, if necessary, it is possible to provide a coating layer on the surface to improve durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は本発明の感光体のそれぞ
れ異なる実施例を示す概念的断面図である。 1 導電性基体、3 電荷発生物質、4 電荷発生層、
5 電荷輸送物質、6 電荷輸送層、7被覆層、20.
21.22  感光層。
FIGS. 1, 2, and 3 are conceptual sectional views showing different embodiments of the photoreceptor of the present invention. 1 conductive substrate, 3 charge generation substance, 4 charge generation layer,
5 charge transport material, 6 charge transport layer, 7 coating layer, 20.
21.22 Photosensitive layer.

Claims (1)

【特許請求の範囲】 1)下記一般式( I )で示されるヒドラゾン化合物の
うちの、少なくとも一種類を含む感光層を有することを
特徴とする電子写真用感光体。 ▲数式、化学式、表等があります▼( I ) 〔式( I )中、R_1、R_2、R_3およびR_4
はそれぞれ水素原子、ハロゲン原子、アルキル基、ヒド
ロキシ基、アルコキシ基、アリル基、アリール基、アシ
ル基またはニトロ基のいずれかを表し、m、nはそれぞ
れ0および1のいずれかを表す。〕
[Scope of Claims] 1) An electrophotographic photoreceptor comprising a photosensitive layer containing at least one type of hydrazone compound represented by the following general formula (I). ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) [In formula (I), R_1, R_2, R_3 and R_4
each represents a hydrogen atom, a halogen atom, an alkyl group, a hydroxy group, an alkoxy group, an allyl group, an aryl group, an acyl group, or a nitro group, and m and n each represent either 0 or 1. ]
JP32913787A 1987-12-25 1987-12-25 Electrophotographic sensitive body Pending JPH01170946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32913787A JPH01170946A (en) 1987-12-25 1987-12-25 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32913787A JPH01170946A (en) 1987-12-25 1987-12-25 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH01170946A true JPH01170946A (en) 1989-07-06

Family

ID=18218045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32913787A Pending JPH01170946A (en) 1987-12-25 1987-12-25 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01170946A (en)

Similar Documents

Publication Publication Date Title
JPH0279855A (en) Electrophotographic sensitive body
JPH01102469A (en) Electrophotographic sensitive body
JPS63158560A (en) Electrophotographic sensitive body
JPH04119360A (en) Electrophotographic sensitive body
JPH032760A (en) Electrophotographic sensitive body
JPH0194349A (en) Electrophotographic sensitive body
JPH01273049A (en) Electrophotographic sensitive body
JPS63158556A (en) Electrophotographic sensitive body
JPS63157159A (en) Electrophotographic sensitive body
JPH01170946A (en) Electrophotographic sensitive body
JPH01107262A (en) Electrophotographic sensitive body
JPH01172965A (en) Electrophotographic sensitive body
JPH01107263A (en) Electrophotographic sensitive body
JPH01172967A (en) Electrophotographic sensitive body
JPH01152463A (en) Electrophotographic sensitive body
JPH0394263A (en) Electrophotographic sensitive body
JPS63158557A (en) Electrophotographic sensitive body
JPS63158558A (en) Electrophotographic sensitive body
JPS63157160A (en) Electrophotographic sensitive body
JPH01170945A (en) Electrophotographic sensitive body
JPH01164952A (en) Electrophotographic sensitive body
JPH01107261A (en) Electrophotographic sensitive body
JPH01172961A (en) Electrophotographic sensitive body
JPH01164951A (en) Electrophotographic sensitive body
JPH01152466A (en) Electrophotographic sensitive body