JPH01169898A - High-frequency heater - Google Patents

High-frequency heater

Info

Publication number
JPH01169898A
JPH01169898A JP62328779A JP32877987A JPH01169898A JP H01169898 A JPH01169898 A JP H01169898A JP 62328779 A JP62328779 A JP 62328779A JP 32877987 A JP32877987 A JP 32877987A JP H01169898 A JPH01169898 A JP H01169898A
Authority
JP
Japan
Prior art keywords
thickness
plate
plasma
outer plate
loop antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62328779A
Other languages
Japanese (ja)
Other versions
JP2509648B2 (en
Inventor
Haruyuki Kimura
晴行 木村
Yoshitaka Ikeda
池田 佳隆
Kazunori Kitamura
喜多村 和憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Atomic Energy Agency
Original Assignee
Toshiba Corp
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Atomic Energy Research Institute filed Critical Toshiba Corp
Priority to JP62328779A priority Critical patent/JP2509648B2/en
Publication of JPH01169898A publication Critical patent/JPH01169898A/en
Application granted granted Critical
Publication of JP2509648B2 publication Critical patent/JP2509648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)
  • Discharge Heating (AREA)

Abstract

PURPOSE:To thoroughly withstand a high-temperature load by making the thickness of an outer plate larger than the thickness of an inner plate. CONSTITUTION:The thickness of an outer plate 7a facing plasma in a plasma radiation region 12 is increased as compared with the thickness of an inner plate 7b behind it, or the thickness of the inner plate 7b is decreased as compared with the thickness of the outer plate 7a so that the thickness of the outer plate 7a is made larger than the thickness of the inner plate 7b. In this case, thicknesses of the outer plate 7a and the inner plate 7b are determined in the direction to approach the difference of thicknesses corresponding to the heat capacity which can absorb the difference of heat loads of both plates to the extent possible. They can thoroughly withstand a high-temperature load, and high reliability for the mechanical strength can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は例えば核融合装置のプラズマと追加熱する高周
波加熱装置に係り、特にイオンサイクロトロン周波数帯
(以下、ICRFと略称する)高周波加熱装置の改良に
関するものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a high-frequency heating device that additionally heats the plasma of, for example, a nuclear fusion device. ) This relates to improvements in high-frequency heating devices.

(従来の技術) 従来から、例えば核融合装置のプラズマを加熱する方法
には、プラズマ中に電流を通して加熱するフェール加熱
法の他に、第2段加熱方法として中性粒子入射加熱法や
高周波加熱法等がある。
(Prior art) Conventionally, methods for heating plasma in nuclear fusion devices, for example, include the Fehr heating method, which heats the plasma by passing an electric current through it, and the neutral particle injection heating method and high-frequency heating method as second-stage heating methods. There are laws etc.

高周波加熱法は、高周波電磁エネルギーをプラズマに吸
収させてプラズマの温度を上げる方法で、使用する周波
数帯によって各種の方式があυ、その1つにICRF高
周波加熱がある。
The high-frequency heating method is a method of increasing the temperature of plasma by absorbing high-frequency electromagnetic energy into the plasma, and there are various methods depending on the frequency band used, one of which is ICRF high-frequency heating.

第3図は、この種のICRF高周波加熱装置の概略構成
を示すものである。本装置は図示のように、高出力であ
る1 00 MHz帯の高周波を発生して増幅する高周
波発信器1と、この高周波発信器1で発生した高周波出
力を伝送する同軸管3と、この同軸管3に接続され上記
高周波出力を核融合装置のプラズマ4に放出するアンテ
ナに相当する結合系5とから構成されている。
FIG. 3 shows a schematic configuration of this type of ICRF high frequency heating device. As shown in the figure, this device consists of a high-frequency oscillator 1 that generates and amplifies a high-output high-frequency wave in the 100 MHz band, a coaxial tube 3 that transmits the high-frequency output generated by the high-frequency oscillator 1, and a coaxial tube 3 that transmits the high-frequency output generated by the high-frequency oscillator 1. The coupling system 5 is connected to the tube 3 and corresponds to an antenna that emits the high frequency output to the plasma 4 of the fusion device.

一方結合系5には、トカマク装置本体2との整合性の面
からT型すッジ導波管方式やループアンテナ方式がある
が、ここではループアンテナ方式について説明する。こ
のループアンテナ方式の結合系5は、同軸管3の外周に
設けられた7ランジ6がトカマク装置本体2に直接接続
される。また、同軸管3の先端部にはループアンテナ導
体7が取付けられ、さらにこのループアンテナ導体7の
プラズマ4に面する側にはファラデーシールド8が装着
されている。このファラデーシールド8は、ループアン
テナ導体7を流れる高周波電流の形成する電界のうち、
プラズマ電流と平行な成分(紙面垂直方向)の電界をシ
ールドする役目を担うものである。一方、トカマク装置
本体2は高真空であるため、同軸管3の外導管3aと内
導管3b間はフィードスルー9で真空シールされる。ま
た、ファラデーシールド8およびループアンテナ導体7
には高周波損失が生じ、プラズマ4からの照射熱を合せ
ると高真空下で高熱負荷を受ける。そして、近年核融合
の研究が進んでプラズマ4が高温、高密度になるにつれ
て、高周波加熱装置も大容量、長時間運転になり、ルー
プアンテナ導体7にかかる熱負荷も極めて大きなものと
なってきている。
On the other hand, the coupling system 5 includes a T-shaped sway waveguide system and a loop antenna system from the viewpoint of compatibility with the tokamak device main body 2, but the loop antenna system will be explained here. In this loop antenna type coupling system 5, seven flanges 6 provided on the outer periphery of the coaxial tube 3 are directly connected to the tokamak device main body 2. A loop antenna conductor 7 is attached to the tip of the coaxial tube 3, and a Faraday shield 8 is attached to the side of the loop antenna conductor 7 facing the plasma 4. This Faraday shield 8 protects the electric field formed by the high frequency current flowing through the loop antenna conductor 7.
It plays the role of shielding the electric field whose component is parallel to the plasma current (in the direction perpendicular to the page). On the other hand, since the tokamak device main body 2 is in a high vacuum, the space between the outer conduit 3a and the inner conduit 3b of the coaxial tube 3 is vacuum-sealed by the feedthrough 9. Additionally, a Faraday shield 8 and a loop antenna conductor 7
A high frequency loss occurs, and when combined with the irradiation heat from the plasma 4, a high heat load is applied under high vacuum. In recent years, as nuclear fusion research has progressed and plasma 4 has become hotter and denser, high-frequency heating devices have become larger in capacity and have to operate for longer periods of time, and the thermal load placed on the loop antenna conductor 7 has become extremely large. There is.

次に、第4図は従来から使用されているループアンテナ
導体7周辺の構成例を斜視図にて示したものであシ、ま
た第5図は同ループアンテナ導体7周辺0構成例を縦断
面図にて示したものである。
Next, FIG. 4 is a perspective view showing an example of the configuration around the loop antenna conductor 7 that has been used conventionally, and FIG. 5 is a vertical cross-section of an example of the configuration around the loop antenna conductor 7. This is shown in the figure.

本ループアンテナ導体7は図示のように、等板厚のプラ
ズマ4に面する外面板7a、その後方の内面板7bおよ
び側板7cからなる矩形断面チューブを形成する構造物
で、このチューブ内にはループアンテナ導体7の熱負荷
除去のための冷却媒体の流路をなしてhる。また、この
ループアンテナ導体7端部は内導管接続転3cで内導管
3bに接続されている。さらに、プラズマ照射領域12
の外面板7&の表面には、プラズマ4のスフ4ツタリン
グによる二ロ一ジs 7 f考慮して、ループアンテナ
導体7の保護のためにTICコーティング層7dを形成
している。さらにまた、ループアンテナ導体7の中央水
平端部は外導管3aと共にフランジ11に固定される構
成となっている。
As shown in the figure, the loop antenna conductor 7 is a structure that forms a rectangular cross-sectional tube consisting of an outer surface plate 7a facing the plasma 4 of equal thickness, an inner surface plate 7b behind it, and a side plate 7c. The loop antenna conductor 7 forms a cooling medium flow path for removing heat load. Further, the end portion of the loop antenna conductor 7 is connected to the inner conduit 3b through an inner conduit connection 3c. Furthermore, the plasma irradiation area 12
A TIC coating layer 7d is formed on the surface of the outer surface plate 7& in order to protect the loop antenna conductor 7, taking into account the damage caused by the splattering of the plasma 4. Furthermore, the central horizontal end of the loop antenna conductor 7 is fixed to the flange 11 together with the outer conduit 3a.

(発明が解決しようとする問題点) ところで、上述した構成のループアンテナ導体7におい
ては、通電時にアンテナ全領域に渡って高周波損失(ア
ンテナ長手方向にある関数で分゛布する)が生じ、プラ
ズマ照射領域12の外面板7aはTiCコーティングに
よる高周波損失の増加、およびプラズマふく射熱がさら
に熱負荷として追加される。従って、7″ラズマ照射領
域12において外面板7a、内面板7bの熱負荷が異な
ることから、外面板7aと内面板7bは等板厚のため6
各の温度上昇には差が生じ、外面板7aと内面板7bと
は−様な熱膨張とはならない。
(Problems to be Solved by the Invention) By the way, in the loop antenna conductor 7 having the above-described configuration, high frequency loss (distributed according to a function in the longitudinal direction of the antenna) occurs over the entire antenna region when energized, and plasma The outer surface plate 7a of the irradiation area 12 has an increased high frequency loss due to the TiC coating and plasma radiation heat is added as a heat load. Therefore, since the heat load on the outer surface plate 7a and the inner surface plate 7b is different in the 7" lasma irradiation area 12, the outer surface plate 7a and the inner surface plate 7b have the same thickness, so 6"
There is a difference in temperature rise between the two, and the outer plate 7a and the inner plate 7b do not exhibit the same thermal expansion.

!6図は、この時のループアンテナ導体7における熱変
形状態をモデル的に示したものであシ、図示実線13は
ループアンテナ導体7の変形前の状態を、破線14は同
じく変形後の状態を夫々示すものである。図示のように
、ループアンテナ導体7の変形ともに内導管3bも水平
面に対しある大きさの変形角15をなす。このため、ル
ープアンテナ導体7自身に各部で過大な熱応力を生じ、
アンテナ端部に接続される内導管3b1さらに内導管3
bに接続されるフィードスルー9にモ過大な反力が生じ
て、これらの部材の機械的強度上大きな問題となる。
! Figure 6 shows a model of the state of thermal deformation in the loop antenna conductor 7 at this time, and the solid line 13 in the figure shows the state of the loop antenna conductor 7 before deformation, and the broken line 14 shows the state after deformation. They are shown respectively. As shown in the figure, as the loop antenna conductor 7 is deformed, the inner conduit 3b also forms a certain degree of deformation angle 15 with respect to the horizontal plane. For this reason, excessive thermal stress is generated in each part of the loop antenna conductor 7 itself,
Inner conduit 3b1 connected to the antenna end and further inner conduit 3
An excessive reaction force is generated in the feedthrough 9 connected to the feedthrough 9, which poses a serious problem in terms of the mechanical strength of these members.

本発明は上記のような問題分解法するために成されたも
ので、その目的は高熱負荷に十分耐え得るとともに機械
的強度上も信頼性の高い高周波加熱装置を提供すること
にある。
The present invention has been made to solve the problem as described above, and its purpose is to provide a high-frequency heating device that can sufficiently withstand high thermal loads and has high reliability in terms of mechanical strength.

[発明の構成コ (問題点を解決するための手段) 上記目的を達成するために本発明では、胃周波発信器で
発生した高周波出力を同軸管により伝送し、かつこの同
軸管の先端部に取付けられプラズマに面する外面板、そ
の後方の内面板および側板からなるアンテナを介して上
記高周波出力をプラズマに放出するICRF高周波加熱
装置において、上記外面板の板厚を上記内面板の板厚よ
りも大きくするか、または上記外面板の表面および上記
内面板の表面の双方にTiCコーティング層を形成する
ようにしたことを特徴とする。
[Configuration of the Invention (Means for Solving Problems)] In order to achieve the above object, the present invention transmits the high frequency output generated by the gastric frequency oscillator through a coaxial tube, and transmits the high frequency output generated by the gastric frequency oscillator to the tip of the coaxial tube. In an ICRF high-frequency heating device that emits the above-mentioned high-frequency output to the plasma through an antenna consisting of an attached outer plate facing the plasma, an inner plate behind the antenna, and a side plate, the thickness of the outer plate is greater than the thickness of the inner plate. The present invention is characterized in that a TiC coating layer is formed on both the surface of the outer plate and the surface of the inner plate.

(作用) 従って、本発明の高周波加熱装置においては。(effect) Therefore, in the high frequency heating device of the present invention.

外面板の板厚を内面板の板厚よりも大きくするか、また
は外面板の表面および内面板の表面の双方にTICコー
ティング層を形成するようにしていることにより、高熱
負荷にも十分耐え得るとともに。
By making the outer plate thicker than the inner plate, or by forming a TIC coating layer on both the outer and inner plate surfaces, it can withstand high heat loads. With.

機械的強度上も極めて信頼性の高いものとすることが可
能となる。
It is also possible to achieve extremely high reliability in terms of mechanical strength.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明によるI CRF高周波加熱装置にお
けるループアンテナ導体周辺の構成例を縦断面図にて示
したもので、第5図と同一部分には同一符号を付してそ
の説明を省略し、ここでは異なる部分につbてのみ述べ
る。
FIG. 1 is a vertical cross-sectional view showing an example of the structure around the loop antenna conductor in the I CRF high-frequency heating device according to the present invention, and the same parts as in FIG. However, only the different parts will be described here.

つまシ第1図は、プラズマ照射領域12におけるプラズ
マに面する外面板7aの板厚を、その後方の内面板7b
の板厚に比して増加させるか、若しくは内面板7bの板
厚を外面板7aの板厚に比して減少させることにより、
外面板7aの板厚が内面板7bの板厚よりも大きくなる
。ように構成したものである。この場合、外面板7aお
よび内面板7bの板厚の決定は、両板材の熱負荷差を吸
収できる熱容量に相当する板厚差にできる限シ近づける
方向で行なうようにする。
Figure 1 shows the thickness of the outer plate 7a facing the plasma in the plasma irradiation area 12, and the thickness of the inner plate 7b behind it.
By increasing the thickness of the inner surface plate 7b compared to the thickness of the outer surface plate 7a, or decreasing the thickness of the inner surface plate 7b compared to the thickness of the outer surface plate 7a,
The thickness of the outer plate 7a is greater than the thickness of the inner plate 7b. It is configured as follows. In this case, the thicknesses of the outer plate 7a and the inner plate 7b are determined in such a way that the thickness difference is as close as possible to the thickness difference corresponding to the heat capacity that can absorb the difference in thermal load between the two plate materials.

かかる如く構成したループアンテナ導体を備えてなるI
CRF高周波加熱装置においては、外面板7aの熱負荷
は内面板7bのそれよりもプラズマ照射およびT1Cコ
ーティング7dによる高周波損失の増加分だけ大きいこ
とから、外面板7aの板厚を内面板7bの板厚よりも厚
くすることによって、外面板7aおよび内面板7bの両
板材の熱負荷による温度上昇を等しく、または温度差を
比較的小さく抑えることができる。従って、ループアン
テナ導体7の熱膨張による変形は略均−になシ、ループ
アンテナ導体7各部の熱応力を緩和することができる6
また、ループアンテナ導体7端部即ち内導管接続点3c
の前述した変位角も小さくなシ、内導管3bおよびこの
内導管3bに接続てれるフィードスルー9にがかる反力
も軽減されることになる。よって、高熱負荷にも十分耐
え得ると共に、機械的強度上も信頼性の高いrcRF’
高周波加熱装置とすることが可能である。
I comprising a loop antenna conductor configured as described above.
In the CRF high-frequency heating device, since the heat load on the outer plate 7a is larger than that on the inner plate 7b by the increase in high frequency loss due to plasma irradiation and T1C coating 7d, the thickness of the outer plate 7a is made equal to that of the inner plate 7b. By making it thicker than the thickness, it is possible to equalize the temperature rise due to heat load on both the outer plate 7a and the inner plate 7b, or to suppress the temperature difference to a relatively small value. Therefore, the deformation of the loop antenna conductor 7 due to thermal expansion is substantially uniform, and thermal stress in each part of the loop antenna conductor 7 can be alleviated.
Also, the end of the loop antenna conductor 7, that is, the inner conduit connection point 3c
The above-mentioned displacement angle is also small, and the reaction force exerted on the inner conduit 3b and the feedthrough 9 connected to this inner conduit 3b is also reduced. Therefore, the rcRF' can withstand high thermal loads and has high reliability in terms of mechanical strength.
It is possible to use a high frequency heating device.

上述したように本実施例のI CRF高周波加熱装置で
は、プラズマ照射領域12におけるプラズマに面する外
面板7aの板厚を、その後方の内面板7bの板厚に比し
て大きくなるようにすることにより、画板部材の熱負荷
による温度上昇を等しくまたは温度差を比較的小さく抑
え、ループアンテナ導体7の熱変形の不均一性を小さく
してループアンテナ導体7に生ずる熱応力、内導管3b
およびフィードスルー9にかかる反力を緩和することに
よって、高熱負荷にも十分端えられるアンテナ構成とす
ることができる。
As described above, in the I CRF high frequency heating device of this embodiment, the thickness of the outer plate 7a facing the plasma in the plasma irradiation area 12 is made larger than the thickness of the inner plate 7b behind it. By doing so, the temperature rise caused by the heat load on the drawing board member is kept equal or the temperature difference is kept relatively small, and the non-uniformity of thermal deformation of the loop antenna conductor 7 is reduced, thereby reducing the thermal stress generated in the loop antenna conductor 7 and the inner conduit 3b.
By alleviating the reaction force applied to the feedthrough 9, it is possible to obtain an antenna configuration that can sufficiently withstand high heat loads.

尚、本発明は上記実施例に限定されるものではなく、次
のようにしても実施することができるものである。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can also be implemented in the following manner.

すなわち、ループアンテナ導体7にT1Cコーティング
層を形成すると高周波損失の増加を呈し、さらにTIC
コーティング層の厚さが増すと高周波損失の増加の割合
いも大きくなる。そこで、このことを利用して第2図に
縦断面図を示すように、プラズマ照射領域12内のプラ
ズマに而する外面板7aO表面の他に、その後方の内面
板7bの表面にもTICコーティング層7eを形成する
。この場合、内面板7b表面に形成するTiCコーティ
ング層7eの厚さは、外面板7a表面に形成するTiC
コーティング層7dの厚さよりも厚くし、かつ画板部材
のトータルな熱負荷が等しくなるようにコーティング層
の厚さを決める。従ってかかる構成とすることにより、
外面板7a、内面板7bの温度上昇はループアンテナ導
体7の断面内で等しくなシ、前述と同様にループアンテ
ナ導体7の不均一な熱変形を抑えることが可能である。
That is, when a T1C coating layer is formed on the loop antenna conductor 7, high frequency loss increases, and TIC
As the thickness of the coating layer increases, the rate of increase in high frequency loss also increases. Therefore, taking advantage of this fact, as shown in the longitudinal cross-sectional view in FIG. Form layer 7e. In this case, the thickness of the TiC coating layer 7e formed on the surface of the inner surface plate 7b is the same as that of the TiC coating layer 7e formed on the surface of the outer surface plate 7a.
The thickness of the coating layer is determined so that it is thicker than the coating layer 7d and the total heat load on the drawing board member is equal. Therefore, by having such a configuration,
The temperature rise of the outer plate 7a and the inner plate 7b is equal within the cross section of the loop antenna conductor 7, and it is possible to suppress uneven thermal deformation of the loop antenna conductor 7 as described above.

その他、本発明はその要旨を変更しない範囲で種々に変
形して実施することができるものである。
In addition, the present invention can be modified and implemented in various ways without changing the gist thereof.

[発明の効果] 以上説明したように本発明によれば、高周波発信器で発
生した高周波出力を同軸管により伝送し、かつこの同軸
管の先端部に取付けられプラズマに面する外面板、その
後方の内面板および側板からなるアンテナを介してプラ
ズマに放出するICRF高周波加熱装置において、上記
外面板の板厚を上記内面板の板厚よりも大きくするか、
または上記外面板の表面および上記内面板の表面の双方
にTICコーティング層を形成するようにしたので。
[Effects of the Invention] As explained above, according to the present invention, the high frequency output generated by the high frequency oscillator is transmitted through a coaxial tube, and the outer plate attached to the tip of the coaxial tube and facing the plasma, In an ICRF high-frequency heating device that emits to plasma through an antenna consisting of an inner surface plate and a side plate, the thickness of the outer surface plate is made larger than the thickness of the inner surface plate, or
Alternatively, a TIC coating layer is formed on both the surface of the outer plate and the surface of the inner plate.

筒熱負荷に十分耐え得るとともに機械的強度上も極めて
信頼性の高い高周波加熱装置が提供できる。
It is possible to provide a high-frequency heating device that can sufficiently withstand tube thermal load and has extremely high reliability in terms of mechanical strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、第2図は本
発明の他の実施例を示す縦断面図、第3図はICRF高
周波加熱装置の概略を示す構成図、第4図は従来のルー
プアンテナ導体周辺の構成例を示す斜視図、第5図は同
ループアンテナ導体周辺の構成例を示す縦断面図、第6
図は同ループアンテナ導体の熱変形状態を示すモデル図
である。 1・・・高周波発信器、2・・・トカマク装置本体、3
・・・同軸管、3m・・・外導管、3b・・・内導管、
3c・・・内導管接続点、4・・・プラズマ、5・・・
結合系、7・・・ループアンテナ、7&・・・外面板、
7b・・・内面板、7c…側板、7 d 、 7 a”
・TiCニア−ティング層、8・・・ファラデーシール
ド、9・・・フィードスルー。 10・・・アンテナケーシング、11・・・7ランノ、
12・・・プラズマ照射領域、13・・・シールド板、
15・・・変形角。 出願人代理人  弁理士 鈴 江 武 彦第1図 第4図 第5図 第6図 1、事件の表示 特願昭62−328779号 2、発明の名称 高周波加熱装置 3、補正をする者 事件との関係   特許出願人 (409)日本原子力研究所 (ほか1名) 4、代理人 東京都千代田区霞が関3丁目7番2号 UBEビル7、
補正の内容 明細書第5頁第2行目に「内導管接続点3C−(:とあ
るを「内導管接続点3Cで」と訂正する。
FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention, FIG. 2 is a longitudinal sectional view showing another embodiment of the invention, FIG. 3 is a configuration diagram showing an outline of an ICRF high frequency heating device, The figure is a perspective view showing an example of the structure around a conventional loop antenna conductor, FIG. 5 is a vertical sectional view showing an example of the structure around the same loop antenna conductor, and FIG.
The figure is a model diagram showing the state of thermal deformation of the loop antenna conductor. 1... High frequency oscillator, 2... Tokamak device main body, 3
...Coaxial pipe, 3m...Outer conduit, 3b...Inner conduit,
3c...Inner conduit connection point, 4...Plasma, 5...
Coupling system, 7... loop antenna, 7 &... outer plate,
7b...Inner plate, 7c...Side plate, 7d, 7a"
- TiC nearing layer, 8... Faraday shield, 9... feed through. 10... antenna casing, 11... 7 runno,
12... Plasma irradiation area, 13... Shield plate,
15...Deformation angle. Applicant's representative Patent attorney Takehiko Suzue Figure 1, Figure 4, Figure 5, Figure 6, Figure 1, Display of the case, Japanese Patent Application No. 1987-328779 2, Title of the invention: High-frequency heating device 3, Person making the amendment: Relationship Patent applicant (409) Japan Atomic Energy Research Institute (and 1 other person) 4. Agent UBE Building 7, 3-7-2 Kasumigaseki, Chiyoda-ku, Tokyo.
In the second line of page 5 of the detailed description of the amendment, the statement ``Inner conduit connection point 3C-(:'' is corrected to ``At the inner conduit connection point 3C.''

Claims (3)

【特許請求の範囲】[Claims] (1)高周波発信器で発生した高周波出力を同軸管によ
り伝送し、かつこの同軸管の先端部に取付けられプラズ
マに面する外面板、その後方の内面板および側板からな
るアンテナを介してプラズマに放出するイオンサイクロ
トロン周波数帯高周波加熱装置において、前記外面板の
板厚を、前記内面板の板厚よりも大きくするようにした
ことを特徴とする高周波加熱装置。
(1) The high-frequency output generated by the high-frequency oscillator is transmitted through a coaxial tube, and transmitted to the plasma via an antenna consisting of an outer plate attached to the tip of the coaxial tube and facing the plasma, an inner plate behind it, and a side plate. 1. A high-frequency heating device for emitting ion cyclotron frequency bands, characterized in that the thickness of the outer plate is greater than the thickness of the inner plate.
(2)高周波発信器で発生した高周波出力を同軸管によ
り伝送し、かつこの同軸管の先端部に取付けられプラズ
マに面する外面板、その後方の内面板および側板からな
るアンテナを介してプラズマに放出するイオンサイクロ
トロン周波数帯高周波加熱装置において、前記外面板の
表面および前記内面板の表面の双方にTiCコーティン
グ層を形成したことを特徴とする高周波加熱装置。
(2) The high-frequency output generated by the high-frequency oscillator is transmitted through a coaxial tube, and is transmitted to the plasma via an antenna that is attached to the tip of the coaxial tube and consists of an outer plate facing the plasma, an inner plate behind it, and a side plate. A high-frequency heating device for emitting ion cyclotron frequency bands, characterized in that a TiC coating layer is formed on both the surface of the outer plate and the surface of the inner plate.
(3)内面板表面に形成するTiCコーティング層の厚
さは、外面板表面に形成するTiCコーティング層の厚
さよりも厚くしたものである特許請求の範囲第(2)項
記載の高周波加熱装置。
(3) The high-frequency heating device according to claim (2), wherein the thickness of the TiC coating layer formed on the surface of the inner plate is greater than the thickness of the TiC coating layer formed on the surface of the outer plate.
JP62328779A 1987-12-25 1987-12-25 High frequency heating equipment Expired - Fee Related JP2509648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62328779A JP2509648B2 (en) 1987-12-25 1987-12-25 High frequency heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62328779A JP2509648B2 (en) 1987-12-25 1987-12-25 High frequency heating equipment

Publications (2)

Publication Number Publication Date
JPH01169898A true JPH01169898A (en) 1989-07-05
JP2509648B2 JP2509648B2 (en) 1996-06-26

Family

ID=18214034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62328779A Expired - Fee Related JP2509648B2 (en) 1987-12-25 1987-12-25 High frequency heating equipment

Country Status (1)

Country Link
JP (1) JP2509648B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169800A (en) * 1982-03-30 1983-10-06 株式会社東芝 Loop electromagnetic wave radiator
JPS59183693U (en) * 1983-05-25 1984-12-06 株式会社日立製作所 High frequency heating antenna
JPS628500A (en) * 1985-07-04 1987-01-16 日本原子力研究所 High frequency heating antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169800A (en) * 1982-03-30 1983-10-06 株式会社東芝 Loop electromagnetic wave radiator
JPS59183693U (en) * 1983-05-25 1984-12-06 株式会社日立製作所 High frequency heating antenna
JPS628500A (en) * 1985-07-04 1987-01-16 日本原子力研究所 High frequency heating antenna

Also Published As

Publication number Publication date
JP2509648B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
Huang et al. Development of fundamental power couplers for 166.6 MHz superconducting quarter-wave beta= 1 proof-of-principle cavities
US11393652B2 (en) Bi-metallic anode for amplitude modulated magnetron
JPH01169898A (en) High-frequency heater
US10448496B2 (en) Superconducting cavity coupler
Haimson Absorption and generation of radio-frequency power in electron linear accelerator systems
JP2892151B2 (en) Gyrotron device
US4858817A (en) Graphit-ceramic RF Faraday-thermal shield and plasma limiter
JPH0424840B2 (en)
JPH0234799Y2 (en)
Paramonov The CDS parameters for proton linac with moderate heat loading
US3319109A (en) Linear particle accelerator with collinear termination
JP2001338588A (en) Gyrotron and its manufacturing method
JPS5875738A (en) Helix type traveling-wave tube
JPS5869101A (en) Consuming device of microwave
JP2003257700A (en) High frequency accelerating device and particle beam therapeutical device
JP3516413B2 (en) High frequency heating equipment
JPS60115198A (en) Antenna for high frequency heater
JPS63197102A (en) Dc brake for high frequency heater
JPS61227399A (en) Fila deshield for high frequency heater
JPH0532960Y2 (en)
KR20210002746U (en) Charged particle accelerator
JP3382749B2 (en) Charged particle accelerator
Ohnuma Review on resonance cone fields
JPH05211405A (en) Radio wave absorbing device
RF Group Non-inductive current drive and RF heating in SST-1 tokamak

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees