JPH0234799Y2 - - Google Patents

Info

Publication number
JPH0234799Y2
JPH0234799Y2 JP10760484U JP10760484U JPH0234799Y2 JP H0234799 Y2 JPH0234799 Y2 JP H0234799Y2 JP 10760484 U JP10760484 U JP 10760484U JP 10760484 U JP10760484 U JP 10760484U JP H0234799 Y2 JPH0234799 Y2 JP H0234799Y2
Authority
JP
Japan
Prior art keywords
jacket
pipe
faraday shield
antenna
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10760484U
Other languages
Japanese (ja)
Other versions
JPS6123300U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10760484U priority Critical patent/JPS6123300U/en
Publication of JPS6123300U publication Critical patent/JPS6123300U/en
Application granted granted Critical
Publication of JPH0234799Y2 publication Critical patent/JPH0234799Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案は核融合装置のプラズマを追加熱する高
周波加熱装置に係り、特にイオンサイクロトロン
周波数帯高周波加熱装置のフアラデーシールドに
関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a high-frequency heating device for additionally heating the plasma of a nuclear fusion device, and particularly relates to a Faraday shield for an ion cyclotron frequency band high-frequency heating device.

〔考案の技術的背景とその問題点〕[Technical background of the invention and its problems]

核融合装置のプラズマ加熱は、プラズマ中に電
流を通して加熱するジユール加熱の他に第2段加
熱方法として中性粒子入射加熱法や高周波加熱法
等が採用されている。
For plasma heating in nuclear fusion devices, in addition to Joule heating, which heats the plasma by passing an electric current through it, neutral particle injection heating, high frequency heating, and the like are used as second-stage heating methods.

高周波加熱法は高周波電磁エネルギーをプラズ
マに吸収させてプラズマの温度を上げる方法で、
使用する周波数によつて各種の方式があり、その
1つにイオンサイクロトロン周波数帯(以下
ICRFと略称する)高周波加熱装置がある。
The high-frequency heating method is a method of increasing the temperature of the plasma by absorbing high-frequency electromagnetic energy into the plasma.
There are various methods depending on the frequency used, one of which is the ion cyclotron frequency band (hereinafter referred to as
There is a high frequency heating device (abbreviated as ICRF).

ICRF高周波加熱装置は第3図に示すように高
出力の100MHz帯の高周波を発生し増幅する高周
波発信器1、この高周波発信器1から発生した高
周波出力を伝送する同軸管2、この同軸管2に接
続され高周波出力をプラズマ容器3内のプラズマ
4に放出するアンテナに相当する結合系5から構
成されている。
As shown in Figure 3, the ICRF high-frequency heating device includes a high-frequency oscillator 1 that generates and amplifies high-output high-frequency waves in the 100 MHz band, a coaxial tube 2 that transmits the high-frequency output generated from the high-frequency oscillator 1, and a coaxial tube 2 that transmits the high-frequency output generated from the high-frequency oscillator 1. The coupling system 5 corresponds to an antenna that is connected to the plasma container 3 and emits high-frequency output to the plasma 4 in the plasma container 3.

結合系5にはトカマク容器3との整合性の面か
らT型リツジ導波管方式やループアンテナ方式が
あるが、ここではループアンテナ方式を対象とす
る。
The coupling system 5 includes a T-shaped rigid waveguide system and a loop antenna system from the viewpoint of compatibility with the tokamak vessel 3, but the loop antenna system will be considered here.

このループアンテナ方式の結合系5は同軸管2
の外周に設けられたフランジ6がトカマク容器3
に直接接続される。同軸管2の先端にはアンテナ
導体7が取付けられ、さらにアンテナ導体7のプ
ラズマ4側にフアラデーシールド8が装着されて
いる。フアラデーシールド8はアンテナ導体7を
流れる高周波電流のつくる磁場はプラズマ側に通
すが、アンテナ導体7を静電的にはシールドする
役目を担う。トカマク容器3は高真空であるた
め、同軸管2の外導管2aと内導管2b間はフイ
ードスルー9で真空シールされる。またフアラデ
ーシールド8には高周波損失が生じプラズマ4か
らの照射熱を合わせると、高真空下で高熱負荷を
受ける。
The coupling system 5 of this loop antenna method is a coaxial tube 2
A flange 6 provided on the outer periphery of the tokamak container 3
connected directly to. An antenna conductor 7 is attached to the tip of the coaxial tube 2, and a Faraday shield 8 is attached to the plasma 4 side of the antenna conductor 7. The Faraday shield 8 allows the magnetic field created by the high frequency current flowing through the antenna conductor 7 to pass through to the plasma side, but serves to electrostatically shield the antenna conductor 7. Since the tokamak container 3 is in a high vacuum, the space between the outer conduit 2a and the inner conduit 2b of the coaxial tube 2 is vacuum-sealed by the feedthrough 9. Further, the Faraday shield 8 suffers from high frequency loss and when combined with the irradiation heat from the plasma 4, receives a high heat load under high vacuum.

ところで核融合の研究が進みプラズマ4が高温
高密度になると共に高周波加熱装置も大容量長時
間運転になり、フアラデーシールド8の熱負荷も
100W/cm2が10秒間と極めて大きくなつてきてい
る。
By the way, as nuclear fusion research progresses and the plasma 4 becomes hotter and denser, the high-frequency heating equipment also has to operate at a higher capacity for longer periods of time, increasing the heat load on the Faraday shield 8.
100W/cm 2 for 10 seconds is becoming extremely large.

したがつて従来のフアラデーシールド8も第4
図に示すようにアンテナケーシング10の側面に
ジヤケツト11を設け、ジヤケツト11と多数本
のパイプ12を接続して冷却媒体をパイプ12内
に通して冷却するようになつている。
Therefore, the conventional Faraday Shield 8 is also
As shown in the figure, a jacket 11 is provided on the side surface of the antenna casing 10, and a plurality of pipes 12 are connected to the jacket 11 so that a cooling medium is passed through the pipes 12 for cooling.

またフアラデーシールド8のパイプ12にはプ
ラズマデイスラプシヨン時にトロイダル磁場およ
びポロイダル磁場により電磁力も働く。第5図は
この時の電磁力の作用を示すモデル図で、BT
トロイダル磁場、BPはポロイダル磁場、FTはト
ロイダル磁場BTとパイプ12に誘起された電流
Iとのあいだに働く電磁力、FPはポロイダル磁
場BPにより生じる電磁力である。したがつてパ
イプ12はFTおよびFPに対して充分な強度を有
するものにする必要がある。一方パイプ12のア
ンテナ導体7の正面側12aはプラズマ4からの
照射熱や高周波ロス等で約100W/cm2−10秒/10
分の熱負荷により温度が数百度にもなり熱膨張す
る。この熱膨張はアンテナ導体7の側面側のパイ
プ12bの変形で吸収する必要がある。
Further, electromagnetic force also acts on the pipe 12 of the Faraday shield 8 due to the toroidal magnetic field and the poloidal magnetic field during plasma disruption. Figure 5 is a model diagram showing the action of electromagnetic force at this time, where B T is a toroidal magnetic field, B P is a poloidal magnetic field, and F T is the effect between the toroidal magnetic field B T and the current I induced in the pipe 12. The electromagnetic force, F P , is the electromagnetic force generated by the poloidal magnetic field B P. Therefore, the pipe 12 needs to have sufficient strength against F T and F P. On the other hand, the front side 12a of the antenna conductor 7 of the pipe 12 is approximately 100W/cm 2 -10 seconds/10 due to irradiation heat from the plasma 4, high frequency loss, etc.
Due to the heat load, the temperature reaches several hundred degrees, causing thermal expansion. This thermal expansion needs to be absorbed by deforming the pipe 12b on the side surface of the antenna conductor 7.

変形による吸収量を大きくするにはパイプ12
bの長さを長くするか剛性を小さくする方法があ
るが、長さを長くすると電磁力FTが大きくなり
不利となる。また剛性を小さくするとFTおよび
FPに対して強度上聞題がある。したがつて従来
のようなフアラデーシールド8は装置の大容量化
長時間運転に伴う電磁力の増大や熱負荷の増大に
対処できなかつた。
To increase the amount of absorption due to deformation, pipe 12
There is a method of increasing the length of b or decreasing its rigidity, but increasing the length increases the electromagnetic force F T , which is disadvantageous. Also, if the stiffness is reduced, F T and
There are problems with the strength of F P. Therefore, the conventional Faraday shield 8 could not cope with the increase in electromagnetic force and increase in thermal load associated with increased capacity and long-term operation of the device.

〔考案の目的〕[Purpose of invention]

本考案の目的はプラズマデイスラプシヨン時に
電磁力が生じないようにすると共に高熱負荷にも
耐えるフアラデーシールドを提供することであ
る。
The purpose of the present invention is to provide a Faraday shield that prevents electromagnetic force from occurring during plasma disruption and can withstand high thermal loads.

〔考案の概要〕[Summary of the idea]

本考案によるフアラデーシールドは、結合系の
先端のアンテナケーシングの両側に取付けられる
一対のジヤケツトと、各ジヤケツトに接続されか
つ冷媒を通す多数本のパイプとで構成し、ジヤケ
ツトをセラミツクス等の絶縁物を介してアンテナ
ケーシングに固定または支持して電気的閉回路を
作らないようにし、パイプに電磁力が働かないよ
うにすると共に高熱負荷による熱膨張も容易に吸
収できるようにしたものである。
The Faraday shield according to the present invention consists of a pair of jackets attached to both sides of the antenna casing at the tip of the coupling system, and a number of pipes connected to each jacket and through which coolant passes. It is fixed or supported on the antenna casing via an object to prevent the creation of an electrical closed circuit, to prevent electromagnetic force from acting on the pipe, and to easily absorb thermal expansion due to high heat loads.

〔考案の実施例〕[Example of idea]

以下第1図を参照して本考案の一実施例につい
て説明する。なお、第3図ないし第5図と同一部
分には同一符号を付して、その詳細な説明は省略
する。
An embodiment of the present invention will be described below with reference to FIG. Note that the same parts as in FIGS. 3 to 5 are given the same reference numerals, and detailed explanation thereof will be omitted.

図において、11a,11bは一対のジヤケツ
トで、ジヤケツト11a,11bはパイプ12で
連結され、外部から供給管13で供給された冷却
媒体はジヤケツト11aに入りパイプ12を通つ
てジヤケツト11bに入り排出管14で外部に排
出される。ジヤケツト11aはアンテナケーシン
グ10に溶接またはボルト結合で電気接触するよ
うに取付けられているが、ジヤケツト11bは絶
縁物15(セラミツクス板あるいはセラミツクス
溶射等)を介して絶縁ボルト16および絶縁座金
17でアンテナケーシング10に取付けられてい
る。
In the figure, 11a and 11b are a pair of jackets, and the jackets 11a and 11b are connected by a pipe 12, and the cooling medium supplied from the outside through a supply pipe 13 enters the jacket 11a, passes through the pipe 12, enters the jacket 11b, and enters the exhaust pipe. It is discharged to the outside at 14. The jacket 11a is attached to the antenna casing 10 by welding or bolting so as to be in electrical contact with the antenna casing 10, and the jacket 11b is attached to the antenna casing with an insulating bolt 16 and an insulating washer 17 via an insulator 15 (ceramics plate, ceramic spraying, etc.). It is attached to 10.

この様に構成されたフアラデーシールド8にお
いてはジヤケツト11bとアンテナケーシング1
0が電気的に絶縁されているため、プラズマデイ
ラプシヨン時に第5図に示すような電流Iがフア
ラデーシールド8には誘起されず、トロイダル磁
場やポロイダル磁場による電磁力も生じない。し
たがつてパイプ12の断面寸法やパイプ12bの
長さに関して電磁力上の制約がなくなり、高周波
ロスやプラズマ4からの熱負荷のみを考慮すれば
よいことになる。したがつて熱負荷によるパイプ
12aの熱膨張もパイプ12b部で容易に吸収可
能となる。その結果パイプ12の応力は大幅に減
少し、パイプ12の破損および破損による冷却媒
体のリーク等の恐れもなくなり、寿命、信頼性共
に大幅に向上させる事ができる。
In the Faraday shield 8 configured in this way, the jacket 11b and the antenna casing 1
0 is electrically insulated, a current I as shown in FIG. 5 is not induced in the Faraday shield 8 during plasma degeneration, and no electromagnetic force is generated due to a toroidal magnetic field or a poloidal magnetic field. Therefore, there are no restrictions on electromagnetic force regarding the cross-sectional dimensions of the pipe 12 or the length of the pipe 12b, and only the high frequency loss and the heat load from the plasma 4 need to be considered. Therefore, thermal expansion of the pipe 12a due to thermal load can be easily absorbed by the pipe 12b. As a result, the stress on the pipe 12 is significantly reduced, and there is no fear of breakage of the pipe 12 or leakage of the cooling medium due to breakage, and the life and reliability can be greatly improved.

なお、絶縁物15および絶縁ボルト16による
固定はアンテナケーシング10の片側のみとして
おくのがよい。他方は金属同士を接続してパイプ
12の電位を固定する。
Note that it is preferable that the insulator 15 and the insulating bolt 16 be fixed to only one side of the antenna casing 10. On the other hand, the potential of the pipe 12 is fixed by connecting metals.

次に本考案の他の実施例について簡単に説明す
る。第2図は他の実施例を示すものでジヤケツト
11bを絶縁ピン18でその長さ方向に摺動可能
に支持し、かつジヤケツト11bをパイプ12数
本毎に分割したもので、これによればパイプ12
bが変形する事なく、各パイプ12aの熱膨張を
吸収できる。
Next, another embodiment of the present invention will be briefly described. Fig. 2 shows another embodiment in which the jacket 11b is supported slidably in the longitudinal direction by insulating pins 18, and the jacket 11b is divided into 12 pipes each. pipe 12
Thermal expansion of each pipe 12a can be absorbed without deformation of pipe b.

〔考案の効果〕[Effect of idea]

以上述べたように本考案によれば、フアラデー
シールドに電磁力が作用しないため熱負荷による
パイプの熱膨張の吸収が容易になり、その結果パ
イプの応力を大幅に減少させる事が可能となる。
したがつて大容量化長時間運転にも充分耐えるフ
アラデーシールドを提供できる。
As described above, according to the present invention, since no electromagnetic force acts on the Faraday shield, it becomes easier to absorb the thermal expansion of the pipe due to thermal load, and as a result, it is possible to significantly reduce the stress on the pipe. Become.
Therefore, it is possible to provide a Faraday shield that can withstand large-capacity and long-time operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例のフアラデーシールド
を示す断面図、第2図は他の実施例を示す部分斜
視図、第3図は高周波加熱装置の概略構成図、第
4図は従来のフアラデーシールドを用いた結合系
先端部の斜視図、第5図は電磁力の作用モデル図
である。 2……同軸管、5……結合系、7……アンテナ
導体、8……フアラデーシールド、10……アン
テナケーシング、11……ジヤケツト、12……
パイプ、13……供給管、14……排出管、15
……絶縁物、16……絶縁ボルト、17……絶縁
座金、18……絶縁ピン。
Fig. 1 is a sectional view showing a Faraday shield according to an embodiment of the present invention, Fig. 2 is a partial perspective view showing another embodiment, Fig. 3 is a schematic configuration diagram of a high frequency heating device, and Fig. 4 is a conventional FIG. 5 is a perspective view of the tip of the coupling system using the Faraday shield, and FIG. 5 is a model diagram of the action of electromagnetic force. 2... Coaxial tube, 5... Coupling system, 7... Antenna conductor, 8... Faraday shield, 10... Antenna casing, 11... Jacket, 12...
Pipe, 13... Supply pipe, 14... Discharge pipe, 15
... Insulator, 16 ... Insulation bolt, 17 ... Insulation washer, 18 ... Insulation pin.

Claims (1)

【実用新案登録請求の範囲】 (1) 核融合装置のイオンサイクロトロン周波数帯
高周波加熱装置の結合系の先端においてアンテ
ナ導体を支持するアンテナケーシングの側面に
絶縁体を介して取付けられ冷却媒体を供給また
は排出されるジヤケツトと、前記アンテナ導体
の前面をとおつてこのジヤケツトに取付けられ
冷却媒体の流通するパイプとを備えたことを特
徴とするフアラデーシールド。 (2) アンテナケーシングへのジヤケツトの取付け
は絶縁ピンにより、ジヤケツトは絶縁ピンの長
さ方向に摺動可能にしたことを特徴とする実用
新案登録請求の範囲第1項記載のフアラデーシ
ールド。 (3) ジヤケツトは複数個に分割したことを特徴と
する実用新案登録請求の範囲第1項記載のフア
ラデーシールド。
[Claims for Utility Model Registration] (1) A device that is attached via an insulator to the side of an antenna casing that supports an antenna conductor at the tip of a coupling system of an ion cyclotron frequency band high-frequency heating device of a nuclear fusion device and supplies or supplies a cooling medium. A Faraday shield comprising: a jacket from which the antenna conductor is discharged; and a pipe through which a cooling medium flows, which is attached to the jacket through the front surface of the antenna conductor. (2) The Faraday shield according to claim 1, wherein the jacket is attached to the antenna casing by an insulating pin, and the jacket is slidable in the length direction of the insulating pin. (3) The Faraday shield according to claim 1 of the utility model registration, characterized in that the jacket is divided into a plurality of pieces.
JP10760484U 1984-07-18 1984-07-18 Faraday Shield Granted JPS6123300U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10760484U JPS6123300U (en) 1984-07-18 1984-07-18 Faraday Shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10760484U JPS6123300U (en) 1984-07-18 1984-07-18 Faraday Shield

Publications (2)

Publication Number Publication Date
JPS6123300U JPS6123300U (en) 1986-02-12
JPH0234799Y2 true JPH0234799Y2 (en) 1990-09-19

Family

ID=30666824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10760484U Granted JPS6123300U (en) 1984-07-18 1984-07-18 Faraday Shield

Country Status (1)

Country Link
JP (1) JPS6123300U (en)

Also Published As

Publication number Publication date
JPS6123300U (en) 1986-02-12

Similar Documents

Publication Publication Date Title
JPH10116724A (en) Superconducting device
MacDonald et al. The HUSIR W-band transmitter
Ikeda et al. Initial results of electron cyclotron range of frequency (ECRF) operation and experiments in JT-60U
JPH0234799Y2 (en)
CN107919515B (en) A kind of high-field mode filter for only depositing TE0n mode
JPH0129839Y2 (en)
Haimson Absorption and generation of radio-frequency power in electron linear accelerator systems
Belomestnykh et al. Comparison of the predicted and measured loss factor of the superconducting cavity assembly for the CESR upgrade
Chen et al. The development of 1 MW ECRH system on J-TEXT
JPS6185799A (en) Faraday shield
JPS61227399A (en) Fila deshield for high frequency heater
CN116631655B (en) Megawatt steady-state high-power conical water load
CN109755084A (en) X-band bimodulus multiple-beam klystron
JP3162425B2 (en) Gyrotron oscillation device
JP2521779B2 (en) Plasma heating device
Chan et al. Engineering development of superconducting RF linac for high-power applications
JPS6276199A (en) High frequencyh heater
JPS628500A (en) High frequency heating antenna
Bosia et al. Status of ITER RF systems design
JPS63197102A (en) Dc brake for high frequency heater
JPH0532960Y2 (en)
JPS63126142A (en) Gyrotron device
JPH09199297A (en) Superconducting high frequency acceleration cavity device
JPS63193497A (en) Faraday shield
JPH0789155B2 (en) High frequency heating device