JP3516413B2 - High frequency heating equipment - Google Patents

High frequency heating equipment

Info

Publication number
JP3516413B2
JP3516413B2 JP20473494A JP20473494A JP3516413B2 JP 3516413 B2 JP3516413 B2 JP 3516413B2 JP 20473494 A JP20473494 A JP 20473494A JP 20473494 A JP20473494 A JP 20473494A JP 3516413 B2 JP3516413 B2 JP 3516413B2
Authority
JP
Japan
Prior art keywords
ceramic plate
frequency heating
diamond
sealing ring
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20473494A
Other languages
Japanese (ja)
Other versions
JPH0868882A (en
Inventor
いずみ 細貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20473494A priority Critical patent/JP3516413B2/en
Publication of JPH0868882A publication Critical patent/JPH0868882A/en
Application granted granted Critical
Publication of JP3516413B2 publication Critical patent/JP3516413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子サイクロトロン周波
数(ECRF)帯、(例えば数十GHz〜数百GHz)
の高周波の電磁波で核融合炉のプラズマの加熱生成を行
う高周波加熱装置に係り、とくに高周波の大電力伝送に
適する障壁窓の改良に関する。
BACKGROUND OF THE INVENTION The present invention relates to an electron cyclotron frequency (ECRF) band (for example, several tens GHz to several hundreds GHz).
The present invention relates to a high-frequency heating device for heating and generating plasma in a fusion reactor by high-frequency electromagnetic waves, and particularly to improvement of a barrier window suitable for high-frequency high-power transmission.

【0002】[0002]

【従来の技術】核融合炉を運転するためには炉心プラズ
マの生成加熱を必要とするが、その一手法として高周波
加熱法がある。この加熱法は高周波の電磁波エネルギー
を炉心のプラズマに入射し、プラズマの共鳴加熱や電流
駆動によってプラズマ温度を上げる方法である。
2. Description of the Related Art In order to operate a fusion reactor, it is necessary to generate and heat core plasma, and one of the methods is a high frequency heating method. This heating method is a method of injecting high-frequency electromagnetic wave energy into plasma in the core and raising the plasma temperature by resonance heating of the plasma or current driving.

【0003】この高周波加熱法を用いた加熱装置の一種
であるECRF高周波加熱装置の従来例を図3に示す。
同図に示す加熱装置は、高出力電磁波を発振するジャイ
ロトロン等の高周波発振器1と、この高周波発振器1の
出力電磁波を核融合炉2内部のプラズマ3に入射させる
ための伝送路として円形導波管4と、この円形導波管4
の途中に介挿された障壁窓5を備えている。なお、核融
合炉2および円形導波管4内は高真空に保たれている。
FIG. 3 shows a conventional example of an ECRF high frequency heating apparatus which is a kind of heating apparatus using this high frequency heating method.
The heating device shown in the figure has a high-frequency oscillator 1 such as a gyrotron that oscillates a high-power electromagnetic wave, and a circular waveguide as a transmission line for causing the output electromagnetic wave of the high-frequency oscillator 1 to enter the plasma 3 inside the fusion reactor 2. Tube 4 and this circular waveguide 4
There is a barrier window 5 inserted in the middle of. The inside of the fusion reactor 2 and the circular waveguide 4 are kept in high vacuum.

【0004】前記障壁窓5はトリチウム等の核融合反応
による生成物が外部に拡散するのを抑止するために設け
られるものであり、図4に示すように、円形導波管4の
途中に電磁波の伝搬方向9に対して直交して介挿された
セラミックス板6と、このセラミックス板6の外周面に
治金手法を用いて気密に固着され、その両端部が前記円
形導波管4に気密に固着された封着リング8と、封着リ
ング8の外周側に冷却流路を有し、円形導波管4の周囲
に突設して形成された冷却ボックス7とで構成されてい
る。
The barrier window 5 is provided in order to prevent the products of nuclear fusion reaction such as tritium from diffusing to the outside. As shown in FIG. And a ceramic plate 6 which is inserted orthogonally to the propagation direction 9 of the same, and is hermetically fixed to the outer peripheral surface of the ceramic plate 6 by a metallurgical method, and both ends thereof are hermetically sealed to the circular waveguide 4. And a cooling box 7 having a cooling flow path on the outer peripheral side of the sealing ring 8 and projecting around the circular waveguide 4.

【0005】この様な構成の障壁窓5に高周波の電磁波
を伝搬すると、セラミックス板6に誘電体損失に基づく
熱が生じる。この熱は冷却ボックス7内を流れる冷媒10
によって除熱される。すなわち、冷媒10は図示されない
冷媒供給源から冷却ボックス7に付設された供給ポート
7aに供給され、封着リング8の外周面を流れる過程で
セラミックス板6に発生した熱を除熱して、冷却ボック
ス7に付設された排出ポート7bから冷媒供給源に戻る
ようになっている。ところで、前記発熱の原因である誘
電体損失Lは下記式により表される。
When a high frequency electromagnetic wave is propagated through the barrier window 5 having such a structure, heat is generated in the ceramic plate 6 due to the dielectric loss. This heat is the refrigerant 10 flowing in the cooling box 7.
Is removed by heat. That is, the coolant 10 is supplied from a coolant supply source (not shown) to the supply port 7a attached to the cooling box 7, and removes heat generated in the ceramic plate 6 while flowing through the outer peripheral surface of the sealing ring 8 to cool the cooling box. The discharge port 7b attached to 7 returns to the coolant supply source. By the way, the dielectric loss L which is the cause of the heat generation is expressed by the following equation.

【0006】[0006]

【数1】 L=2πZP tanδfεo εr t …(1) ここで、Pは伝送電力、fは使用周波数、εo は真空中
の誘電率であり、Z,tanδ,εr ,tはそれぞれセラ
ミックス板6の特性インピーダンス、誘電体正接、誘電
率、板厚である。
## EQU1 ## L = 2πZP tanδfεo εr t (1) where P is the transmission power, f is the working frequency, εo is the permittivity in vacuum, and Z, tanδ, εr, and t are the ceramic plate 6, respectively. Characteristic impedance, dielectric tangent, dielectric constant, and plate thickness.

【0007】また誘電体正接 tanδはセラミックス板6
の絶対温度の1.96乗に比例して大きくなる。円形導波管
4内の伝送電力分布は図4中に符号12で示すようにセラ
ミックス板6の中央部6aほど大きいので、誘電体損失
による発熱密度も中央部6aほど大きくなる。
The dielectric tangent tan δ is the ceramic plate 6
It increases in proportion to the 1.96 power of the absolute temperature of. Since the transmission power distribution in the circular waveguide 4 is larger in the central portion 6a of the ceramic plate 6 as indicated by reference numeral 12 in FIG. 4, the heat generation density due to the dielectric loss is also larger in the central portion 6a.

【0008】最近では、核融合炉の定常運転化やプラズ
マ加熱の効率化の面から高周波加熱装置の大出力化や高
周波数化の傾向にあり、障壁窓5にとっては厳しい条件
になっている。
Recently, there has been a tendency toward higher output and higher frequency of the high frequency heating device in terms of steady operation of the fusion reactor and efficiency of plasma heating, and the barrier window 5 is under severe conditions.

【0009】[0009]

【発明が解決しようとする課題】大出力高周波の伝送を
円形導波管4を用いて真空中で行う場合、円形導波管4
内の浮遊電子が高周波の高電界によって加速され、この
電子がセラミックス板6の壁面を叩いて二次電子を放出
する。一般にセラミックス板6の二次電子放出係数は1
以上であるため、二次電子はなだれ現象的に増えてマル
チパクタ放電に発展し、しいては高周波伝送が不能にな
る場合がある。
When high-power high-frequency transmission is performed in a vacuum using the circular waveguide 4, the circular waveguide 4
The stray electrons inside are accelerated by the high electric field of high frequency, and the electrons hit the wall surface of the ceramic plate 6 to emit secondary electrons. Generally, the secondary electron emission coefficient of the ceramic plate 6 is 1
Because of the above, secondary electrons may increase in an avalanche phenomenon and develop into a multipactor discharge, and eventually high frequency transmission may become impossible.

【0010】また、上述した誘電体損失による発熱に対
し、十分に冷却が行われないと温度上昇に伴ない誘電体
損失Lの増加が起こり、温度上昇と誘電体損失増加の悪
循環に陥る。
Further, with respect to the heat generation due to the dielectric loss described above, if the cooling is not sufficiently performed, the dielectric loss L increases with the temperature increase, which causes a vicious cycle of the temperature increase and the dielectric loss increase.

【0011】従来の障壁窓5の冷却構造では、セラミッ
クス板6の熱伝導率が小さいため、発生した熱を冷却部
であるセラミックス板6の外周部6bまで速かに伝達で
きない。また、発熱分布は中央部6aほど大きくなるこ
とから、中央部6aと外周部6bに大きな温度差が生
じ、その結果セラミックス板6に大きな熱応力が発生し
てセラミックス板6が破損する恐れがあった。
In the conventional cooling structure of the barrier window 5, since the thermal conductivity of the ceramic plate 6 is small, the generated heat cannot be quickly transferred to the outer peripheral portion 6b of the ceramic plate 6 which is the cooling part. Further, since the heat generation distribution increases toward the central portion 6a, a large temperature difference occurs between the central portion 6a and the outer peripheral portion 6b, and as a result, a large thermal stress is generated in the ceramic plate 6 and the ceramic plate 6 may be damaged. It was

【0012】本発明は以上のような事情に鑑みてなされ
たもので、マルチパクタ放電が起きにくく、電磁波の伝
搬を良好に行う一方、冷却性能を向上させて、セラミッ
クス板の温度上昇を抑制し、または積極的にセラミック
ス板の温度を低下させ、誘電体損失を小さくしてプラズ
マ加熱効率を向上させるとともに、熱応力によるセラミ
ックス板の破損を防止し、信頼性を格段に向上させた高
周波加熱装置を提供することを目的とする。
The present invention has been made in view of the above circumstances. Multipactor discharge is unlikely to occur, electromagnetic waves are satisfactorily propagated, while cooling performance is improved to suppress the temperature rise of the ceramic plate. Alternatively, a high-frequency heating device that positively lowers the temperature of the ceramic plate to reduce the dielectric loss to improve the plasma heating efficiency and prevents damage to the ceramic plate due to thermal stress and to significantly improve reliability is provided. The purpose is to provide.

【0013】[0013]

【課題を解決するための手段】本発明は上記目的を達成
するために、セラミックス板の少なくとも片側の面に気
相合成法によりダイヤモンド被膜を形成した。また、ダ
イヤモンド被膜は伝送路内の電力分布に対応させてセラ
ミックス板の外周部に比べて中央部の膜厚を厚く形成し
た。
In order to achieve the above object, the present invention forms a diamond coating on at least one surface of a ceramic plate by a vapor phase synthesis method. Further, the diamond coating is formed thicker in the central portion than in the outer peripheral portion of the ceramic plate in accordance with the power distribution in the transmission line.

【0014】[0014]

【作用】このように構成した高周波加熱装置の障壁窓に
あっては、ダイヤモンド被膜は2次電子放出係数が1以
下であるので大出力高周波を伝送してもマルチパクタ放
電が起こらない。
In the barrier window of the high-frequency heating device constructed as described above, the diamond coating has a secondary electron emission coefficient of 1 or less, so that multipactor discharge does not occur even when a high-power high-frequency wave is transmitted.

【0015】また、ダイヤモンドは石英やアルミナ等の
セラミックスに比べて熱伝導率が約10倍であるためセラ
ミックス板で発生した熱は効率よく外周部に伝達して冷
却されるため、冷却性能が向上してセラミックス板の温
度上昇や半径方向の温度差を小さくでき、熱応力や誘電
体損失を低く抑えることができる。
Since diamond has a thermal conductivity about 10 times that of ceramics such as quartz and alumina, the heat generated in the ceramic plate is efficiently transferred to the outer peripheral portion and cooled, so that the cooling performance is improved. As a result, the temperature rise of the ceramic plate and the temperature difference in the radial direction can be reduced, and thermal stress and dielectric loss can be suppressed low.

【0016】さらに、セラミックス板の誘電体損失によ
る発熱は中央部にすすむにつれ大きくなるが、ダイヤモ
ンド被膜の膜厚を中心部ほど厚くすることで、中央部で
の熱伝導は大きくなり、中央部の高い発熱は的確に取り
除かれる。これにより、セラミックス板の半径方向の温
度差がより小さくなり、この温度差によって生じる熱応
力をより低く抑えることができる。
Further, the heat generation due to the dielectric loss of the ceramic plate increases as it goes to the central portion, but by increasing the thickness of the diamond coating toward the central portion, the heat conduction in the central portion increases, and the central portion of The high fever is properly removed. Thereby, the temperature difference in the radial direction of the ceramic plate becomes smaller, and the thermal stress caused by this temperature difference can be further suppressed.

【0017】[0017]

【実施例】以下、本発明による一実施例を図面を参照し
て説明する。図1および図2は本発明による高周波加熱
装置の障壁窓の要部構成を示すものであり、図において
4は高周波加熱装置における円形導波管を示す。この円
形導波管4の途中には、核融合反応による生成物の外部
拡散を防止する障壁窓5が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 and FIG. 2 show the main configuration of a barrier window of a high frequency heating apparatus according to the present invention, and in the figures, 4 shows a circular waveguide in the high frequency heating apparatus. A barrier window 5 is provided in the middle of the circular waveguide 4 to prevent out-diffusion of the product of the nuclear fusion reaction.

【0018】この障壁窓5は、円形導波管4の途中に円
形導波管4内を伝送する電磁波9の伝送方向に直交させ
て介挿された円板状のセラミックス板6と、このセラミ
ックス6を覆うように円形導波管4に突設して形成され
た冷却ボックス7と、セラミックス板6を導波管4に封
着する封着リング8とを備えている。
The barrier window 5 is a disk-shaped ceramic plate 6 which is inserted in the circular waveguide 4 so as to be orthogonal to the transmission direction of an electromagnetic wave 9 which propagates in the circular waveguide 4, and this ceramic. The cooling box 7 is formed so as to project from the circular waveguide 4 so as to cover 6 and the sealing ring 8 that seals the ceramic plate 6 to the waveguide 4.

【0019】セラミックス板6の少なくとも片面にはダ
イヤモンド被膜11が形成され、この膜厚は、中央部11a
ほど厚く、導波管4内の山型の電界分布12に対応してい
る。ダイヤモンド被膜11の厚さは図中では強調して書か
れているが、セラミックス板6の厚さに比べ、例えば1
/10程度と十分薄い。
A diamond coating 11 is formed on at least one surface of the ceramic plate 6, and the thickness of the diamond coating 11 is in the central portion 11a.
It is thicker and corresponds to the mountain-shaped electric field distribution 12 in the waveguide 4. Although the thickness of the diamond coating 11 is emphasized in the drawing, it is, for example, 1 compared with the thickness of the ceramic plate 6.
It is about / 10 and thin enough.

【0020】そしてセラミックス板6の外周側の所定位
置と円形導波管4の端部とが封着リング8を介して気密
に治金接合されている。封着リング8はセラミックス板
6と熱膨張係数が近いコバール等の材料から成る。この
ように接合されたセラミックス板6の外周部6bは図示
のように、封着リング8から外側に突設した状態となっ
ている。
A predetermined position on the outer peripheral side of the ceramic plate 6 and the end of the circular waveguide 4 are metal-tightly metal-bonded to each other via a sealing ring 8. The sealing ring 8 is made of a material such as Kovar having a thermal expansion coefficient close to that of the ceramic plate 6. The outer peripheral portion 6b of the ceramics plate 6 thus joined is in a state of protruding from the sealing ring 8 to the outside, as shown in the figure.

【0021】冷却ボックス7は所定容量を有する軸方向
に短い円筒状に形成され、その内部にセラミックス板6
を覆う状態で円形導波管4の端部に突設して気密に接合
されている。この冷却ボックス7の下端部及び上端部に
は図示しない冷媒供給源に接続する供給ポート7aおよ
び排出ポート7bが突設され、供給ポート7aから例え
ば液体窒素やフレオン等の冷媒10を供給し、セラミック
ス板6の外周部を流れて排出ポート7bから冷媒供給源
に戻る。
The cooling box 7 is formed in an axially short cylindrical shape having a predetermined capacity, and the ceramic plate 6 is provided therein.
Is provided so as to project from the end of the circular waveguide 4 and is hermetically joined. At the lower end and the upper end of the cooling box 7, a supply port 7a and a discharge port 7b which are connected to a coolant supply source (not shown) are provided in a protruding manner, and a coolant 10 such as liquid nitrogen or Freon is supplied from the supply port 7a. It flows through the outer peripheral portion of the plate 6 and returns from the discharge port 7b to the refrigerant supply source.

【0022】このように、セラミックス板6の側面にダ
イヤモンド被膜11を形成することにより円形導波管4
に大出力高周波を伝送してもダイヤモンド被膜11の2
次電子放出係数は1以下であるので、マルチパクタ放電
は起こらず安定した高周波伝送が実現できる。
As described above, the circular waveguide 4 is formed by forming the diamond coating 11 on the side surface of the ceramic plate 6.
Even if a high output high frequency is transmitted to the
Since the secondary electron emission coefficient is 1 or less, stable high frequency transmission can be realized without causing multipactor discharge.

【0023】一方、高周波のエネルギーは円形導波管4
を伝搬し、セラミックス板6を透過して核融合炉2のプ
ラズマ3に入射される。また、核融合炉2からの核融合
反応による生成物は障壁窓5によりシールされる。
On the other hand, the high frequency energy is the circular waveguide 4
Through the ceramic plate 6 and is incident on the plasma 3 of the fusion reactor 2. Further, the product of the fusion reaction from the fusion reactor 2 is sealed by the barrier window 5.

【0024】さらに、電磁波9によってセラミックス板
6に前記(1)式に基づく誘電体損失が発生し、その損
失は熱に変換され、この熱はセラミックス板6の外周部
6bへと伝達し、冷却媒体10で除熱される。ダイヤモン
ドの熱伝導率は石英やアルミナ等の約10倍であり、セラ
ミックス板6の表面に気相合成法でダイヤモンド被膜11
を形成したことにより、発熱が効率よく外周部6b,11
bに伝わる。例えばダイヤモンド被膜11の厚さをセラミ
ックス板6の板厚の1/10の場合でも熱伝導量は2倍に
なり、セラミックス板6の温度上昇や中央部6aと外周
部6bの温度差が1/2になる。
Furthermore, the electromagnetic wave 9 causes a dielectric loss in the ceramic plate 6 based on the above equation (1), the loss is converted into heat, and this heat is transmitted to the outer peripheral portion 6b of the ceramic plate 6 for cooling. Heat is removed by the medium 10. The thermal conductivity of diamond is about 10 times that of quartz or alumina, and the diamond film 11 is formed on the surface of the ceramic plate 6 by the vapor phase synthesis method.
By the formation of the
transmitted to b. For example, when the thickness of the diamond coating 11 is 1/10 of the thickness of the ceramic plate 6, the amount of heat conduction is doubled, and the temperature rise of the ceramic plate 6 and the temperature difference between the central portion 6a and the outer peripheral portion 6b are 1 / It becomes 2.

【0025】また、熱はセラミックス板6の中央部6a
から外周方向へ伝導し、熱の通過する断面積は円周長×
厚さである。従って、中央部6a付近では厚さを大きく
とることにより熱の通過する断面積を中央部6aと外周
部6b付近で一定にすることができ、外周部6bへの熱
伝導が効果的に行われる。気相合成法ではダイヤモンド
被膜11は一般にセラミックス板の中央部6aが厚く形成
されるため、中央部6aでより多くの熱の伝導が可能
で、全体を厚くするよりも短い工程で、熱伝達に適した
ダイヤモンド被膜形成が行える。
The heat is applied to the central portion 6a of the ceramic plate 6.
Cross-section area that conducts heat from the
Is the thickness. Therefore, by increasing the thickness in the vicinity of the central portion 6a, the cross-sectional area through which heat passes can be made constant in the vicinity of the central portion 6a and the outer peripheral portion 6b, and heat conduction to the outer peripheral portion 6b is effectively performed. . In the vapor phase synthesis method, since the diamond coating 11 is generally formed thick in the central portion 6a of the ceramic plate, more heat can be conducted in the central portion 6a, and heat transfer can be performed in a shorter step than thickening the whole. Suitable diamond film formation can be performed.

【0026】なお、ダイヤモンド被膜11はセラミックス
板6の厚みより十分薄いので、被膜を形成したことによ
る、体積増加に伴なう誘電体発熱の増加は考慮しなくて
も良い。
Since the diamond coating 11 is sufficiently thinner than the thickness of the ceramic plate 6, it is not necessary to consider the increase in dielectric heat generated by the volume increase due to the formation of the coating.

【0027】このように、冷却性能が格段に向上するの
で、セラミックス板6の温度上昇や半径方向の温度差が
小さくなり、誘電体損失や熱応力を低く抑えることがで
きる。なお、大口径の天然のダイヤモンド板の入手は不
可能であるが、気相合成法でダイヤモンド被膜を形成す
ることで、ダイヤモンド板と性能的に匹敵するセラミッ
クス板を実現できる。
Since the cooling performance is remarkably improved in this way, the temperature rise of the ceramic plate 6 and the temperature difference in the radial direction are reduced, and the dielectric loss and the thermal stress can be suppressed low. Although it is not possible to obtain a large-diameter natural diamond plate, a ceramic plate having a performance comparable to that of the diamond plate can be realized by forming the diamond film by the vapor phase synthesis method.

【0028】さらに本発明ではセラミックス板6にダイ
ヤモンド被膜11を形成したが、例えばシリコン基板に気
相合成法でダイヤモンド膜11を形成し、ふっ硝酸水でシ
リコンをエッチングしてダイヤモンド板を作る方法もあ
る。
Further, in the present invention, the diamond film 11 is formed on the ceramic plate 6, but there is also a method of forming the diamond film 11 on the silicon substrate by the vapor phase synthesis method and etching the silicon with hydrofluoric nitric acid solution to form the diamond plate. is there.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、セ
ラミックス板にダイヤモンド被膜を形成したことによ
り、冷却性能が格段に向上して、セラミックス板の温度
上昇や半径方向温度差を小さくできる。このため誘電体
損失の低減によるプラズマ加熱効率の向上あるいは熱応
力の低減によるセラミックス板の破損防止が可能になる
のみならず、マルチパクタ放電も起こさない高品質の高
周波加熱装置を提供できる。
As described above, according to the present invention, by forming the diamond coating on the ceramic plate, the cooling performance is remarkably improved, and the temperature rise of the ceramic plate and the temperature difference in the radial direction can be reduced. Therefore, not only is it possible to improve the plasma heating efficiency by reducing the dielectric loss or prevent the ceramic plate from being damaged by reducing the thermal stress, but it is possible to provide a high-quality high-frequency heating device that does not cause multipactor discharge.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る高周波加熱装置の障壁窓の一実施
例を示す断面図。
FIG. 1 is a sectional view showing an embodiment of a barrier window of a high-frequency heating device according to the present invention.

【図2】図1のA−A線に沿う断面図。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】一般的な高周波加熱装置の概略を示す構成図。FIG. 3 is a configuration diagram showing an outline of a general high-frequency heating device.

【図4】従来の高周波加熱装置の障壁窓の構成例を示す
断面図。
FIG. 4 is a cross-sectional view showing a configuration example of a barrier window of a conventional high frequency heating device.

【符号の説明】[Explanation of symbols]

4…導波管、5…障壁窓、6…セラミックス板、7…冷
却ボックス、8…封着リング、11…ダイヤモンド被膜、
12…伝送電力分布。
4 ... Waveguide, 5 ... Barrier window, 6 ... Ceramic plate, 7 ... Cooling box, 8 ... Sealing ring, 11 ... Diamond coating,
12 ... Transmission power distribution.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 核融合炉内のプラズマに高周波の電磁波
エネルギを入射するために延設された伝送路の途中に、
電磁波の伝搬方向に対して直交して介挿され、封着リン
グを介して前記伝送路に封着されたセラミックス板と、
このセラミックス板と前記封着リングの外周を覆うよう
に前記伝送路に突設して配置され、前記セラミックス板
と前記封着リングの外周側に冷却通路を形成させる冷却
ボックスとを備え、核融合反応による生成物の外部拡散
を抑止する障壁窓を備えた高周波加熱装置において、前
記セラミックス板の少なくとも片側の面にダイヤモンド
被膜を形成したことを特徴とする高周波加熱装置。
1. A transmission line extended for injecting high frequency electromagnetic wave energy into plasma in a fusion reactor,
A ceramic plate that is inserted orthogonal to the propagation direction of electromagnetic waves, and is sealed to the transmission line via a sealing ring,
A fusion box provided so as to project from the transmission path so as to cover the ceramic plate and the outer periphery of the sealing ring, and a cooling box for forming a cooling passage on the outer peripheral side of the ceramic plate and the sealing ring; A high-frequency heating device having a barrier window for suppressing outward diffusion of products by a reaction, wherein a diamond coating is formed on at least one surface of the ceramic plate.
【請求項2】 ダイヤモンド被膜は、気相合成法により
形成したことを特徴とする請求項1記載の高周波加熱装
置。
2. The high frequency heating apparatus according to claim 1 , wherein the diamond coating is formed by a vapor phase synthesis method.
【請求項3】 ダイヤモンド被膜は、伝送路内の電界分
布に対応させてセラミックス板の外周部に比べて中央部
の膜厚を厚く形成したことを特徴とする請求項1記載の
高周波加熱装置。
3. The high-frequency heating device according to claim 1, wherein the diamond coating is formed so that the thickness of the central portion of the diamond film is thicker than that of the outer peripheral portion of the ceramic plate in correspondence with the electric field distribution in the transmission line.
【請求項4】 セラミックス板は、その外周側の一部が
前記封着リングの外側に突設するよう配設したことを特
徴とする請求項1記載の高周波加熱装置。
4. The high-frequency heating device according to claim 1, wherein the ceramic plate is arranged such that a part of the outer peripheral side thereof projects outside the sealing ring.
【請求項5】 セラミックス板は、シリコン基板に気
合成法によりダイヤモンド膜を形成し、ふっ硝酸水でシ
リコンをエッチングしたダイヤモンド板であることを特
徴とする請求項1記載の高周波加熱装置。
5. A ceramic plate, a diamond film is formed by vapor-phase synthesis method on a silicon substrate, it is diamond plate silicon was etched in aqueous nitric acid Tsu Fu high-frequency heating apparatus according to claim 1, wherein.
JP20473494A 1994-08-30 1994-08-30 High frequency heating equipment Expired - Fee Related JP3516413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20473494A JP3516413B2 (en) 1994-08-30 1994-08-30 High frequency heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20473494A JP3516413B2 (en) 1994-08-30 1994-08-30 High frequency heating equipment

Publications (2)

Publication Number Publication Date
JPH0868882A JPH0868882A (en) 1996-03-12
JP3516413B2 true JP3516413B2 (en) 2004-04-05

Family

ID=16495436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20473494A Expired - Fee Related JP3516413B2 (en) 1994-08-30 1994-08-30 High frequency heating equipment

Country Status (1)

Country Link
JP (1) JP3516413B2 (en)

Also Published As

Publication number Publication date
JPH0868882A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
US3577207A (en) Microwave plasmatron
JP4670027B2 (en) Magnetron
US4523127A (en) Cyclotron resonance maser amplifier and waveguide window
US3670196A (en) Helix delay line for traveling wave devices
KR101256850B1 (en) Microwave plasma processing apparatus
JP2002050613A (en) Radial antenna and plasma processing apparatus using the same
JP3516413B2 (en) High frequency heating equipment
US3359451A (en) Beam collector structure for electron tubes having concentric longitudinally partitioned cooling annuli
JP6283797B2 (en) Plasma generator
US4996505A (en) Frequency triplicator for microwaves
US3391299A (en) High stability traveling wave tube
US2768327A (en) Wave guide output circuit for a magnetron
JPH11339997A (en) Plasma processing device
Wang et al. Stable 1 MW, third-harmonic gyro-TWT amplifier
JP2003234074A (en) Vacuum window for high-frequency and gyrotron device
JPH0656738B2 (en) Collector output for hollow beam electron tube
Thumm Recent development of high power gyrotrons and windows for EC wave applications
JP3160348B2 (en) High frequency heating device barrier window
JPH0514014A (en) High frequency power coupler
JP3981240B2 (en) Apparatus and method for generating microwave plasma
JP2570373B2 (en) Microwave discharge light source device
RU2054734C1 (en) Electron vacuum device for generation electromagnetic oscillations
JPH05304000A (en) High frequency coupler
JP2582945B2 (en) High frequency heating device barrier window
JPS62130Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

LAPS Cancellation because of no payment of annual fees