JPH01169295A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH01169295A
JPH01169295A JP62328118A JP32811887A JPH01169295A JP H01169295 A JPH01169295 A JP H01169295A JP 62328118 A JP62328118 A JP 62328118A JP 32811887 A JP32811887 A JP 32811887A JP H01169295 A JPH01169295 A JP H01169295A
Authority
JP
Japan
Prior art keywords
small diameter
diameter pipes
thin
tubes
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62328118A
Other languages
Japanese (ja)
Inventor
Kazu Igarashi
五十嵐 和
Genichi Ishibashi
源一 石橋
Masuhito Shimizu
益人 清水
Kuniaki Sato
邦昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62328118A priority Critical patent/JPH01169295A/en
Publication of JPH01169295A publication Critical patent/JPH01169295A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve the heat exchanging efficiency and miniaturize the title device by arranging small diameter pipes in a grid pattern and displacing the arrangement of the small diameter pipes in adjacent pipe groups by a half pitch. CONSTITUTION:Small diameter pipes 31 are all arranged in the A-A direction, and small diameter pipes 34 are all arranged in the B-B direction. Pipe groups so arranged are stacked in layers to form a grid pattern. Relative to the positioning of a pipe group 31A, a pipe group 31B is so positioned that its small diameter pipes 31 may be positioned nearly middle of the pitch L1 of the small diameter pipes 31 of 31A. The same is true with the pipe groups 34A and 34B. Therefore, the fluid flow contacts successively 31C 34B 31B 34 A 31A, and changes its course in a complex manner to contact all the small diameter pipes circumferentially and axially. Since the fluid stays longer in contact with the small diameter pipes as it flows at a constant speed, the heat exchanging efficiency can be significantly improve, and, because functional parts that perform the heat exchange are built in a compact form by the small pipe groups, miniaturization becomes feasible.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、伝熱管にフィンを付設することなく熱交換
効率を高めることのできる細管により構成した熱交換器
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat exchanger constructed from thin tubes that can improve heat exchange efficiency without adding fins to the heat exchanger tubes.

〔従来の技術〕[Conventional technology]

通常、加熱流体と被加熱流体との間の熱交換を行う熱交
換器においては、その熱交換効率を向上させるために、
受熱部もしくは放熱部を形成する多数の伝熱管に多数の
伝熱フィンを設けることが一般に行われている。
Usually, in a heat exchanger that exchanges heat between a heating fluid and a heated fluid, in order to improve the heat exchange efficiency,
It is common practice to provide a large number of heat transfer fins on a large number of heat transfer tubes forming a heat receiving section or a heat radiating section.

そして、このような従来の伝熱フィン付熱交換器として
は、例えば第8図に示すような板状フィンを改良した提
案(特開昭59−147995号公報)や第9図に示す
ような網状フィンを改良した提案(実開昭60−218
6号公報)等がなされている。
As such conventional heat exchangers with heat transfer fins, for example, there is a proposal (Japanese Unexamined Patent Publication No. 147995/1983) which improves plate-like fins as shown in FIG. 8, and a proposal as shown in FIG. Proposal for improving net-like fins
Publication No. 6) etc. have been made.

第8図に示したものは板状フィン11に多数のルーバ板
15を切り起こして開口部16を設け、ルーバ状に形成
し、この板状フィン11に伝熱管12を嵌挿するととも
に隣り合う板状フィン11の、流体の流れ方向Xに対し
てその前端部13同士及び後端部14同士を図示の如く
に閉じて構成したものである。
In the case shown in FIG. 8, a large number of louver plates 15 are cut and raised in a plate-like fin 11 to form an opening 16, forming a louver-like shape, and a heat exchanger tube 12 is inserted into the plate-like fin 11 and placed adjacent to each other. The front end portions 13 and rear end portions 14 of the plate-like fins 11 are closed with respect to the fluid flow direction X as shown in the figure.

また、第9図に示したものは、細線を編組して形成した
網状フィン21に伝熱管22を同図(b)に示す如く嵌
挿するとともに、隣り合う網状フィン21の、流体の流
れ方向Xに対してその前端部21a同士及びその後端部
21b同士を同図(a)に示す如く閉じて蛇行状に形成
したものである。
In addition, in the case shown in FIG. 9, heat transfer tubes 22 are inserted into net-like fins 21 formed by braiding thin wires as shown in FIG. The front end portions 21a and the rear end portions 21b are closed with respect to the X as shown in FIG.

しかし、上記第8図、第9図に示したものは、いずれも
フィンの形状が複雑で製作上、多大の工数と時間とを要
し高価な製品となるという問題があった。
However, both of the devices shown in FIGS. 8 and 9 have a problem in that the fins have a complicated shape and require a large amount of man-hours and time to manufacture, resulting in an expensive product.

そこで本発明者らは、さきに内径5.5 璽mφ、外径
が6龍φ以下の極細管熱交換器において、第5図に示す
ように流通抵抗体を細管にむしろ状に編組して性能向上
を図った装置を提案した(特開昭61−153388号
公報参照)。
Therefore, the present inventors first proposed that in an ultra-thin tube heat exchanger with an inner diameter of 5.5 mφ and an outer diameter of 6 mm or less, a flow resistor was braided into a thin tube in a rather-like shape as shown in FIG. A device with improved performance was proposed (see Japanese Patent Laid-Open No. 153388/1988).

この熱交換器は、第5図において、供給ヘッダ2と排出
へフグ3とが、多数の平面的に並列した細管1を介して
連通ずる如く構成し、さらに多数の細線からなる流通抵
抗体5を緯とし細管1を経とする如く両者をむしろ編み
状に編組して熱交換部を構成したものである。そして、
このような構成とすることによって、細管1の外側を通
過する加熱流体又は被加熱流体の流れ(矢印4で示す)
は、流通抵抗体5の抵抗によりその向きを変え、細管1
の表面に接触しつつその軸方向および周方向に沿って流
れることにより、上記流体の細管1との接触面積及び時
間を多くして熱交換効率を向上せしめる装置としたもの
である。
In this heat exchanger, as shown in FIG. 5, a supply header 2 and a discharge blower 3 communicate with each other via a large number of thin tubes 1 arranged in parallel on a plane, and a flow resistor 5 made of a large number of thin wires. The heat exchange portion is constructed by braiding the two in a rather knitted manner, with the weft being the weft and the thin tube 1 being the warp. and,
With such a configuration, the flow of the heating fluid or fluid to be heated passing through the outside of the thin tube 1 (indicated by arrow 4)
changes its direction due to the resistance of the flow resistor 5, and the thin tube 1
By flowing along the axial and circumferential directions of the fluid while contacting the surface of the fluid, the contact area and time of the fluid with the thin tube 1 are increased, thereby improving heat exchange efficiency.

また、第6図、第7図は、流体の流れ(矢印4で示す)
の抵抗を少なくして性能向上を図るために、並列した伝
熱管1を、第6図のものは格子状をなすごとく2段に、
第7図のものは各伝熱管群を独立に3段に並存せしめる
ように、伝熱管群が複数段からなる装置を提案したもの
である(特開昭61−153383号公報参照)。
In addition, Fig. 6 and Fig. 7 show the flow of fluid (indicated by arrow 4).
In order to reduce the resistance and improve performance, the heat exchanger tubes 1 are arranged in parallel, and the one shown in Fig.
The device shown in FIG. 7 proposes a device consisting of a plurality of stages of heat exchanger tube groups so that each heat exchanger tube group is arranged in three stages independently (see Japanese Patent Laid-Open No. 153383/1983).

〔発明が解決しようとする問題点] しかしながら、第5図の特開昭61−153388号に
提案した装置は、流通抵抗体の設置によって流体の流れ
が抵抗を受けることにより流体が流れにくくなって効率
が向上しないという欠点があり、また第6図、第7図の
特開昭61−153383号に提案した装置は、伝熱管
が複数段となるために装置が立体的に大型になるという
欠点があった。
[Problems to be Solved by the Invention] However, in the device proposed in JP-A-61-153388 shown in Fig. 5, the fluid flow is resisted by the installation of the flow resistor, making it difficult for the fluid to flow. The disadvantage is that the efficiency does not improve, and the device proposed in JP-A-61-153383 shown in Figures 6 and 7 has the disadvantage that the device becomes three-dimensionally large due to the multiple stages of heat transfer tubes. was there.

この発明は、このような従来の問題点にかんがみてなさ
れたものであって、複数の細管群を格子状に層成する等
により、上記問題点を解決することを目的としている。
The present invention has been made in view of these conventional problems, and aims to solve the above problems by layering a plurality of thin tube groups in a lattice shape.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、非直線状の流体の供給ヘッダ及び排出へフ
グと、平面状に多数の細管をほぼ同間隔に並列してなる
複数の細管群とを備え、且つ該細管群の一方の管端を前
記供給ヘッダに連通ずるとともに他方の管端を前記排出
ヘッダに連通してなる熱交換器であって、前記複数の細
管群はその細管の向きが一方向のものと、これに交差す
る他方向のものとが交互に層成されて格子状をなすとと
もに、前記他方向の細管群を介して隣り合う前記一方向
の細管群同士は、細管の並列ピッチが互いに約1/2ず
つずれて配設されている熱交換器としたものである。
The present invention comprises a non-linear fluid supply header and a discharge pipe, and a plurality of thin tube groups in which a large number of thin tubes are arranged in parallel at approximately the same interval in a plane, and one tube end of the thin tube group. a heat exchanger in which one end of the tube is connected to the supply header and the other end of the tube is connected to the discharge header, and the plurality of capillary tube groups include those in which the capillary tubes are oriented in one direction and those in which the tubes intersect with the other. The thin tube groups in one direction are alternately layered to form a lattice shape, and the thin tube groups in one direction are adjacent to each other through the thin tube groups in the other direction, and the parallel pitch of the thin tubes is shifted by about 1/2 from each other. This is a heat exchanger installed.

〔作用〕[Effect]

この発明は上記のような構成としたので、複数層に格子
状に層成された細管群は、極めて表面積、すなわち伝熱
面積が大きくなるとともに、この細管群を通過する流体
は複雑にその流路を変更しながら且つ細管群を構成する
すべての細管とその周方向及び軸方向に接触するため一
定流速でありながら細管との接触時間が長いため、熱交
換効率が従来に比して大きく向上し、また熱交換を行う
部分は細管群によりコンパクトに構成されているため、
小型化した装置となる。
Since the present invention has the above-described structure, the thin tube group formed in multiple layers in a lattice pattern has an extremely large surface area, that is, a heat transfer area, and the fluid passing through the thin tube group has a complicated flow. The heat exchange efficiency is greatly improved compared to conventional methods because the flow rate is constant and the contact time with the tubes is long, as the flow rate is constant and the flow rate is constant as the flow rate is changed while changing the path and contacting all the tubes that make up the tube group in the circumferential and axial directions. In addition, since the heat exchange part is compactly constructed with a group of thin tubes,
It becomes a compact device.

〔実施例〕〔Example〕

以下この発明を図面に基づいて説明する。第1図〜第4
図はこの発明の一実施例を説明する図である。
The present invention will be explained below based on the drawings. Figures 1 to 4
The figure is a diagram illustrating an embodiment of the present invention.

本実施例においては、非直線状の流体の供給ヘッダ及び
排出ヘッダとして共にL字形に形成した例について説明
する。
In this embodiment, an example in which both a non-linear fluid supply header and a discharge header are formed in an L-shape will be described.

図において、32はL字形を成す流体の供給ヘッダで長
辺32aと短辺32b及び流体の供給口32cとからな
り、33は供給ヘッダ32と対称形をなす流体の排出ヘ
ッダであって、長辺33aと短辺33b及び流体の排出
口33cとからなる。
In the figure, 32 is an L-shaped fluid supply header consisting of a long side 32a, a short side 32b, and a fluid supply port 32c, and 33 is a fluid discharge header symmetrical to the supply header 32, with a long side 32b and a fluid supply port 32c. It consists of a side 33a, a short side 33b, and a fluid outlet 33c.

そしてこの供給ヘッダ32と排出ヘッダ33とは第1図
に示す如く組付けられて四角形を形成している。
The supply header 32 and the discharge header 33 are assembled to form a rectangular shape as shown in FIG.

31A、31B、31Cは第1図のn−n断面図及びそ
の部分詳細図である第3図に示す如く、多数の細管31
がピッチL、の間隔で平面状に並列して形成された細管
群であって、それぞれ一方の管端は供給ヘッダ32の短
辺32bと連通し、他方の管端は排出ヘッダ33の短辺
33bと連通している。
31A, 31B, and 31C are a large number of thin tubes 31 as shown in FIG.
is a group of thin tubes formed in parallel in a plane at intervals of pitch L, one tube end of each tube communicates with the short side 32b of the supply header 32, and the other tube end communicates with the short side of the discharge header 33. It communicates with 33b.

34A、34Bは第1図〜第3図に示す如く、多数の細
管34がピッチL2の間隔で平面状に並列して形成され
た細管群であって、それぞれ一方の管端は供給ヘッダ3
2の長辺32aに連通し、他方の管端は排出ヘッダ33
の長辺33aに連通している。
As shown in FIGS. 1 to 3, 34A and 34B are a group of thin tubes in which a large number of thin tubes 34 are formed in parallel in a plane at intervals of a pitch L2, and one tube end of each tube is connected to the supply header 3.
2, and the other pipe end is connected to the discharge header 33.
It communicates with the long side 33a of.

また細管31はすべてA−A方向に配列され、細管34
はすべてB−B方向に配列されていて、これらより成る
細管群は、例えば31Aの下に34八が、34Aの下に
31Bが、31Bの下に34Bが、34Bの下に3IC
がそれぞれ互いに格子状をなす如く層状に配設されてい
る。
Further, all the thin tubes 31 are arranged in the A-A direction, and the thin tubes 34
are all arranged in the B-B direction, and the tube groups consisting of these are, for example, 348 under 31A, 31B under 34A, 34B under 31B, and 3IC under 34B.
are arranged in layers so as to form a lattice shape.

また、第2図、第3図に示すように、細管群31Aの配
置に対して細管群31Bは、31Bの細管31が31A
の細管31のピッチL、のほぼ中間に存在するように配
置される。これは細管群34Aと34Bとにおいても上
記と同様な関係位置に配置される。
Furthermore, as shown in FIGS. 2 and 3, in the arrangement of the capillary group 31A, the capillary group 31B has a structure in which the capillary tubes 31 of 31B are 31A.
The pitch L of the thin tubes 31 is located approximately in the middle of the pitch L of the thin tubes 31 . This is also arranged in the same relational position as above in the thin tube groups 34A and 34B.

L3は細管31と細管34との配設ピッチを示す(第3
図)。
L3 indicates the pitch between the thin tubes 31 and 34 (the third
figure).

以上の構成によって、第2図に矢印4で示した流体の流
れは、細管群31C→34B→31B→34A→31A
の順に接触しつつ通過することによって、複雑にその流
路を変更しながら、且つ上記細管群を構成するすべての
細管とその周方向及び軸方向に接触するため、一定流速
を保ちつつも多数の細管との接触時間が長いため、熱交
換効率が従来に比して大きく向上し、また熱交換を行う
要部は細管群によりコンパクトに構成されている ゛た
め、小型化可能な装置となる。
With the above configuration, the fluid flow shown by the arrow 4 in FIG. 2 is as follows:
By passing through the tubes in contact with each other in the order of Since the contact time with the thin tubes is long, the heat exchange efficiency is greatly improved compared to the conventional method, and the main part that performs heat exchange is compactly constructed with a group of thin tubes, so the device can be made smaller.

また本実施例においては、供給5ツダ及び排出ヘッダを
L字形としたが、本発明はこの形状に限定するものでは
なく、例えば半円形、半楕円形。
Further, in this embodiment, the supply head and the discharge header are L-shaped, but the present invention is not limited to this shape; for example, they may be semicircular or semielliptical.

半画形その他、非直線形であればすべて適用できるもの
である。
It can be applied to all non-linear shapes, including half-frame shapes.

なお、本実施例を次に示すような条件で行った実験結果
を以下に示す。
The results of an experiment conducted in this example under the following conditions are shown below.

流体は常温空気、細管内液体は80℃温水、細管径は外
径D=2m、内径= 1.8 amの実験条件において
、最低限必要な熱通過率(W / m・”C)として2
000W/n?・°Cを確保するためには、交差する細
管の距離(L3)÷細管径(D)=2.0〜5.0(第
4図参照)であり、且つ異方向の細管群を挟んだ上下の
同方向細管群、例えば第3図において31Aと31Bと
は、L、/2だけ図において左右方向にずれた位置に配
設することにより、伝熱効率である熱通過率を最も高め
ることができる結果を得た。
Under the experimental conditions, the fluid is air at room temperature, the liquid inside the capillary is 80℃ hot water, and the diameter of the capillary is outer diameter D = 2 m, inner diameter = 1.8 am, as the minimum required heat transfer rate (W / m・"C) 2
000W/n?・In order to ensure the temperature at °C, the distance between the intersecting thin tubes (L3) ÷ the thin tube diameter (D) = 2.0 to 5.0 (see Figure 4), and the distance between the thin tubes in different directions must be However, the upper and lower groups of thin tubes in the same direction, for example, 31A and 31B in FIG. 3, are arranged at positions shifted by L, /2 in the left-right direction in the figure to maximize the heat transfer efficiency, which is the heat passage rate. I got the results that I could.

なお、前記実施例では、細管内液体として温水を、細管
に接触させる流体を空気とした例について説明したが、
これらをそれぞれ排ガス、高温気体、高温流体、冷媒な
ど、冷却側、被冷却側のいずれにも設備及び目的に応じ
て同様に適用できることはいうまでもない。
In addition, in the above embodiment, an example was explained in which hot water was used as the liquid in the capillary and air was used as the fluid that contacted the capillary.
It goes without saying that these can be similarly applied to exhaust gas, high-temperature gas, high-temperature fluid, refrigerant, etc., either on the cooling side or on the cooled side, depending on the equipment and purpose.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る熱交換器によれば、
従来のように製作に多大の手間と費用を要するフィンを
取付けることもな(、また流通抵抗体のような流体の通
過を妨害するような障害物がないため圧力損失も小さく
、しかも熱交換効率の高い小型で安価な熱交換器を得る
ことができる。
As explained above, according to the heat exchanger according to the present invention,
There is no need to attach fins that require a lot of time and money to manufacture as in the past (and there are no obstacles such as flow resistance elements that obstruct the passage of fluid, so pressure loss is small, and heat exchange efficiency is improved. It is possible to obtain a small and inexpensive heat exchanger with high performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る実施例の斜視図、第2図は第1図
におけるn−n断面図、第3図は第2図における部分拡
大説明図、第4図は実施例の効果を示すグラフ、第5図
は細線を編組した従来例の斜視図、第6図は伝熱管群を
上下2段に使用した従来例の斜視図、第7図は伝熱管群
を3段に使用した従来例の斜視図、第8図はルーバ状フ
ィンを使用した従来例の部分断面図、第9図(a)は網
状フィンを使用した従来例の部分図、同図(b)は同図
(alのIX−IX断面図である。 2・・・・・・流体の供給ヘッダ、3・・・・・・流体
の排出ヘッダ、31.34・・・・・・細管、31A、
31B、31C,34A、34B・・・・・・細管群、
L、、L、・・・・・・ピッチ。 特許出願人  川崎製鉄株式会社 代理人 弁理士 森   哲 也 代理人 弁理士 内 藤 嘉 昭 代理人 弁理士 清 水   正 熱通過率(W/m”・C)
Fig. 1 is a perspective view of an embodiment according to the present invention, Fig. 2 is a sectional view taken along line nn in Fig. 1, Fig. 3 is a partially enlarged explanatory view of Fig. 2, and Fig. 4 shows the effects of the embodiment. Figure 5 is a perspective view of a conventional example in which thin wires are braided, Figure 6 is a perspective view of a conventional example in which heat exchanger tube groups are used in two stages, upper and lower, and Figure 7 is a perspective view in which heat exchanger tube groups are used in three stages. FIG. 8 is a partial sectional view of the conventional example using louvered fins, FIG. 9(a) is a partial view of the conventional example using mesh fins, and FIG. It is an IX-IX sectional view of al. 2...Fluid supply header, 3...Fluid discharge header, 31.34... Thin tube, 31A,
31B, 31C, 34A, 34B...tubule group,
L,,L,...Pitch. Patent Applicant Kawasaki Steel Corporation Agent Patent Attorney Tetsuya Mori Agent Patent Attorney Yoshiaki Naito Agent Patent Attorney Shimizu Positive heat transfer rate (W/m”・C)

Claims (1)

【特許請求の範囲】[Claims]  非直線状の流体の供給ヘッダ及び排出ヘッダと、平面
状に多数の細管をほぼ同間隔に並列してなる複数の細管
群とを備え、且つ該細管群の一方の管端を前記供給ヘッ
ダに連通するとともに他方の管端を前記排出ヘッダに連
通してなる熱交換器であって、前記複数の細管群はその
細管の向きが一方向のものと、これに交差する他方向の
ものとが交互に層成されて格子状をなすとともに、前記
他方向の細管群を介して隣り合う前記一方向の細管群同
士は、細管の並列ピッチが互いに約1/2ずつずれて配
設されたことを特徴とする熱交換器。
It comprises a non-linear fluid supply header and a discharge header, and a plurality of thin tube groups formed by paralleling a large number of thin tubes at approximately the same intervals in a plane, and one tube end of the thin tube group is connected to the supply header. The heat exchanger is configured such that the tubes communicate with each other and the other tube end is connected to the discharge header, and the plurality of thin tube groups have thin tubes oriented in one direction and those in the other direction that intersect therewith. The thin tube groups in one direction that are alternately layered to form a lattice shape and are adjacent to each other via the thin tube groups in the other direction are arranged such that the parallel pitch of the thin tubes is shifted by about 1/2 from each other. A heat exchanger featuring:
JP62328118A 1987-12-24 1987-12-24 Heat exchanger Pending JPH01169295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62328118A JPH01169295A (en) 1987-12-24 1987-12-24 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62328118A JPH01169295A (en) 1987-12-24 1987-12-24 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH01169295A true JPH01169295A (en) 1989-07-04

Family

ID=18206687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62328118A Pending JPH01169295A (en) 1987-12-24 1987-12-24 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH01169295A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0566073A1 (en) 1992-04-17 1993-10-20 Matsushita Electric Industrial Co., Ltd. Zoom lens assembly
EP0802383A2 (en) * 1996-04-18 1997-10-22 Sanden Corporation Multitubular heat exchanger having an appropriate tube arrangement pattern
US6802364B1 (en) * 1999-02-19 2004-10-12 Iowa State University Research Foundation, Inc. Method and means for miniaturization of binary-fluid heat and mass exchangers
JP2005337545A (en) * 2004-05-25 2005-12-08 Daikin Ind Ltd Heat exchanger
JP2005337548A (en) * 2004-05-25 2005-12-08 Daikin Ind Ltd Heat exchanger
JP2008537088A (en) * 2005-04-01 2008-09-11 フィウィヘックス・ベスローテン・フェンノートシャップ Heat exchanger and its application
US8240365B2 (en) 2006-03-23 2012-08-14 Rolls-Royce Plc Heat exchanger

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0566073A1 (en) 1992-04-17 1993-10-20 Matsushita Electric Industrial Co., Ltd. Zoom lens assembly
EP0802383A2 (en) * 1996-04-18 1997-10-22 Sanden Corporation Multitubular heat exchanger having an appropriate tube arrangement pattern
EP0802383A3 (en) * 1996-04-18 1998-10-07 Sanden Corporation Multitubular heat exchanger having an appropriate tube arrangement pattern
US6802364B1 (en) * 1999-02-19 2004-10-12 Iowa State University Research Foundation, Inc. Method and means for miniaturization of binary-fluid heat and mass exchangers
JP2005337545A (en) * 2004-05-25 2005-12-08 Daikin Ind Ltd Heat exchanger
JP2005337548A (en) * 2004-05-25 2005-12-08 Daikin Ind Ltd Heat exchanger
JP4547991B2 (en) * 2004-05-25 2010-09-22 ダイキン工業株式会社 Heat exchanger
JP2008537088A (en) * 2005-04-01 2008-09-11 フィウィヘックス・ベスローテン・フェンノートシャップ Heat exchanger and its application
US8240365B2 (en) 2006-03-23 2012-08-14 Rolls-Royce Plc Heat exchanger

Similar Documents

Publication Publication Date Title
JP6017047B2 (en) Heat exchanger, air conditioner, refrigeration cycle apparatus, and heat exchanger manufacturing method
US4285397A (en) Heat-exchangers with plate-like heat exchange elements
US4753286A (en) Heat exchanger having an exchanger element arranged in a casing
JP2020094791A5 (en)
US3991823A (en) Multi-pass heat exchanger having finned conduits of polygonal configuration in cross-section
JPH04187991A (en) Heat exchanger
JP4285438B2 (en) Thermoelectric generator
JPH01169295A (en) Heat exchanger
JPH11294973A (en) Heat exchanger of absorption water cooler/heater
JP3700481B2 (en) Heat exchanger
JP7484074B2 (en) Heat exchanger and hot water device equipped with same
JP2007505282A (en) Heat exchanger
JP2002107091A (en) Heat exchanger
US5727625A (en) Heat exchanger having fins with air conducting slits formed therein
JPH01169294A (en) Heat exchanger
JPH02213694A (en) Fin tube type heat exchanger
JPS6321494A (en) Lamination type heat exchanger
JPH03169482A (en) Manufacture of heat exchanger
JP4328411B2 (en) Heat exchanger
JPH024139A (en) Air conditioner
JPS5886390A (en) Heat exchanger incorporated with heat pipes
JPH0714753Y2 (en) Air conditioner
JP2532684B2 (en) Stacked heat exchanger
JPS63197893A (en) Layered type heat exchanger
RU2101647C1 (en) Heat exchanger