JP3700481B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP3700481B2
JP3700481B2 JP19705499A JP19705499A JP3700481B2 JP 3700481 B2 JP3700481 B2 JP 3700481B2 JP 19705499 A JP19705499 A JP 19705499A JP 19705499 A JP19705499 A JP 19705499A JP 3700481 B2 JP3700481 B2 JP 3700481B2
Authority
JP
Japan
Prior art keywords
heat
heat exchangers
heat exchanger
heat transfer
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19705499A
Other languages
Japanese (ja)
Other versions
JP2001021284A (en
Inventor
昭一 横山
治 青柳
智朗 安藤
浩一 酒井
仁 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP19705499A priority Critical patent/JP3700481B2/en
Publication of JP2001021284A publication Critical patent/JP2001021284A/en
Application granted granted Critical
Publication of JP3700481B2 publication Critical patent/JP3700481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機の室内機または室外機等に用いられる熱交換装置に関するものである。
【0002】
【従来の技術】
従来の空気調和機の室外機に用いられる熱交換装置としては特開平8−327138号公報に記載されているファンコイルユニットの構成と同様、図9に示すような構成となっているものがある。図9において1は空気調和機のファンコイルユニットで、天面から見ると略正方形で、四つの側面に沿って直線状の4列伝熱管の水・空気熱交換器2、3、4、5が配置してある。6は冷温水の入口ヘッダで、8本の枝管を経て第1の熱交換器2の第1端の内側第1列の伝熱管に接続されている。この第1の熱交換器2の内側第1列の伝熱管は他端に出て、ここで8個の90°ベンド7を経て第2の熱交換器3の内側第1列の伝熱管に接続されている。同様にして、第3の熱交換器4、第4の熱交換器5を経た8本の伝熱管は第4の熱交換器5を出た処で8個のリターンベンド8を経て180°方向転換し、第4の熱交換器5の内側第2列の伝熱管に接続される。今度は逆に第4の熱交換器5から第3の熱交換器4、第2の熱交換器3、第1の熱交換器2へと各々の伝熱管に8個の90°ベンド7を介して順に接続され、さらに同様に再びリターンベンド8を介して内側第3列へと転じ、最終的にそれぞれの熱交換器の内側第4列すなわち外側第1列を経て第1の熱交換器2の第1端に戻り冷温水出口ヘッダ9に連通する。10はファンコイルユニットの底板、11は4つの熱交換器の間隙を覆うケーシングで、12は底板10の中央に配置された軸流送風機で、プロペラの回転によって、ファンコイルユニット1内の空気を吸って、底板10の中央下部の吹出口(図示せず)からその空気を吹き出す。
【0003】
上記構成において外部の空気は4つの熱交換器2〜5のアルミフィンの隙間を通過してファンコイルユニットに次々に吸い込まれてくる。ここで熱交換器2〜5を通過する空気と、熱交換器の伝熱管を流れる冷水または温水との間でアルミフィンを介して熱交換が行なわれる。このようにして、ファンコイルユニットの外部の空気は、熱交換器2〜5を通過して冷却または加熱が行われ、次々と軸流送風機12に吸い込まれ、加圧されて、吹出口から下方へ吹出される。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の構成では熱交換器2〜5の四つ必要で、かつそれら四つの熱交換器をベンドで接続するために多大な工数が発生し、コストアップになる。また、ベンドで接続するための四隅の空間13が必要なため大きな本体容積となってしまう。また、この四隅の空間13は空気が流入しないため、風量性能の低下を招いたり、偏流により騒音を上昇させるという課題を有していた。
【0005】
本発明はこのような従来の課題を解決するものであり、空気調和機の室内機または室外機等に用いられ、熱交換器の収納性および送風特性を改善して低コストで、かつ性能を有効に活かす熱交換装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明は、機器本体内の側面に沿って二つの対称形の熱交換器を配置した熱交換器であって、二つの対称形の熱交換器は、熱交換器を構成するフィンの主平面に直交して蛇行状に連続して複数段に配置した伝熱管の冷媒流路の列数を1列もしくは複数列にするとともに伝熱管の冷媒流路の配置構成を対称形にしたものである。
【0007】
上記構成によって、機器本体、例えば空気調和機の室内機または室外機の熱交換器を二つの熱交換器で構成して容易に組み立てられ、かつ良好な送風特性が得られるとともに、それぞれの熱交換器へ冷媒を均等に流すことができ、熱交換器の性能を有効に活かすことができる。
【0008】
【発明の実施の形態】
本発明の請求項1に記載の発明は、機器本体内に、その4側面に沿って二つの対称形の略L字状の熱交換器を配置した熱交換装置であって、前記二つの熱交換器は、熱交換器を構成するフィンの主平面に直交して蛇行状に連続して複数段に配置した伝熱管の冷媒流路の列数を1列もしくは複数列にするとともに前記伝熱管の冷媒流路の配置構成を対称形にしたものである。
【0009】
また本発明の請求項2に記載の発明は、略直方体の機器本体内に、その4側面に沿って二つの対称形の略U字状の熱交換器を配置した熱交換装置であって、前記二つの熱交換器は、熱交換器を構成するフィンの主平面に直交して蛇行状に連続して複数段に配置した伝熱管の冷媒流路の列数を1列もしくは複数列にするとともに前記伝熱管の冷媒流路の配置構成を対称形にしたものである。
【0010】
これらの構成によれば、二つの対称形の略L字状または略U字状の熱交換器を機器本体内の4側面に沿って対称形に配置するだけで、熱交換器を組み立てることができるとともに、空気の流れが偏らなくなる。そして、機器本体の4側面全体に熱交換器が位置して設置面が広がって四隅に無駄な空間がなくなり、かつ熱交換器へ冷媒が均等に流れることになる。さらに、二つの熱交換器における伝熱管の冷媒流路の冷媒を対称に流すことが可能となり、風速分布、冷媒の乾き度や圧力の分布が対称となるため、局所的な熱交換量分布も対称となり、二つの熱交換器それぞれの熱交換量が等しくなり、二つの熱交換器への冷媒分流を均等にすることが出来る。
【0011】
また本発明の請求項3に記載の発明は、略直方体の機器本体内に、その3側面に沿って二つの対称形の略L字状の熱交換器を配置した熱交換装置であって、前記二つの熱交換器は、熱交換器を構成するフィンの主平面に直交して蛇行状に連続して複数段に配置した伝熱管の冷媒流路の列数を1列もしくは複数列にするとともに前記伝熱管の冷媒流路の配置構成を対称形にしたものである。
【0012】
また本発明の請求項4に記載の発明は、略直方体の機器本体内に、その相対向する2側面に沿って二つの対称形の直線状の熱交換器を配置した熱交換装置であって、前記二つの熱交換器は、熱交換器を構成するフィンの主平面に直交して蛇行状に連続して複数段に配置した伝熱管の冷媒流路の列数を1列もしくは複数列にするとともに前記伝熱管の冷媒流路の配置構成を対称形にしたものである。
【0013】
これらの構成によれば、二つの対称形の略L字状の熱交換器を機器本体内の3側面に沿って、または二つの対称形の略直線状の熱交換器を対称形に配置するだけで、熱交換器を組み立てることができるとともに、空気の流れが偏らなくなり、かつ熱交換器へ冷媒が均等に流れることになる。さらに、二つの熱交換器における伝熱管の冷媒流路の冷媒を対称に流すことが可能となり、風速分布、冷媒の乾き度や圧力の分布が対称となるため、局所的な熱交換量分布も対称となり、二つの熱交換器それぞれの熱交換量が等しくなり、二つの熱交換器への冷媒分流を均等にすることが出来る。
【0022】
【実施例】
以下本発明の実施例について図1〜図8を参照して説明する。
【0023】
(実施例1)
図1は本発明の実施例1における二つの熱交換器を用いた空気調和機の室内機または室外機を示す平面図で、図2は同じく熱交換器の配置構成を示す斜視図で、図3(a)は同じく左側の熱交換器の冷媒経路図で、図3(b)は同じく右側の熱交換器の冷媒経路図である。
【0024】
21は天面から見ると略正方形にした空気調和機の室内機または室外機としての機器本体、22は機器本体21の天面、底面のいずれか片面あるいは両面を吹出しまたは吸込みとする送風機で、本実施例では天面を吹出しにするとともに、機器本体21の中央部に配置してある。23、24は二つの対称形の略L字状の熱交換器で、23が左側の熱交換器、24が右側の熱交換器で、機器本体21の4側面の全長に沿って(4側面を囲む)対称形に配置してある。そして、これら熱交換器23、24は間隔を有して積層したアルミ製の多数のフイン23a、24aとこれに直交して蛇行状に配置した伝熱管25から構成されている。特に、熱交換器23、24は、伝熱管25の列数を1列とし、同じ冷媒流路の構成にしている。すなわち、図3(a)、図3(b)に示すように伝熱管25の列数を1列の対称形にせしめ、伝熱管段方向のほぼ中央に加熱ガス冷媒を流入する二つの入口管26、27を隣接して配置し、この二つの入口管26、27から互いに離れて行く方向へ二つの経路に分岐し、かつ出口寄りで伝熱管25を一つの経路25aとして伝熱管段方向下側に配置し、この経路25aとしての伝熱管に連通して過冷却液状態の冷媒の出口管28を一つとして伝熱管段方向下端に配置して、加熱ガス冷媒を二つの入口管より流入せしめ、この入口管から離れ二つの経路を流動しつつ冷却され二相状態の冷媒となり、更に凝縮されて液成分の多い二相状態または過冷却液状態となった冷媒を二つの経路から一つに合流させる前記伝熱管25aに流入する構成にしたものである。なお、左右の入口管26、27および出口管28への配管は二点鎖線で示すように1本の配管を分岐して行う。
【0025】
上記構成において、送風機22を運転すれば外部の空気は、機器本体21の4側面の全長に沿った熱交換器23、24と熱交換して吸引され、天面から機器本体21外に排気される。
【0026】
そして、二つの対称形の略L字状の熱交換器を機器本体内の4側面の略全長に沿って対称形に配置しているので、熱交換器の設置面が広がって四隅に無駄な空間がなくなり熱交換器23、24の通風面積を大きくして収納性(設置性)を改善するとともに、ただ二つの熱交換器23、24を用いるだけなので、安価な熱交換器を容易に組み立てることができる。また、二つの対称形の熱交換器23、24を対称形に配置しているので、送風機22による空気の流れに偏流が起きにくく、風量の低下と送風騒音の増大を抑えることができるとともに、二つの熱交換器23、24の性能がほぼ等しくなるので、それぞれの熱交換器23、24へ冷媒を均等に流すことができ、熱交換器の性能を有効に活かすことができる。
【0027】
また、対称形の略L字状の熱交換器23、24は、伝熱管25の列数を1列とし、その冷媒流路を同じ構成にしたものである。
【0028】
この構成によれば、二つの熱交換器23、24で局所的な熱交換の性能分布も対称になっているので、2つの熱交換器23、24の性能が更に等しくなり、それぞれの熱交換器23、24へ冷媒を均等に流すことができ、熱交換器の性能を更に有効に活かすことができる。
【0029】
さらに、伝熱管25の列数が1列の対称形の略L字状の熱交換器23、24は、凝縮器として動作するとき、二つの熱交換器23、24のそれぞれの冷媒流路について、過冷却液状態の冷媒の出口管28を1つとして伝熱管段方向下端に配置し、前記出口管につながる二相状態または過冷却液状態の冷媒が流動する出口寄りの伝熱管25について一つの経路25aとして伝熱管段方向下側に配置し、残りの伝熱管25の伝熱管段方向の略中央に加熱ガス冷媒が流入する二つの入口管26、27を隣接して配置し、冷媒は残りの伝熱管内を二つの入口管から離れていく方向に二つの経路で流動しつつ冷却され二相状態の冷媒となり、さらに凝縮され、液成分の多い二相状態または過冷却液状態となった冷媒を二つの経路から1つに合流させ一つの経路の出口寄りの伝熱管25aに流入する構成にしたものである。
【0030】
この構成によれば、同じ冷媒流速に対して他より冷媒の熱伝達率が低く、冷媒流通抵抗も低い乾き度の小さい二相冷媒あるいは液冷媒が流れている伝熱管の冷媒の流路数を1つにしているので、この部分の冷媒流速が速くなることにより余り冷媒流通抵抗を上昇させずに冷媒の熱伝達率を向上させることができる。したがって、熱交換器の全体の性能を大幅に向上させることができる。また最も高い温度の加熱ガス冷媒が流入する二つの流入管26、27を隣接して配置するとともに冷媒を入口管26、27から、互いにしだいに離れていくように流すので、高温冷媒が流れる伝熱管25から隣接する伝熱管25へフィン25aを介して伝熱することが余りない。更に最も低い温度の過冷却液状態の冷媒が流出する出口管28を出口方向下端に配置しているので、最も低温の冷媒が流れる出口管28へ隣接する伝熱管25からフィン25aを介して伝熱することも余りない。これら温度差のある冷媒同士がフィン25aを介して伝熱することによる熱交換の損失を低減することができる。
【0031】
(実施例2)
図4は本発明の実施例2における二つの熱交換器を用いた空気調和機の室内機または室外機を示す平面図で、二つの熱交換器を対称形の略U字状にせしめ、かつ略直方体の機器本体内の4側面の全長に沿わせて対称形に配置した点以外は、上記実施例1の発明と同じなので、同一部分には符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0032】
31は天面から見ると略直方体にした空気調和機の室内機または室外機としての機器本体、32は送風機で、機器本体31内に2個配置してある。33、34は二つの対称形の略U字状の左側と右側の熱交換器で、機器本体31の4側面の全長に沿って(4側面を囲む)対称形に配置してある。そして、これら熱交換器33、34は間隔を有して積層したアルミ製の多数のフイン(図示せず)とこれに直交して蛇行状に配置した伝熱管35から構成されている。特に、熱交換器33、34は、伝熱管35の列数を1列とし、同じ冷媒流路に構成している。
【0033】
上記構成によれば、送風機32を運転すれば外部の空気は、機器本体31の4側面の全長に沿った熱交換器33、34と熱交換して吸引され、天面から機器本体31外に排気される。
【0034】
そして、機器本体31の4側面の全長に沿って対称形に配置した熱交換器33、34は、その通風面積を大きくして収納性を改善するとともに、ただ二つの熱交換器33、34を用いるだけなので、安価な熱交換器を容易に組み立てることができる。また、二つの対称形の熱交換器33、34を対称形に配置するので、空気の流れに偏流が起きにくく、風量の低下と送風騒音の増大を抑えることができるとともに、2つの熱交換器33、34の性能がほぼ等しくなるので、それぞれの熱交換器33、34へ冷媒を均等に流すことができ、熱交換器の性能を有効に活かすことができる。
【0035】
(実施例3)
図5は本発明の実施例3における二つの熱交換器を用いた空気調和機の室内機または室外機を示す平面図で、二つの熱交換器を対称形の略L字状にせしめ、かつ略直方体の機器本体内の3側面の全長に沿わせて対称形に配置した点以外は、上記実施例1の発明と同じなので、同一部分には符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0036】
41は天面から見ると略直方体にした空気調和機の室内機または室外機としての機器本体、42は送風機で、機器本体41内に2個配置してある。43、44は二つの対称形の略L字状の左側と右側の熱交換器で、機器本体41の3側面の全長に沿って(3側面を囲む)対称形に配置してある。そして、これら熱交換器43、44は間隔を有して積層したアルミ製の多数のフイン(図示せず)とこれに直交して蛇行状に配置した伝熱管45から構成されている。特に、熱交換器43、44は、伝熱管45の列数を1列とし、同じ冷媒流路に構成している。
【0037】
上記構成によれば、送風機42を運転すれば外部の空気は、機器本体41の3側面の全長に沿った熱交換器43、44と熱交換して吸引され、天面から機器本体41外に排気される。
【0038】
そして、機器本体41の3側面の全長に沿って対称形に配置した熱交換器43、44の通風面積を大きくして収納性を改善するとともに、ただ二つの熱交換器43、44を用いるだけなので、安価な熱交換器を容易に組み立てることができる。また、二つの対称形の熱交換器43、44を対称形に配置するので、空気の流れに偏流が起きにくく、風量の低下と送風騒音の増大を抑えることができるとともに、二つの熱交換器43、44の性能がほぼ等しくなるので、それぞれの熱交換器43、44へ冷媒を均等に流すことができ、熱交換器の性能を有効に活かすことができる。
【0039】
(実施例4)
図6は本発明の実施例4における二つの熱交換器を用いた空気調和機の室内機または室外機を示す平面図、図7は同実施例4における二つの熱交換器の配置構成を示す斜視図、図8(a)は同実施例4における左側の熱交換器の冷媒経路図、図8(b)は同じく右側の熱交換器の冷媒経路図である。そして、実施例4の発明は、二つの熱交換器を対称形の略直線状にせしめ、かつ略直方体の機器本体内の相対向する長い側面の全長に沿わせて対称形に配置した点以外は、上記実施例1の発明と同じなので、同一部分には符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0040】
51は天面から見ると略直方体にした空気調和機の室内機または室外機としての機器本体、52は送風機で、機器本体51内に相対向する長い側面に沿い2個並設し、熱交換器の無い2側面の1面〜4面を吸込みまたは吹出しとする。53、54は二つの対称形の略直線状の左側と右側の熱交換器で、機器本体51の相対向する長い側面の全長に沿って対称形に配置してある。そして、これら熱交換器53、54は間隔を有して積層したアルミ製の多数のフイン53a、54aとこれに直交して蛇行状に配置した伝熱管55から構成されている。特に、熱交換器53、54は、伝熱管55の列数を2列とし、同じ冷媒流路に構成している。すなわち、図8(a)、図8(b)に示すように伝熱管55の列数を2列の対称形にせしめ、伝熱管段方向の略中央の2列の内側列に加熱ガス冷媒を流入する二つの入口管56、57を隣接して配置する。そして、二つの入口管56、57から互いに離れて行く方向へ二つの経路に分岐して伝熱管段方向の上端と下端で2列の外側列に移って再び伝熱管段方向の中央へ向かって互いに近づき略中央で合流し伝熱管55を一つの経路55aとして伝熱管段方向下側に配置する。更に、この経路55aとしての伝熱管に連通して過冷却液状態の冷媒の出口管58を一つとして伝熱管段方向下端に配置している。従って、加熱ガス冷媒を二つの入口管56、57より流入せしめ、この入口管から離れ再び戻る2つの経路を流動しつつ冷却され二相状態の冷媒となり、更に凝縮されて液成分の多い二相状態または過冷却液状態となった冷媒を二つの経路から一つに合流させる前記伝熱管55aに流入する構成にしたものである。なお、左右の入口管56、57および出口管58への配管は二点鎖線で示すように1本の配管を分岐して行う。
【0041】
上記構成において、送風機52を運転すれば外部の空気は、機器本体51の相対向する長い側面の全長に沿った熱交換器53、54と熱交換して吸引され、天面から機器本体51外に排気される。
【0042】
そして、この構成によれば熱交換器53、54の通風面積を大きくして収納性を改善するとともに、ただ二つの熱交換器53、54を用いるだけなので、安価な熱交換器を容易に組み立てることができる。また、二つの対称形の熱交換器53、54を機器本体51の相対向する長い側面の全長に沿って対称形に配置するので、空気の流れに偏流が起きにくく、風量の低下と送風騒音の増大を抑えることができるとともに、二つの熱交換器53、54の性能がほぼ等しくなるので、それぞれの熱交換器53、54へ冷媒を均等に流すことができ、熱交換器の性能を有効に活かすことができる。
【0043】
また、二つの対称形の直線状の熱交換器53、54は、伝熱管55の列数を複数列、例えば2列とし、その冷媒流路構成も二つの熱交換器53、54で対称形としたものである。従って、二つの熱交換器53、54で空気の流動方向に対する冷媒流路の配置構成も対称になっているので、二つの熱交換器53、54で局所的な熱交換の性能分布も対称になり、二つの熱交換器53、54の全体性能が更に等しくなり、それぞれの熱交換器53、54へ冷媒を均等に流すことができ、熱交換器の性能を更に有効に活かすことができる。
【0044】
更に、二つの対称形の直線状で、かつ伝熱管55の列数が2列の熱交換器53、54は、熱交換器が凝縮器として動作するとき、二つの熱交換器にそれぞれ、加熱ガス状態の冷媒が複数、例えば二つの入口管56、57から流入し、冷却され二相状態の冷媒となって凝縮が進むにしたがって冷媒を伝熱管55の外側列の中央で合流させていき、冷媒出口寄りの部分で最終的に1つの経路に合流し、過冷却液状態の冷媒となって一つの出口管58から流出する冷媒流路構成としたものである。
【0045】
この構成によれば、同じ冷媒流速に対しても冷媒流通抵抗の大きくなる乾き度の大きい二相冷媒が流れている処ほど冷媒の流路数を多くしているので、熱交換器全体の冷媒流通抵抗を余り大きくすることがないとともに、同じ冷媒流速に対して冷媒の熱伝達率が他より低い乾き度の小さい二相冷媒あるいは液冷媒が流れている伝熱管の冷媒の流路数を一つにしているので、この部分の冷媒流速が速くなることにより冷媒の熱伝達率を向上させ、熱交換器の全体の性能を向上させることができる。
【0046】
なお、上記実施例1の伝熱管を1列とした熱交換器の代わりに、実施例4の伝熱管を複数列とした熱交換器を用いても複数列の熱交換器としての同様の効果を得ることができる。また、実施例4の伝熱管を複数列とした熱交換器の代わりに、実施例1の1列の熱交換器を用いても1列の熱交換器としての同様の効果を得ることができる。更に、実施例2および実施例3において実施例1の伝熱管を1列とした熱交換器あるいは実施例4の伝熱管を複数列とした熱交換器を用いても同様の効果を得ることができる。
【0047】
【発明の効果】
上記実施例から明らかなように本発明の請求項1に記載の発明は、機器本体内に、その4側面に沿って二つの対称形の略L字状の熱交換器を配置した熱交換装置であって、前記二つの熱交換器は、熱交換器を構成するフィンの主平面に直交して蛇行状に連続して複数段に配置した伝熱管の冷媒流路の列数を1列もしくは複数列にするとともに前記伝熱管の冷媒流路の配置構成を対称形にしたものである。
【0048】
また請求項2に記載の発明は、略直方体の機器本体内に、その4側面に沿って二つの対称形の略U字状の熱交換器を配置した熱交換装置であって、前記二つの熱交換器は、熱交換器を構成するフィンの主平面に直交して蛇行状に連続して複数段に配置した伝熱管の冷媒流路の列数を1列もしくは複数列にするとともに前記伝熱管の冷媒流路の配置構成を対称形にしたものである。
【0049】
また請求項3に記載の発明は、略直方体の機器本体内に、その3側面に沿って二つの対称形の略L字状の熱交換器を配置した熱交換装置であって、前記二つの熱交換器は、熱交換器を構成するフィンの主平面に直交して蛇行状に連続して複数段に配置した伝熱管の冷媒流路の列数を1列もしくは複数列にするとともに前記伝熱管の冷媒流路の配置構成を対称形にしたものである。
【0050】
また請求項4に記載の発明は、略直方体の機器本体内に、その相対向する2側面に沿って二つの対称形の直線状の熱交換器を配置した熱交換装置であって、前記二つの熱交換器は、熱交換器を構成するフィンの主平面に直交して蛇行状に連続して複数段に配置した伝熱管の冷媒流路の列数を1列もしくは複数列にするとともに前記伝熱管の冷媒流路の配置構成を対称形にしたものである。
【0051】
上記した各発明によれば、熱交換器の通風面積を大きくして収納性を改善できるとともに、安価な熱交換器を容易に組み立てることができる。そして、空気の流れに偏流が起きにくく、風量の低下と送風騒音の増大を抑えることができるとともに、それぞれの熱交換器へ冷媒を均等に流すことができ、熱交換器の性能を有効に活かすことができる。さらに、二つの熱交換器における伝熱管の冷媒流路の冷媒を対称に流すことが可能となり、風速分布、冷媒の乾き度や圧力の分布が対称となるため、局所的な熱交換量分布も対称となり、二つの熱交換器それぞれの熱交換量が等しくなり、二つの熱交換器への冷媒分流を均等にすることが出来る。
【図面の簡単な説明】
【図1】本発明熱交換装置の実施例1における二つの熱交換器を用いた空気調和機の室外機または室内機を示す平面図
【図2】同実施例1における空気調和機の室外機または室内機の二つの熱交換器の配置構成を示す斜視図
【図3】(a)同実施例1における左側の熱交換器の冷媒経路図
(b)同実施例1における右側の熱交換器の冷媒経路図
【図4】同実施例2における二つの熱交換器を用いた空気調和機の室内機または室外機を示す平面図
【図5】同実施例3における二つの熱交換器を用いた空気調和機の室内機または室外機を示す平面図
【図6】同実施例4における二つの熱交換器を用いた空気調和機の室内機または室外機を示す平面図
【図7】同実施例4における空気調和機の室外機または室内機の二つの熱交換器の配置構成を示す斜視図
【図8】(a)同実施例4における左側の熱交換器の冷媒経路図
(b)同実施例4における右側の熱交換器の冷媒経路図
【図9】従来の熱交換器を用いたファンコイルユニットの平面図
【符号の説明】
21,31,41,51 機器本体
22,32,42,52 送風機
23,24 略L字状の熱交換器
25,35,45,55 伝熱管
26,27 入口管
28,58 出口管
33,34 略U字状の熱交換器
43,44 略L字状の熱交換器
53,54 直線状の熱交換器
55a 一つの経路
56,57 入口管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchange device used for an indoor unit or an outdoor unit of an air conditioner.
[0002]
[Prior art]
As a heat exchange device used for a conventional outdoor unit of an air conditioner, there is one having a configuration as shown in FIG. 9, similar to the configuration of the fan coil unit described in JP-A-8-327138. . In FIG. 9, reference numeral 1 denotes a fan coil unit of an air conditioner, which is substantially square when viewed from the top, and includes water / air heat exchangers 2, 3, 4, 5 of four-row heat transfer tubes that are linear along four side surfaces. It is arranged. Reference numeral 6 denotes an inlet header for cold / hot water, which is connected to a heat transfer tube in the first row inside the first end of the first heat exchanger 2 via eight branch pipes. The heat transfer tubes in the first row inside the first heat exchanger 2 go out to the other end, where they pass through the eight 90 ° bends 7 to the heat transfer tubes in the first row inside the second heat exchanger 3. It is connected. In the same manner, the eight heat transfer tubes that have passed through the third heat exchanger 4 and the fourth heat exchanger 5 pass through eight return bends 8 at the position where they have left the fourth heat exchanger 5 and are in the direction of 180 °. It is converted and connected to the heat transfer tubes in the second row inside the fourth heat exchanger 5. This time, on the contrary, eight 90 ° bends 7 are attached to each heat transfer tube from the fourth heat exchanger 5 to the third heat exchanger 4, the second heat exchanger 3, and the first heat exchanger 2. Through the return bend 8 and turn again into the inner third row, and finally through the inner fourth row or outer first row of each heat exchanger, the first heat exchanger Returning to the first end of 2, it communicates with the cold / hot water outlet header 9. 10 is a bottom plate of the fan coil unit, 11 is a casing that covers the gap between the four heat exchangers, and 12 is an axial blower disposed in the center of the bottom plate 10, and the air in the fan coil unit 1 is removed by the rotation of the propeller. The air is sucked and the air is blown out from an outlet (not shown) at the center lower portion of the bottom plate 10.
[0003]
In the above configuration, outside air passes through the gaps between the aluminum fins of the four heat exchangers 2 to 5 and is sucked into the fan coil unit one after another. Here, heat exchange is performed between the air passing through the heat exchangers 2 to 5 and cold water or hot water flowing through the heat transfer tubes of the heat exchanger via aluminum fins. In this way, the air outside the fan coil unit passes through the heat exchangers 2 to 5 and is cooled or heated, and is sucked into the axial blower 12 one after another, pressurized, and downward from the outlet. Is blown out.
[0004]
[Problems to be solved by the invention]
However, in the conventional configuration, four heat exchangers 2 to 5 are necessary, and a great number of man-hours are required to connect the four heat exchangers with a bend, resulting in an increase in cost. Moreover, since the four corner spaces 13 for connecting with a bend are required, the volume of the main body becomes large. Further, since the air does not flow into the four corner spaces 13, there is a problem in that the air flow performance is deteriorated or noise is increased due to drift.
[0005]
The present invention solves such a conventional problem, and is used for an indoor unit or an outdoor unit of an air conditioner. The storage property and the air blowing characteristics of the heat exchanger are improved, and the performance is reduced. An object is to provide a heat exchange device that can be utilized effectively.
[0006]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention is provided along the side surface in the device body.A heat exchanger in which two symmetrical heat exchangers are arranged, and the two symmetrical heat exchangers are arranged in a plurality of stages in a meandering manner perpendicular to the main plane of the fins constituting the heat exchanger. The number of rows of the refrigerant flow paths of the heat transfer tubes arranged in 1 is changed to one row or a plurality of rows and the arrangement configuration of the refrigerant flow passages of the heat transfer tubes is made symmetricalIs.
[0007]
With the above configuration, the main body of the equipment, for example, an air conditioner indoor unit or an outdoor unit heat exchanger is configured with two heat exchangers and can be easily assembled, and good air blowing characteristics can be obtained. The refrigerant can be evenly flowed to the heat exchanger, and the performance of the heat exchanger can be effectively utilized.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
  According to the first aspect of the present invention, two symmetrical substantially L-shaped heat exchangers are arranged along the four side surfaces in the apparatus main body.In the heat exchange device, the two heat exchangers have the number of rows of the refrigerant flow paths of the heat transfer tubes arranged in a plurality of stages continuously in a meandering manner perpendicular to the main plane of the fins constituting the heat exchanger. The arrangement of the refrigerant flow paths of the heat transfer tubes is made symmetrical with one or more rows.Is.
[0009]
  In the invention according to claim 2 of the present invention, two symmetrical substantially U-shaped heat exchangers are arranged along the four side surfaces in a substantially rectangular parallelepiped device body.In the heat exchange device, the two heat exchangers have the number of rows of the refrigerant flow paths of the heat transfer tubes arranged in a plurality of stages continuously in a meandering manner perpendicular to the main plane of the fins constituting the heat exchanger. The arrangement of the refrigerant flow paths of the heat transfer tubes is made symmetrical with one or more rows.Is.
[0010]
  According to these configurations, the heat exchanger can be assembled only by arranging two symmetrical substantially L-shaped or substantially U-shaped heat exchangers symmetrically along the four side surfaces in the apparatus body. This is possible and the air flow is not uneven. In addition, the heat exchanger is located on the entire four side surfaces of the device body, the installation surface spreads, there is no useless space at the four corners, and the refrigerant flows evenly to the heat exchanger.The Furthermore, it becomes possible to flow the refrigerant in the refrigerant flow path of the heat transfer tubes in the two heat exchangers symmetrically, and the wind speed distribution, the dryness of the refrigerant and the pressure distribution are symmetric, so the local heat exchange amount distribution is also It becomes symmetrical, the heat exchange amount of each of the two heat exchangers becomes equal, and the refrigerant distribution to the two heat exchangers can be made uniform.The
[0011]
  In the invention according to claim 3 of the present invention, two symmetrical substantially L-shaped heat exchangers are arranged along the three side surfaces in a substantially rectangular parallelepiped device body.In the heat exchange device, the two heat exchangers have the number of rows of the refrigerant flow paths of the heat transfer tubes arranged in a plurality of stages continuously in a meandering manner perpendicular to the main plane of the fins constituting the heat exchanger. The arrangement of the refrigerant flow paths of the heat transfer tubes is made symmetrical with one or more rows.Is.
[0012]
  In the invention according to claim 4 of the present invention, two symmetrical linear heat exchangers are arranged along two opposing side surfaces in a substantially rectangular parallelepiped device body.In the heat exchange device, the two heat exchangers have the number of rows of the refrigerant flow paths of the heat transfer tubes arranged in a plurality of stages continuously in a meandering manner perpendicular to the main plane of the fins constituting the heat exchanger. The arrangement of the refrigerant flow paths of the heat transfer tubes is made symmetrical with one or more rows.Is.
[0013]
  According to these configurations, two symmetrical substantially L-shaped heat exchangers are arranged along three side surfaces in the apparatus main body, or two symmetrical substantially linear heat exchangers are arranged symmetrically. As a result, the heat exchanger can be assembled, the air flow is not uneven, and the refrigerant flows evenly to the heat exchanger.The Furthermore, it becomes possible to flow the refrigerant in the refrigerant flow path of the heat transfer tubes in the two heat exchangers symmetrically, and the wind speed distribution, the dryness of the refrigerant and the pressure distribution are symmetric, so the local heat exchange amount distribution is also It becomes symmetrical, the heat exchange amount of each of the two heat exchangers becomes equal, and the refrigerant distribution to the two heat exchangers can be made uniform.The
[0022]
【Example】
Embodiments of the present invention will be described below with reference to FIGS.
[0023]
  Example 1
  FIG. 1 is a plan view showing an indoor unit or an outdoor unit of an air conditioner using two heat exchangers in Example 1 of the present invention, and FIG. 2 is a perspective view showing the arrangement of the heat exchangers. 3 (a) is the refrigerant path diagram of the left heat exchanger, and FIG. 3 (b) is the refrigerant path diagram of the right heat exchanger.is there.
[0024]
21 is a device body as an indoor unit or an outdoor unit of an air conditioner that is substantially square when viewed from the top surface, 22 is a blower that blows or sucks either one or both sides of the top surface or bottom surface of the device body 21, In the present embodiment, the top surface is blown out and is arranged at the center of the device main body 21. 23 and 24 are two symmetrical substantially L-shaped heat exchangers, 23 is a heat exchanger on the left side, 24 is a heat exchanger on the right side, and runs along the entire length of the four side surfaces of the device body 21 (four side surfaces). It is arranged symmetrically. The heat exchangers 23 and 24 are composed of a large number of aluminum fins 23a and 24a stacked at intervals, and heat transfer tubes 25 arranged in a meandering manner perpendicular to the fins 23a and 24a. In particular, in the heat exchangers 23 and 24, the number of rows of the heat transfer tubes 25 is one, and the same refrigerant flow path is used. That is, as shown in FIGS. 3 (a) and 3 (b), two inlet pipes in which the number of rows of the heat transfer tubes 25 is made symmetrical to one row and the heated gas refrigerant flows into the approximate center of the heat transfer tube stage direction. 26, 27 are arranged adjacent to each other, branch off into two paths in a direction away from the two inlet pipes 26, 27, and the heat transfer pipe 25 is provided as one path 25a near the outlet, and the lower direction of the heat transfer pipe. The refrigerant outlet pipe 28 in the supercooled liquid state is connected to the heat transfer pipe as the path 25a and arranged at the lower end in the heat transfer pipe stage direction so that the heated gas refrigerant flows from the two inlet pipes. The refrigerant that has been cooled and flowing in two paths away from the inlet pipe to become a two-phase refrigerant, and further condensed into a two-phase or supercooled liquid state with a large amount of liquid components, is one from the two paths. To flow into the heat transfer tube 25a to be joined It is intended. Note that piping to the left and right inlet pipes 26 and 27 and the outlet pipe 28 is performed by branching one pipe as shown by a two-dot chain line.
[0025]
In the above configuration, when the blower 22 is operated, external air is sucked by exchanging heat with the heat exchangers 23 and 24 along the entire length of the four side surfaces of the device main body 21 and exhausted from the top surface to the outside of the device main body 21. The
[0026]
And since two symmetrical substantially L-shaped heat exchangers are arranged symmetrically along substantially the entire length of the four side surfaces in the apparatus body, the installation surface of the heat exchanger spreads and is wasted at the four corners. Since there is no space and the ventilation area of the heat exchangers 23 and 24 is increased to improve storage (installability) and only two heat exchangers 23 and 24 are used, an inexpensive heat exchanger is easily assembled. be able to. In addition, since the two symmetrical heat exchangers 23 and 24 are arranged symmetrically, it is difficult for drift to occur in the air flow by the blower 22, and it is possible to suppress a decrease in air volume and an increase in blowing noise, Since the performances of the two heat exchangers 23 and 24 are substantially equal, the refrigerant can be evenly flowed to the respective heat exchangers 23 and 24, and the performance of the heat exchanger can be effectively utilized.
[0027]
The symmetrical substantially L-shaped heat exchangers 23 and 24 are configured such that the number of rows of the heat transfer tubes 25 is one and the refrigerant flow paths have the same configuration.
[0028]
According to this configuration, the performance distribution of the local heat exchange between the two heat exchangers 23 and 24 is also symmetric, so that the performance of the two heat exchangers 23 and 24 is further equal, and each heat exchange Thus, the refrigerant can be evenly flowed to the chambers 23 and 24, and the performance of the heat exchanger can be utilized more effectively.
[0029]
Furthermore, the symmetrical substantially L-shaped heat exchangers 23 and 24 having one row of the heat transfer tubes 25 operate as a condenser, and the refrigerant flow paths of the two heat exchangers 23 and 24 are respectively A single outlet pipe 28 for the refrigerant in the supercooled liquid state is disposed at the lower end in the heat transfer tube stage direction, and the heat transfer pipe 25 near the outlet where the refrigerant in the two-phase state or the supercooled liquid state connected to the outlet pipe flows. Two passages 25a are arranged on the lower side in the heat transfer tube stage direction, and two inlet pipes 26 and 27 into which the heated gas refrigerant flows are arranged adjacent to each other in the approximate center of the remaining heat transfer pipe 25 in the heat transfer tube stage direction. The remaining heat transfer pipe is cooled in two directions in the direction away from the two inlet pipes and cooled to become a two-phase refrigerant, and further condensed to a two-phase state or a supercooled liquid state with many liquid components. Combined refrigerants from two paths into one It is configured to flow into the heat transfer tube 25a near the exit of the path.
[0030]
According to this configuration, the number of refrigerant flow paths of the heat transfer tube in which the two-phase refrigerant or liquid refrigerant is flowing with a low dryness and a low refrigerant flow resistance and a low refrigerant flow resistance for the same refrigerant flow rate. Since one is used, the flow rate of the refrigerant in this portion is increased, so that the heat transfer coefficient of the refrigerant can be improved without increasing the refrigerant flow resistance. Therefore, the overall performance of the heat exchanger can be greatly improved. In addition, the two inflow pipes 26 and 27 into which the heated gas refrigerant having the highest temperature flows are arranged adjacent to each other and the refrigerant is made to flow gradually away from the inlet pipes 26 and 27, so that the high temperature refrigerant flows. There is not much that heat is transferred from the heat tube 25 to the adjacent heat transfer tube 25 via the fins 25a. Further, since the outlet pipe 28 through which the refrigerant in the supercooled liquid state at the lowest temperature flows out is arranged at the lower end in the outlet direction, the refrigerant is transferred from the heat transfer pipe 25 adjacent to the outlet pipe 28 through which the coldest refrigerant flows through the fins 25a. There is not much heat. It is possible to reduce heat exchange loss due to heat transfer between the refrigerants having these temperature differences through the fins 25a.
[0031]
  (Example 2)
  FIG. 4 is a plan view showing an indoor unit or an outdoor unit of an air conditioner using two heat exchangers according to Embodiment 2 of the present invention, in which the two heat exchangers are made symmetrical U-shaped, and Except for the symmetrical arrangement along the entire length of the four side surfaces in the substantially rectangular parallelepiped device body, the same parts as those in the invention of the first embodiment, the same parts are denoted by the same reference numerals, and detailed description thereof is omitted. Explanation focusing on different partsTo do.
[0032]
31 is an apparatus main body as an indoor unit or outdoor unit of an air conditioner that is a substantially rectangular parallelepiped when viewed from the top, and 32 is a blower, and two are arranged in the apparatus main body 31. Reference numerals 33 and 34 denote two symmetrical substantially U-shaped left and right heat exchangers which are arranged symmetrically along the entire length of the four side surfaces of the device body 31 (enclose the four side surfaces). These heat exchangers 33 and 34 are composed of a number of aluminum fins (not shown) stacked at intervals and a heat transfer tube 35 arranged in a meandering manner perpendicular to the fins. In particular, the heat exchangers 33 and 34 are configured in the same refrigerant flow path with one row of heat transfer tubes 35.
[0033]
According to the above configuration, when the blower 32 is operated, external air is sucked by exchanging heat with the heat exchangers 33 and 34 along the entire length of the four side surfaces of the device main body 31, and from the top surface to the outside of the device main body 31. Exhausted.
[0034]
The heat exchangers 33 and 34 arranged symmetrically along the entire length of the four side surfaces of the device body 31 increase the ventilation area to improve the storage property, and only two heat exchangers 33 and 34 are provided. Since it is only used, an inexpensive heat exchanger can be easily assembled. Moreover, since the two symmetrical heat exchangers 33 and 34 are arranged symmetrically, it is difficult for the air flow to drift, and it is possible to suppress the decrease in the air volume and the increase in the blowing noise, and the two heat exchangers. Since the performance of 33 and 34 becomes substantially equal, a refrigerant can be evenly flowed to each heat exchanger 33 and 34, and the performance of a heat exchanger can be used effectively.
[0035]
  (Example 3)
  FIG. 5 is a plan view showing an indoor unit or an outdoor unit of an air conditioner using two heat exchangers according to Embodiment 3 of the present invention, in which the two heat exchangers are made symmetrical L-shaped, and Except for the symmetrical arrangement along the entire length of the three side surfaces of the substantially rectangular parallelepiped device main body, the same parts as those of the first embodiment, the same parts are denoted by the same reference numerals, and detailed description thereof is omitted. Explanation focusing on different partsTo do.
[0036]
41 is a device body as an indoor unit or an outdoor unit of an air conditioner that is a substantially rectangular parallelepiped when viewed from the top surface, and 42 is a blower, and two are arranged in the device body 41. Reference numerals 43 and 44 denote two symmetrical substantially L-shaped left and right heat exchangers which are arranged symmetrically along the entire length of the three side surfaces of the device body 41 (enclose the three side surfaces). The heat exchangers 43 and 44 are composed of a number of aluminum fins (not shown) stacked at intervals and a heat transfer tube 45 arranged in a meandering manner perpendicular to the fins. In particular, the heat exchangers 43 and 44 are configured in the same refrigerant flow path with one row of the heat transfer tubes 45.
[0037]
According to the above configuration, if the blower 42 is operated, the external air is sucked by exchanging heat with the heat exchangers 43 and 44 along the entire length of the three side surfaces of the device main body 41, and from the top surface to the outside of the device main body 41. Exhausted.
[0038]
And the ventilation area of the heat exchangers 43 and 44 arranged symmetrically along the entire length of the three side surfaces of the device main body 41 is increased to improve the storage property, and only two heat exchangers 43 and 44 are used. Therefore, an inexpensive heat exchanger can be easily assembled. In addition, since the two symmetrical heat exchangers 43 and 44 are arranged symmetrically, it is difficult for the air flow to drift, the reduction of the air volume and the increase of the blowing noise can be suppressed, and the two heat exchangers Since the performance of 43 and 44 becomes substantially equal, the refrigerant can be evenly flowed to each of the heat exchangers 43 and 44, and the performance of the heat exchanger can be effectively utilized.
[0039]
  Example 4
  FIG. 6 is a plan view showing an indoor unit or an outdoor unit of an air conditioner using two heat exchangers in Example 4 of the present invention, and FIG. 7 shows an arrangement configuration of the two heat exchangers in Example 4. 8A is a refrigerant path diagram of the left heat exchanger in the fourth embodiment, and FIG. 8B is a refrigerant path diagram of the right heat exchanger. And the invention of Example 4 is that the two heat exchangers are symmetrically arranged in a straight line, and are arranged symmetrically along the entire length of the opposing long side surfaces in the substantially rectangular parallelepiped device body. Since this is the same as the invention of the first embodiment, the same parts are denoted by the same reference numerals, detailed description thereof is omitted, and different parts are mainly described.To do.
[0040]
51 is a device body as an indoor unit or outdoor unit of an air conditioner that is a substantially rectangular parallelepiped when viewed from the top surface, 52 is a blower, and two units are arranged side by side along opposite long sides in the device body 51 for heat exchange. 1 side to 4 sides of two side surfaces without a vessel are suctioned or blown out. Reference numerals 53 and 54 denote two symmetrical substantially linear left and right heat exchangers, which are arranged symmetrically along the entire length of the opposing long side surfaces of the device body 51. The heat exchangers 53 and 54 are composed of a large number of aluminum fins 53a and 54a stacked at intervals, and heat transfer tubes 55 arranged in a meandering manner perpendicular to the fins 53a and 54a. In particular, the heat exchangers 53 and 54 have two heat transfer tubes 55 arranged in the same refrigerant flow path. That is, as shown in FIGS. 8 (a) and 8 (b), the number of rows of the heat transfer tubes 55 is made to be two symmetrical, and the heated gas refrigerant is placed in the inner rows of the two rows at approximately the center in the heat transfer tube stage direction. Two inlet pipes 56 and 57 which flow in are arranged adjacent to each other. And it branches into two paths in the direction away from each other from the two inlet pipes 56, 57, moves to the outer row of two rows at the upper end and the lower end in the heat transfer tube step direction, and again toward the center in the heat transfer tube step direction They are close to each other and merge at substantially the center, and the heat transfer tube 55 is arranged as one path 55a on the lower side in the heat transfer tube step direction. Further, a refrigerant outlet pipe 58 in a supercooled liquid state is connected to the heat transfer pipe as the path 55a, and is arranged at the lower end in the heat transfer pipe stage direction. Accordingly, the heated gas refrigerant is introduced through the two inlet pipes 56 and 57, and is cooled while flowing through the two paths away from the inlet pipe and returning again to become a two-phase refrigerant. The refrigerant in the state or the supercooled liquid state is configured to flow into the heat transfer tube 55a that joins the refrigerant from two paths into one. Note that piping to the left and right inlet pipes 56 and 57 and the outlet pipe 58 is performed by branching one pipe as shown by a two-dot chain line.
[0041]
In the above configuration, when the blower 52 is operated, the outside air is sucked by exchanging heat with the heat exchangers 53 and 54 along the entire length of the opposing long side surfaces of the device main body 51, and from the top surface to the outside of the device main body 51. Exhausted.
[0042]
And according to this structure, while the ventilation area of the heat exchangers 53 and 54 is enlarged and storage property is improved, since only two heat exchangers 53 and 54 are used, an inexpensive heat exchanger is easily assembled. be able to. Further, since the two symmetrical heat exchangers 53 and 54 are arranged symmetrically along the entire length of the opposing long side surfaces of the device main body 51, it is difficult for the air flow to drift, the air volume is reduced, and the blowing noise Since the performance of the two heat exchangers 53 and 54 is almost equal, the refrigerant can be evenly flowed to each of the heat exchangers 53 and 54, and the performance of the heat exchanger is effective. You can make use of it.
[0043]
The two symmetrical linear heat exchangers 53 and 54 have a plurality of heat transfer tubes 55, for example, two rows, and the refrigerant flow path is symmetrical with the two heat exchangers 53 and 54. It is what. Accordingly, since the arrangement of the refrigerant flow paths with respect to the air flow direction is symmetric in the two heat exchangers 53 and 54, the local heat exchange performance distribution is also symmetric in the two heat exchangers 53 and 54. Thus, the overall performance of the two heat exchangers 53 and 54 is further equal, and the refrigerant can be evenly flowed to the respective heat exchangers 53 and 54, so that the performance of the heat exchanger can be utilized more effectively.
[0044]
Furthermore, the heat exchangers 53 and 54 having two symmetric straight lines and two rows of the heat transfer tubes 55 are respectively heated when the heat exchanger operates as a condenser. As the refrigerant in the gas state flows in from a plurality of, for example, two inlet pipes 56 and 57, is cooled and becomes a two-phase refrigerant, and the condensation proceeds, the refrigerant is joined at the center of the outer row of the heat transfer tubes 55, A refrigerant flow path configuration is formed in which a portion close to the refrigerant outlet finally joins one path and becomes a refrigerant in a supercooled liquid state and flows out from one outlet pipe 58.
[0045]
According to this configuration, the number of refrigerant flow paths is increased as the two-phase refrigerant having a high degree of dryness that has a large refrigerant flow resistance at the same refrigerant flow rate. The flow resistance is not increased too much, and the number of refrigerant flow paths in the heat transfer tube in which the two-phase refrigerant or liquid refrigerant with low dryness is low for the same refrigerant flow rate is lower than the others. Therefore, the refrigerant flow rate at this portion is increased, so that the heat transfer coefficient of the refrigerant can be improved and the overall performance of the heat exchanger can be improved.
[0046]
In addition, even if it uses the heat exchanger which made the heat exchanger tube of Example 4 a plurality of rows instead of the heat exchanger made the heat exchanger tube of Example 1 in one row, the same effect as a heat exchanger of a plurality of rows is used. Can be obtained. Moreover, even if it uses the heat exchanger of 1 row of Example 1 instead of the heat exchanger which used the heat exchanger tube of Example 4 in multiple rows, the same effect as a 1 row heat exchanger can be acquired. . Further, in Example 2 and Example 3, the same effect can be obtained by using a heat exchanger in which the heat transfer tubes of Example 1 are arranged in one row or a heat exchanger in which the heat transfer tubes of Example 4 are arranged in multiple rows. it can.
[0047]
【The invention's effect】
  As is apparent from the above embodiment, the invention described in claim 1 of the present invention has two symmetrical substantially L-shaped heat exchangers arranged along the four side surfaces in the apparatus main body.In the heat exchange device, the two heat exchangers have the number of rows of the refrigerant flow paths of the heat transfer tubes arranged in a plurality of stages continuously in a meandering manner perpendicular to the main plane of the fins constituting the heat exchanger. The arrangement of the refrigerant flow paths of the heat transfer tubes is made symmetrical with one or more rows.Is.
[0048]
  In the invention according to claim 2, two symmetrical substantially U-shaped heat exchangers are arranged along the four side surfaces in a substantially rectangular parallelepiped device body.In the heat exchange device, the two heat exchangers have the number of rows of the refrigerant flow paths of the heat transfer tubes arranged in a plurality of stages continuously in a meandering manner perpendicular to the main plane of the fins constituting the heat exchanger. The arrangement of the refrigerant flow paths of the heat transfer tubes is made symmetrical with one or more rows.Is.
[0049]
  In the invention according to claim 3, two symmetrical substantially L-shaped heat exchangers are arranged along the three side surfaces in a substantially rectangular parallelepiped device body.In the heat exchange device, the two heat exchangers have the number of rows of the refrigerant flow paths of the heat transfer tubes arranged in a plurality of stages continuously in a meandering manner perpendicular to the main plane of the fins constituting the heat exchanger. The arrangement of the refrigerant flow paths of the heat transfer tubes is made symmetrical with one or more rows.Is.
[0050]
  Further, in the invention according to claim 4, two symmetrical linear heat exchangers are arranged in the substantially rectangular parallelepiped device body along two opposite side surfaces.In the heat exchange device, the two heat exchangers have the number of rows of the refrigerant flow paths of the heat transfer tubes arranged in a plurality of stages continuously in a meandering manner perpendicular to the main plane of the fins constituting the heat exchanger. The arrangement of the refrigerant flow paths of the heat transfer tubes is made symmetrical with one or more rows.Is.
[0051]
  According to each above-mentioned invention, while being able to enlarge the ventilation area of a heat exchanger and improving storage property, an inexpensive heat exchanger can be assembled easily. In addition, it is difficult for uneven flow to occur in the air flow, and it is possible to suppress a decrease in the air volume and increase in blowing noise, and it is possible to evenly flow the refrigerant to each heat exchanger, thereby effectively utilizing the performance of the heat exchanger. It is possibleThe Furthermore, it becomes possible to flow the refrigerant in the refrigerant flow path of the heat transfer tubes in the two heat exchangers symmetrically, and the wind speed distribution, the dryness of the refrigerant and the pressure distribution are symmetric, so the local heat exchange amount distribution is also It becomes symmetrical, the heat exchange amount of each of the two heat exchangers becomes equal, and the refrigerant distribution to the two heat exchangers can be made uniform.The
[Brief description of the drawings]
FIG. 1 is a plan view showing an outdoor unit or an indoor unit of an air conditioner using two heat exchangers in Embodiment 1 of the heat exchange apparatus of the present invention.
FIG. 2 is a perspective view showing an arrangement configuration of two heat exchangers of the outdoor unit or the indoor unit of the air conditioner in the first embodiment.
3A is a refrigerant path diagram of the left heat exchanger in Embodiment 1. FIG.
(B) Refrigerant route diagram of the right heat exchanger in Example 1
4 is a plan view showing an indoor unit or an outdoor unit of an air conditioner using two heat exchangers in Example 2. FIG.
FIG. 5 is a plan view showing an indoor unit or an outdoor unit of an air conditioner using two heat exchangers in the third embodiment.
6 is a plan view showing an indoor unit or an outdoor unit of an air conditioner using two heat exchangers in Example 4. FIG.
7 is a perspective view showing an arrangement configuration of two heat exchangers of an outdoor unit or an indoor unit of an air conditioner in Example 4. FIG.
FIG. 8A is a refrigerant path diagram of the left heat exchanger in the fourth embodiment.
(B) Refrigerant route diagram of right heat exchanger in Example 4
FIG. 9 is a plan view of a fan coil unit using a conventional heat exchanger.
[Explanation of symbols]
21, 31, 41, 51 Device body
22, 32, 42, 52
23, 24 Heat exchanger with a substantially L-shape
25, 35, 45, 55 Heat transfer tube
26, 27 inlet pipe
28,58 outlet pipe
33, 34 U-shaped heat exchanger
43, 44 Heat exchanger with a substantially L-shape
53,54 Linear heat exchanger
55a one route
56,57 inlet pipe

Claims (4)

機器本体内に、その4側面に沿って二つの対称形の略L字状の熱交換器を配置した熱交換装置であって、前記二つの熱交換器は、熱交換器を構成するフィンの主平面に直交して蛇行状に連続して複数段に配置した伝熱管の冷媒流路の列数を1列もしくは複数列にするとともに前記伝熱管の冷媒流路の配置構成を対称形にしたことを特徴とする熱交換装置。A heat exchanging device in which two symmetrical substantially L-shaped heat exchangers are arranged along the four side surfaces in an apparatus body , wherein the two heat exchangers are fins constituting the heat exchanger. The number of rows of the refrigerant flow paths of the heat transfer tubes arranged in a plurality of stages in a meandering manner perpendicular to the main plane is set to one row or a plurality of rows, and the arrangement configuration of the refrigerant flow channels of the heat transfer tubes is made symmetrical. A heat exchange device characterized by that . 略直方体の機器本体内に、その4側面に沿って二つの対称形の略U字状の熱交換器を配置した熱交換装置であって、前記二つの熱交換器は、熱交換器を構成するフィンの主平面に直交して蛇行状に連続して複数段に配置した伝熱管の冷媒流路の列数を1列もしくは複数列にするとともに前記伝熱管の冷媒流路の配置構成を対称形にしたことを特徴とする熱交換装置。A heat exchange device in which two symmetrical substantially U-shaped heat exchangers are arranged along the four side surfaces in a substantially rectangular parallelepiped device body, and the two heat exchangers constitute a heat exchanger. The number of the refrigerant flow paths of the heat transfer tubes arranged in a plurality of stages in a meandering manner perpendicular to the main plane of the fins to be arranged is one or a plurality of rows and the arrangement of the refrigerant flow paths of the heat transfer tubes is symmetric A heat exchange device characterized by its shape . 略直方体の機器本体内に、その3側面に沿って二つの対称形の略L字状の熱交換器を配置した熱交換装置であって、前記二つの熱交換器は、熱交換器を構成するフィンの主平面に直交して蛇行状に連続して複数段に配置した伝熱管の冷媒流路の列数を1列もしくは複数列にするとともに前記伝熱管の冷媒流路の配置構成を対称形にしたことを特徴とする熱交換装置。A heat exchange device in which two symmetrical substantially L-shaped heat exchangers are arranged along three side surfaces in a substantially rectangular parallelepiped device body, and the two heat exchangers constitute a heat exchanger. The number of the refrigerant flow paths of the heat transfer tubes arranged in a plurality of stages in a meandering manner perpendicular to the main plane of the fins to be arranged is one or a plurality of rows and the arrangement of the refrigerant flow paths of the heat transfer tubes is symmetric A heat exchange device characterized by its shape . 略直方体の機器本体内に、その相対向する2側面に沿って二つの対称形の直線状の熱交換器を配置した熱交換装置であって、前記二つの熱交換器は、熱交換器を構成するフィンの主平面に直交して蛇行状に連続して複数段に配置した伝熱管の冷媒流路の列数を1列もしくは複数列にするとともに前記伝熱管の冷媒流路の配置構成を対称形にしたことを特徴とする熱交換装置。A heat exchange device in which two symmetrical linear heat exchangers are arranged along two opposite side surfaces in a substantially rectangular parallelepiped device body , wherein the two heat exchangers include a heat exchanger. An arrangement configuration of the refrigerant flow paths of the heat transfer tubes is set to one or a plurality of rows of the refrigerant flow paths of the heat transfer tubes arranged in a plurality of stages in a meandering manner perpendicular to the main plane of the fins to be configured. heat exchanger characterized by being symmetrically.
JP19705499A 1999-07-12 1999-07-12 Heat exchanger Expired - Fee Related JP3700481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19705499A JP3700481B2 (en) 1999-07-12 1999-07-12 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19705499A JP3700481B2 (en) 1999-07-12 1999-07-12 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2001021284A JP2001021284A (en) 2001-01-26
JP3700481B2 true JP3700481B2 (en) 2005-09-28

Family

ID=16367956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19705499A Expired - Fee Related JP3700481B2 (en) 1999-07-12 1999-07-12 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3700481B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472536A (en) * 2009-07-28 2012-05-23 东芝开利株式会社 Heat source unit
CN103759553A (en) * 2014-02-17 2014-04-30 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanging device and heat source unit
JP2017514089A (en) * 2014-04-18 2017-06-01 ダンフォス・マイクロ・チャンネル・ヒート・エクスチェンジャー・(ジャシン)・カンパニー・リミテッド Heat exchanger and manufacturing method thereof, heat exchange module, heat exchange device, and heat source unit

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952347B2 (en) * 2007-04-06 2012-06-13 ダイキン工業株式会社 Air conditioner
JP5496697B2 (en) * 2010-01-29 2014-05-21 三洋電機株式会社 Air conditioner outdoor unit
JP2011158109A (en) * 2010-01-29 2011-08-18 Sanyo Electric Co Ltd Outdoor unit of freezing machine
JP2013160445A (en) * 2012-02-06 2013-08-19 Hitachi Appliances Inc Heat exchanging unit and heat exchanger
WO2015025365A1 (en) 2013-08-20 2015-02-26 三菱電機株式会社 Heat exchanger, air conditioner, and refrigeration cycle device
JP2016020757A (en) * 2014-07-14 2016-02-04 日立アプライアンス株式会社 Manufacturing method for refrigeration cycle device and cross fin tube type heat exchanger used for the same
JP6608946B2 (en) * 2015-10-27 2019-11-20 三菱電機株式会社 Air conditioner and outdoor unit of air conditioner
KR101742185B1 (en) * 2016-10-25 2017-05-30 주식회사 효신테크 The heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472536A (en) * 2009-07-28 2012-05-23 东芝开利株式会社 Heat source unit
CN103822394A (en) * 2009-07-28 2014-05-28 东芝开利株式会社 Heat source unit
US9127867B2 (en) 2009-07-28 2015-09-08 Toshiba Carrier Corporation Heat source unit
US10072883B2 (en) 2009-07-28 2018-09-11 Toshiba Carrier Corporation Heat source unit
CN103759553A (en) * 2014-02-17 2014-04-30 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanging device and heat source unit
JP2017514089A (en) * 2014-04-18 2017-06-01 ダンフォス・マイクロ・チャンネル・ヒート・エクスチェンジャー・(ジャシン)・カンパニー・リミテッド Heat exchanger and manufacturing method thereof, heat exchange module, heat exchange device, and heat source unit
US10429134B2 (en) 2014-04-18 2019-10-01 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. Heat exchanger and manufacturing method therefor, heat exchange module, heat exchange device, and heat source unit

Also Published As

Publication number Publication date
JP2001021284A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
JP6615316B2 (en) Finless type heat exchanger, outdoor unit of air conditioner equipped with the finless type heat exchanger, and indoor unit of air conditioner equipped with the finless type heat exchanger
US5613554A (en) A-coil heat exchanger
JP3273633B2 (en) Heat exchange device for cooling dryer in compressed air equipment and tube / plate heat exchanger intended for use in heat exchange device
JP3043051B2 (en) Heat exchange equipment
JP5421859B2 (en) Heat exchanger
JP3700481B2 (en) Heat exchanger
JP6223596B2 (en) Air conditioner indoor unit
JP2004286246A (en) Parallel flow heat exchanger for heat pump
JP2001324244A (en) Heat exchanger
JP5338883B2 (en) Heat source unit
JP2002139295A (en) Heat exchanger for air conditioning
JP7137092B2 (en) Heat exchanger
JP5404571B2 (en) Heat exchanger and equipment
JP3632248B2 (en) Refrigerant evaporator
JPH0443167B2 (en)
JPH04344033A (en) Air heat exchanger
JPH10238800A (en) Heat-exchanger and air-conditioner
JP2570310Y2 (en) Heat exchanger
JP4328411B2 (en) Heat exchanger
JP4862218B2 (en) Air conditioner
JP2907864B2 (en) Heat pump type air conditioner indoor unit heat exchanger
JPH05340686A (en) Heat-exchanger
JP2003222436A (en) Heat exchanger for heat pump type air conditioner
JP7561878B2 (en) Dehumidifier
AU2020476620B2 (en) Indoor heat exchanger and indoor unit of air-conditioning apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees