JPH01168835A - Wear-resistant alloy having excellent corrosion resistance particularly to knock gas - Google Patents
Wear-resistant alloy having excellent corrosion resistance particularly to knock gasInfo
- Publication number
- JPH01168835A JPH01168835A JP32821287A JP32821287A JPH01168835A JP H01168835 A JPH01168835 A JP H01168835A JP 32821287 A JP32821287 A JP 32821287A JP 32821287 A JP32821287 A JP 32821287A JP H01168835 A JPH01168835 A JP H01168835A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- alloy
- wear
- wear resistance
- resistant alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007797 corrosion Effects 0.000 title claims abstract description 35
- 238000005260 corrosion Methods 0.000 title claims abstract description 35
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 31
- 239000000956 alloy Substances 0.000 title claims abstract description 31
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 229910052796 boron Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 abstract description 15
- 229910052759 nickel Inorganic materials 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000001746 injection moulding Methods 0.000 abstract description 5
- 229910052710 silicon Inorganic materials 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 abstract description 3
- 238000000465 moulding Methods 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 12
- 229920003023 plastic Polymers 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- 229910000599 Cr alloy Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
(産業上の利用分野)
本発明は耐摩耗合金に係り1例えば、ABS樹脂などの
プラスチックやゴム等の可塑物の射出成形機及び押出機
用のシリンダー材料に好適で、特にノックスガスに対す
る耐食性に優れた耐摩耗合金に関するものである。
(従来の技術及び解決しようとする問題点)一般に、A
BS樹脂等々のプラスチック或いはゴム等の可塑物の射
出成形や押出し成形では、加熱された可塑物をシリンダ
ー内に充填してプランジャーにより加圧し成形されるが
、シリンダ一部材としては、かなりの高温条件下で成形
作業が行われ、且つ加熱された樹脂等の可塑物中のCN
基よりNOxが発生したり或いはハロゲン等の腐食ガス
が発生するため、耐摩耗性と共に耐食性の優れた材料を
用いる必要がある。
従来より、この種のシリンダ一部材には自溶性の耐摩耗
Ni基合金が一般的に用いられており、これを遠心鋳造
法によってシリンダー内にライニングして利用されてい
る。また、利用態様は異なるが、耐食性の優れたNi−
Mo−Cr合金も用いられており、この合金からなる素
材を塑性加工によってシリンダーに成形されている。
しかし乍ら、前者の自溶性耐摩耗合金の場合、耐摩耗性
は優れているものの、腐食ガスに対する耐食性が充分で
なく、特にノックスガスに対する耐食性が極めて悪いと
いう問題がある6一方、後者のNi−Mo−Cr合金は
、耐食性は良好であるものの、耐摩耗性が不充分である
。このようにい°ずれの合金も耐食性、耐摩耗性の双方
を満足できる材料とは云えない。
本発明は、かNる状況に鑑みてなされたものであって、
苛酷な使用条件にも充分耐え得る高耐食性、高耐摩耗性
の新規な合金を提供することを目的とするものである。
(問題点を解決するための手段)
上記目的を達成するため、本発明者は、従来の自溶性タ
イプの合金は自溶性であるが故にMo等の耐食性向上元
素を添加することができないことを考慮し、自溶性タイ
プではなく、従来の固溶体合金のNi−Mo−Cr合金
のような耐摩耗性劣化の問題を解決できる新規な組成の
合金を開発すべく鋭意研究を重ねた結果、Ni基又はC
o基若しくはその一部をCo又はNiで置換したものに
、Mo、CrのほかCuを添加して耐食性の向上を図る
と共にSi、B等の添加により耐摩耗性を確保した新規
な組成の合金を見い出し、かNる合金は特にその製造プ
ロセスを規制すれば優れた耐食性、耐摩耗を有する高性
能のシリンダ一部材を製造可能であることを併せて見い
出し、ここに本発明をなしたものである。
すなわち1本発明は、Si:1.0〜3.5%、B:0
.5〜6.0%、Cr:24〜30%、Mo:14〜3
5%及びCu:0.4〜4.0%を含み、残部がNi及
びCoの少なくとも1種からなることを特徴とする耐食
性に優れた耐摩耗合金を要旨とするものである。
以下に本発明を実施例に基づいて詳細に説明する。
本発明合金の化学成分限定理由は以下のとおりである。
Si:1.O〜3.5%
Siは合金表面に緻密なSin、の皮膜を形成して凝着
摩耗を抑止する作用があり、また合金溶湯の流動性を高
め、脱酸剤としても有効な元素である。これらの効果を
発揮させるためには少なくとも1.0%以上のSi量を
必要とするが、3.5%を超えると硅化物を生成し、靭
性に悪影響を及ぼすので、Si量は1.0〜3.5%の
範囲とする。
B:0.5〜6.0%
BはNi、Cr、Moと硬質の硼化物を形成して耐摩耗
性、特にアブレシブ摩耗の向上に寄与する元素である。
これらの作用を効果的に発揮させるためには、Bを0.
5%以上含有させる必要がある。しかし、6.0%を超
えると合金の靭性の低下を招くので、B量は0.5〜6
.0%の範囲とする。
cr:24〜30%
Crは合金を不動態化させ、硝酸などの酸化性雰囲気に
対する耐食性を増大させる作用を有するその作用は24
%以上のCr量になると特に顕著でである。また、Cr
はBと共に硬質の硼化物を形成して耐摩耗性向上に寄与
する作用がある。しかし、Crが30%を超えると塩酸
などの還元性雰囲気に対する腐食抵抗の急激な低下を招
くようになる。したがって、Cr量は24〜30%の範
囲とする。
Mo: 14〜35%
Moは還元性雰囲気に対する腐食抵抗を増大させる作用
があり、耐孔食性を維持するために14%以上のMo量
が必要である。また、MoはCrと同様、Bと共に硬質
な硼化物を形成して耐摩耗性向上に寄与する作用がある
。しかし、35%を超えると脆弱な金属間化合物を形成
し、耐食性の低下をもたらすので好ましくない、したが
って、Mo量は14〜35%の範囲とする。
Cu:0.4〜4.0%
Cuはマトリックスに固溶し、耐食性の向上に著しく寄
与する元素であり、この効果を有効に発揮させるために
は0.4%以上のCu量が必要である。しかし、4.0
%を超えて添加しても、その効果は飽和し、むしろ1合
金が軟化して耐摩耗性を低下させるので好ましくない、
したがって。
Cu量は0.4〜4.0%の範囲とする。
Ni、Co:残部
Niは耐食性の向上に効果のある元素であり、特にハロ
ゲンガスに対する腐食抵抗が大きい、また、Coも耐食
性の向上に効果のある元素であり、特にHNO,に対し
ては20%以上の添加で著しい耐酸性の向上がある。し
たがって、残部としては、Ni或いはCoのどちらでも
よく、Niの一部をCoで置換したり、逆にCoの一部
をN1の一部で置換する態様も可能である。
なお、残部のNi及び/又はCoには不可避的不純物が
随伴され得るが、それらは本発明の効果を損わない範囲
で許容可能できることは云うまでもない。
上記化学成分を有する高合金は、鋳造合金として高耐食
性、高耐摩耗性を要する種々の部材に使用できる。しか
し、アトマイズ法で急冷凝固により粉末とし、これをH
IP(熱間静水圧プレス)成形するプロセスによれば、
上記特性が充分発揮され、高性能の製品が得られる。し
たがって、本発明合金はプラスチックなどの射出成形機
及び押出機用のシリンダ一部材の製造に好適である。
次に本発明の実施例を示す。
(実施例)
第1表に示す化学成分(wt%)を有する合金を常法に
より溶解、鋳造した。
得られた各試料について硬さを測定すると共に耐食性試
験及び耐摩耗試験を行った。なお、耐食試験片としては
6.5■鳳φ×1011IIQのものを用い、これを5
0℃に保持した6%硝酸中に100時間浸漬し、腐食減
量を測定して耐食性を評価した。また、耐摩耗試験は、
大館式耐摩耗試験機を用い、相手材5UJ−2、最終荷
重6 、3 kg、摩擦速度0.94m/s、摩擦距離
400mの条件で行い、比摩耗量を測定して耐摩耗性を
評価した。
これらの結果を第2表に示す。(Industrial Application Field) The present invention relates to a wear-resistant alloy, and is suitable for cylinder materials for injection molding machines and extruders for plastics such as ABS resin and rubber, and is particularly suitable for corrosion resistance against Knox gas. It concerns an excellent wear-resistant alloy. (Prior art and problems to be solved) Generally, A
In injection molding or extrusion molding of plastics such as BS resin or plastics such as rubber, the heated plastic is filled into a cylinder and pressurized with a plunger. CN in plastic materials such as resins that are molded and heated under
Since NOx or corrosive gases such as halogens are generated from the base, it is necessary to use a material that has excellent wear resistance and corrosion resistance. Conventionally, a self-fusing wear-resistant Ni-based alloy has generally been used for this type of cylinder member, and is used by lining the inside of the cylinder using a centrifugal casting method. Although the usage is different, Ni-
A Mo-Cr alloy is also used, and a material made of this alloy is formed into a cylinder by plastic working. However, although the former self-fusing wear-resistant alloy has excellent wear resistance, there is a problem that the corrosion resistance against corrosive gases is insufficient, and in particular the corrosion resistance against Knox gas is extremely poor6.On the other hand, the latter Ni Although the -Mo-Cr alloy has good corrosion resistance, it has insufficient wear resistance. As described above, neither of these alloys can be said to be a material that can satisfy both corrosion resistance and wear resistance. The present invention was made in view of the situation, and
The purpose of this invention is to provide a new alloy with high corrosion resistance and high wear resistance that can sufficiently withstand severe usage conditions. (Means for solving the problem) In order to achieve the above object, the present inventor discovered that because conventional self-fusing type alloys are self-fusing, it is not possible to add corrosion resistance improving elements such as Mo. As a result of intensive research to develop an alloy with a new composition that can solve the problem of wear resistance deterioration like the conventional solid solution Ni-Mo-Cr alloy, instead of a self-fusing type, we have developed a Ni-based alloy. or C
An alloy with a new composition in which the o group or a part thereof is replaced with Co or Ni, and Mo, Cr, and Cu are added to improve corrosion resistance, and wear resistance is ensured by the addition of Si, B, etc. The inventors have also discovered that if the manufacturing process is specifically regulated, it is possible to manufacture high-performance cylinder parts with excellent corrosion resistance and wear resistance, and the present invention has been hereby made. be. That is, 1 the present invention has Si: 1.0 to 3.5%, B: 0
.. 5-6.0%, Cr: 24-30%, Mo: 14-3
5% and Cu: 0.4 to 4.0%, with the remainder consisting of at least one of Ni and Co. The present invention will be explained in detail below based on examples. The reason for limiting the chemical composition of the alloy of the present invention is as follows. Si:1. O ~ 3.5% Si has the effect of forming a dense Si film on the alloy surface to suppress adhesive wear, and is also an element that increases the fluidity of the molten alloy and is effective as a deoxidizer. . In order to exhibit these effects, an amount of Si of at least 1.0% is required, but if it exceeds 3.5%, silicide is generated and has a negative effect on toughness, so the amount of Si is set to 1.0%. -3.5% range. B: 0.5 to 6.0% B is an element that forms a hard boride with Ni, Cr, and Mo and contributes to improving wear resistance, especially abrasive wear. In order to effectively exhibit these effects, B must be 0.
It is necessary to contain 5% or more. However, if it exceeds 6.0%, the toughness of the alloy will decrease, so the amount of B should be 0.5 to 6%.
.. The range is 0%. Cr: 24-30% Cr has the effect of passivating the alloy and increasing its corrosion resistance against oxidizing atmospheres such as nitric acid.
This is particularly noticeable when the amount of Cr exceeds %. Also, Cr
Together with B, B forms a hard boride and has the effect of contributing to improving wear resistance. However, if Cr exceeds 30%, corrosion resistance to reducing atmospheres such as hydrochloric acid will drop sharply. Therefore, the Cr content is set in the range of 24 to 30%. Mo: 14-35% Mo has the effect of increasing corrosion resistance against a reducing atmosphere, and an amount of Mo of 14% or more is required to maintain pitting corrosion resistance. Further, like Cr, Mo has the effect of forming a hard boride together with B and contributing to improving wear resistance. However, if it exceeds 35%, it is not preferable because it forms a brittle intermetallic compound and reduces corrosion resistance. Therefore, the Mo amount is set in the range of 14 to 35%. Cu: 0.4-4.0% Cu is an element that dissolves in solid solution in the matrix and significantly contributes to improving corrosion resistance, and in order to effectively exhibit this effect, an amount of Cu of 0.4% or more is required. be. However, 4.0
Even if it is added in excess of %, the effect will be saturated and the alloy will become softer and the wear resistance will decrease, which is not preferable.
therefore. The amount of Cu is in the range of 0.4 to 4.0%. Ni, Co: The remainder Ni is an element that is effective in improving corrosion resistance, and has a particularly high corrosion resistance against halogen gas.Co is also an element that is effective in improving corrosion resistance, especially against HNO. Addition of % or more significantly improves acid resistance. Therefore, the remainder may be either Ni or Co, and it is also possible to replace part of Ni with Co, or conversely, replace part of Co with part of N1. Note that the remaining Ni and/or Co may be accompanied by unavoidable impurities, but it goes without saying that these can be tolerated within a range that does not impair the effects of the present invention. High alloys having the above chemical components can be used as casting alloys for various members requiring high corrosion resistance and high wear resistance. However, with the atomization method, it is made into a powder by rapid solidification, and this is
According to the IP (hot isostatic pressing) forming process,
The above characteristics are fully exhibited, and a high-performance product can be obtained. Therefore, the alloy of the present invention is suitable for manufacturing cylinder parts for injection molding machines and extrusion machines for plastics and the like. Next, examples of the present invention will be shown. (Example) An alloy having the chemical composition (wt%) shown in Table 1 was melted and cast by a conventional method. The hardness of each sample obtained was measured, and a corrosion resistance test and a wear resistance test were conducted. In addition, as a corrosion resistance test piece, a 6.5■φ×1011IIQ piece was used, and this was
Corrosion resistance was evaluated by immersing it in 6% nitric acid held at 0° C. for 100 hours and measuring the corrosion loss. In addition, the wear resistance test
Wear resistance was evaluated by measuring the specific wear amount using an Odate type wear resistance tester under the conditions of mating material 5UJ-2, final load 6.3 kg, friction speed 0.94 m/s, and friction distance 400 m. did. These results are shown in Table 2.
第2表から明らかなとおり、Nα1の従来材及びNa
2〜&10の比較材は、いずれも耐食性、耐摩耗性の要
件の何れかの性能に問題がある。
すなわち、従来材のN11lは、耐摩耗合金として著名
なNi基の自溶性合金であるが、耐摩耗性は良好である
ものの、製法上、自溶性、溶湯の粘性などの拘束を受け
るためにMoが添加されておらず、そのために耐食性が
極めて悪い。
一方、比較材のNα2〜10は、耐摩祥性は良好である
が、Cr量が不足するため、耐食性が極めて悪い。
これらに対し、本発明材の&11〜Nci13は、優れ
た耐食性と耐摩耗性を兼ね備えていることがわかる。&
11は残部がCoの場合であり、&12と魔13は残部
がNiの場合であるが、いずれの場合でも、耐食性につ
いては前記従来材及び比較材を格段土建ると共に耐摩耗
性を兼ね備えている。なお、Coの一部をNiで置換し
たり、或いはNiの一部をCoで置換しても、kll〜
N113と同様の特性が得られることを確認している。
(発明の効果)
以上詳述したように1本発明合金は、Ni又はCoをベ
ースとし、これに適量のCr及びMoを添加すると共に
Si、B、Cr及びCuを添加した特定の化学成分に調
整されているので、高耐摩耗性で且つ耐食性に優れ、特
にノックスガスに対する腐食抵抗が大きく、シたがって
、苛酷な成形条件下で使用されるABS樹脂などの射出
成形や押出用のシリンダー材料に好適である。また1本
発明合金は鋳造合金として広く使用できるが、更にアト
マイズ法によって急冷凝固粉とし、これをHIP成形し
て製品を得るプロセスも適用でき、これによれば、上記
各特性を充分に発揮でき、更に高性能の各種部材を製造
することが可能となる。
特許出願人 株式会社神戸製鋼所
代理人弁理士 中 村 尚As is clear from Table 2, the conventional material with Nα1 and the Na
Comparative materials Nos. 2 to 10 all have problems in performance in either corrosion resistance or wear resistance requirements. In other words, the conventional material N11l is a Ni-based self-fusing alloy that is well-known as a wear-resistant alloy, but although it has good wear resistance, it is subject to constraints such as self-fluxability and molten metal viscosity due to the manufacturing process. is not added, and therefore its corrosion resistance is extremely poor. On the other hand, the comparative materials Nα2 to Nα10 have good wear resistance, but have extremely poor corrosion resistance due to insufficient Cr content. On the other hand, it can be seen that the present invention materials &11 to Nci13 have both excellent corrosion resistance and wear resistance. &
No. 11 is a case where the remainder is Co, and &12 and No. 13 are cases where the remainder is Ni, but in both cases, the corrosion resistance is much better than the conventional material and the comparative material, and it also has wear resistance. . Note that even if a part of Co is replaced with Ni or a part of Ni is replaced with Co, kll~
It has been confirmed that characteristics similar to N113 can be obtained. (Effects of the Invention) As detailed above, the alloy of the present invention is based on Ni or Co, and has a specific chemical composition in which appropriate amounts of Cr and Mo are added, as well as Si, B, Cr, and Cu. As it has been adjusted, it has high wear resistance and excellent corrosion resistance, especially corrosion resistance to Knox gas, and therefore cylinder materials for injection molding and extrusion such as ABS resin used under severe molding conditions. suitable for In addition, although the alloy of the present invention can be widely used as a casting alloy, it is also possible to apply a process of rapidly solidifying powder by atomization and HIP molding to obtain a product. According to this, each of the above characteristics can be fully exhibited. , it becomes possible to manufacture various parts with even higher performance. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.
Claims (1)
:0.5〜6.0%、Cr:24〜30%、Mo:14
〜35%及びCu:0.4〜4.0%を含み、残部がN
i及びCoの少なくとも1種からなることを特徴とする
耐食性に優れた耐摩耗合金。In weight% (the same applies hereinafter), Si: 1.0 to 3.5%, B
:0.5~6.0%, Cr:24~30%, Mo:14
~35% and Cu:0.4~4.0%, the balance is N
A wear-resistant alloy with excellent corrosion resistance, characterized by comprising at least one of i and Co.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32821287A JPH01168835A (en) | 1987-12-24 | 1987-12-24 | Wear-resistant alloy having excellent corrosion resistance particularly to knock gas |
US07/249,995 US4961781A (en) | 1987-09-30 | 1988-09-27 | High corrosion-and wear resistant-powder sintered alloy and composite products |
DE3833121A DE3833121C2 (en) | 1987-09-30 | 1988-09-29 | Corrosion and wear resistant sintered alloy and its use |
DE3844941A DE3844941C2 (en) | 1987-09-30 | 1988-09-29 | Corrosion and wear resistant alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32821287A JPH01168835A (en) | 1987-12-24 | 1987-12-24 | Wear-resistant alloy having excellent corrosion resistance particularly to knock gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01168835A true JPH01168835A (en) | 1989-07-04 |
Family
ID=18207702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32821287A Pending JPH01168835A (en) | 1987-09-30 | 1987-12-24 | Wear-resistant alloy having excellent corrosion resistance particularly to knock gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01168835A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4833863A (en) * | 1971-09-02 | 1973-05-14 | ||
JPS62112745A (en) * | 1985-11-05 | 1987-05-23 | ザ・パ−キン−エルマ−・コ−ポレイシヨン | Alloy having high abrasion resistance and high corrosion resistance and flame spraying powder based on said alloy |
-
1987
- 1987-12-24 JP JP32821287A patent/JPH01168835A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4833863A (en) * | 1971-09-02 | 1973-05-14 | ||
JPS62112745A (en) * | 1985-11-05 | 1987-05-23 | ザ・パ−キン−エルマ−・コ−ポレイシヨン | Alloy having high abrasion resistance and high corrosion resistance and flame spraying powder based on said alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02277740A (en) | Wear-resistant and corrosion-resistant nickel-based alloy | |
JP2009052084A (en) | Component of die for molding resin | |
JPH01168835A (en) | Wear-resistant alloy having excellent corrosion resistance particularly to knock gas | |
JPS6326295A (en) | Corrision-and wear-resistant alloy and composite cylinder thereof | |
JP3487935B2 (en) | High corrosion and wear resistant composite material | |
JPH0860278A (en) | Corrosion and wear resistant material excellent in cavitation erosion resistance | |
JP2001279369A (en) | Wear resistant and corrosion resistant alloy and cylinder for molding machine | |
JPH049441A (en) | Wear-resistant alloy excellent in corrosion resistance | |
JPH04337047A (en) | Composite material having high corrosion resistance and wear resistance | |
JPS6338551A (en) | Zinc alloy containing rare earth element | |
JPS61143547A (en) | Cylinder for plastic molding apparatus | |
JPH0569893B2 (en) | ||
JPH05132734A (en) | Composite material having wear resistance and corrosion resistance | |
JP4353617B2 (en) | Corrosion-resistant and wear-resistant Ni alloys and parts for plastic kneaders and molding machines | |
JPH01165779A (en) | Hardening material for inside of cylinder | |
JPH01139737A (en) | Internal hardening material for cylinder | |
JPH0338328B2 (en) | ||
JPH07268524A (en) | High corrosion resistant and wear resistant composite material | |
JPS6341977B2 (en) | ||
JPS6341975B2 (en) | ||
JP2002275588A (en) | Wear resistant and corrosion resistant alloy and cylinder for molding machine | |
JPS6152338A (en) | Wear and corrosion resistant alloy | |
JPS613860A (en) | Dental cast co alloy | |
JPH05140682A (en) | Corrosion resistant and wear resistant alloy | |
JPH05320796A (en) | Corrosion resisting and wear resistant alloy |