JPH01168761A - Pressure-sensitive, variable-resistance conductive composition - Google Patents

Pressure-sensitive, variable-resistance conductive composition

Info

Publication number
JPH01168761A
JPH01168761A JP27774486A JP27774486A JPH01168761A JP H01168761 A JPH01168761 A JP H01168761A JP 27774486 A JP27774486 A JP 27774486A JP 27774486 A JP27774486 A JP 27774486A JP H01168761 A JPH01168761 A JP H01168761A
Authority
JP
Japan
Prior art keywords
pressure
weight
parts
ethylene glycol
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27774486A
Other languages
Japanese (ja)
Inventor
Yoshihiro Soeda
善弘 添田
Toshio Kobayashi
俊夫 小林
Yoshio Tajima
田島 義夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP27774486A priority Critical patent/JPH01168761A/en
Priority to JP62294796A priority patent/JPH0787123B2/en
Publication of JPH01168761A publication Critical patent/JPH01168761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the title compsn. which is excellent in resistance to repeated pressure applications; exhibits resistance values smoothly decreasing in accordance with an increase in applied pressure and is suited for use in an applied pressure-sensing element, a variable resistor, a pressure-actuated switching element having excellent durability, etc., by compounding predetermined amts. of graphite and Cr2O3 with an org. polymeric material. CONSTITUTION:100 pts.wt. org. polymeric material (A) as a binder, such as a vinyl chloride-vinyl acetate copolymer, is compounded with 40-180 pts.wt. graphite (B) as a conductive material, such as scaly graphite, having a size of, e.g., about 6.0mum and 110-340 pts.wt. Cr2O3 (C) as an insulating material, pref. having a particle size of 0.1-0.3mum, the sum of B+C being 280-390 pts.wt. Optionally, further, ethylene glycol monobutyl ether and/or ethylene glycol monobutyl ether acetate (D) is added thereto and blended.

Description

【発明の詳細な説明】 ■ 産業上の利用分野 本発明は印刷、塗装、コーティング等に適用することが
できる感圧抵抗変化型導電性組成物に関し、更に詳しく
は加圧による絶縁−導電状態変化のみならず、加圧力と
抵抗値が逆比例関係を示す感圧抵抗変化型導電性組成物
に関する。
DETAILED DESCRIPTION OF THE INVENTION ■ Industrial Application Field The present invention relates to a pressure-sensitive resistance change type conductive composition that can be applied to printing, painting, coating, etc. More specifically, it relates to a pressure-sensitive resistance change type conductive composition that can be applied to printing, painting, coating, etc. The present invention also relates to a pressure-sensitive resistance change type conductive composition in which the applied force and the resistance value are inversely proportional.

■ 従来技術とその問題点 従来から感圧抵抗変化特性を有する材料は知られている
。例えば、米国特許第2,044゜080号明細書には
、粒状の炭素(GranulatedCarbon )
の如き導電材料を電極の間にはさみ込んだ材料を圧迫す
ると、その材料の抵抗値が低下するという発見が開示さ
れている。これと同様の例は米国特許第3,806,4
71号明細書にも開示されており、ここには各種の半導
体物質を使用すること、粉粒状物質がバインダーでまと
められること、ビステリシス現象を小さくする為および
摩耗を防ぐ為に球状または粒状物質を使用する事などが
述べられている。
■ Prior art and its problems Materials having pressure-sensitive resistance change characteristics have been known for a long time. For example, U.S. Patent No. 2,044°080 discloses that Granulated Carbon
It has been disclosed that the resistance of a conductive material sandwiched between electrodes decreases when the material is compressed. A similar example is U.S. Patent No. 3,806,4
No. 71 also discloses the use of various semiconductor materials, the fact that particulate materials are held together by a binder, and the use of spherical or granular materials to reduce the bisteresis phenomenon and prevent wear. It describes how to use it.

更に米国特許第3,710,050号明細書には、導電
性粉体に20〜50%のゴム粉末を加え粉体の感圧導電
性を引き出した発明が開示されている。
Further, US Pat. No. 3,710,050 discloses an invention in which 20 to 50% of rubber powder is added to conductive powder to bring out the pressure-sensitive conductivity of the powder.

これらの例では、かかる粉末、状の材料がゴム等の分散
媒を用いずそのままの状態で使用されるため、感圧導電
性材料は特別な容器に収容されなければならない等の欠
点がある。前述の米国特許第3.806,471号明細
書の発明では、粉粒状物がバインダーでまとめられる工
夫が、なされているが、材料の可撓性は不十分であった
。特開昭56−108279号明細書には、このバイン
ダーのJソさを25.4μ以下にする発明が開示されて
いる。また、粉体を発泡体のセルの空間にとじこめる発
明が米国特許第2,305,717号明細書に開示され
ているが、この発明によっても粉体の脱落は完全に防止
できない。
In these examples, the powder or material is used as it is without using a dispersion medium such as rubber, so there are drawbacks such as the pressure-sensitive conductive material having to be stored in a special container. In the invention disclosed in the above-mentioned US Pat. No. 3,806,471, an idea was made to bind the powdery material with a binder, but the flexibility of the material was insufficient. JP-A-56-108279 discloses an invention in which the J diameter of this binder is made 25.4μ or less. Further, although an invention for trapping powder in the cell spaces of a foam is disclosed in US Pat. No. 2,305,717, this invention cannot completely prevent the powder from falling off.

粉体親藩の問題は、例えば米国特許第3,629.77
4号明細書に記載のように、発泡体のセルの面を導電粉
体を含有する塗膜でおおうことにより解消する。しかし
この技術で得られる感圧導電体の抵抗値の変化範囲は小
さなものである。すなわち、解放時の抵抗値自体が十分
には高くはなく、加圧時の抵抗値に対する解放時の抵抗
値の比も小さいため、例えばスイッチ素子としては好ま
しいものではない。
The problem of powder parentage is, for example, U.S. Patent No. 3,629.77.
As described in the specification of No. 4, this problem can be solved by covering the surface of the cells of the foam with a coating film containing conductive powder. However, the range of change in the resistance value of the pressure-sensitive conductor obtained by this technique is small. That is, the resistance value itself when released is not sufficiently high, and the ratio of the resistance value when released to the resistance value when pressurized is small, so it is not preferable as a switch element, for example.

またシリコーンゴム等の弾性材料に特殊な導電性粉体を
配合し感圧導電性を付与した感圧導電性弾性体組成物が
特公昭56−9137号等に開示されているが、これら
の弾性体組成物に印刷、塗装、コーティング等の特性を
付与する事はきわめて困難であり、スイッチ素子や電子
部品等の精密化、薄膜化、軽量化に対しては自ずと限界
があり、すぐれた感圧性と印刷、塗装、コーティング等
の特性を兼備した感圧抵抗変化型導電性材料の出現が望
まれていた。
In addition, pressure-sensitive conductive elastic compositions in which pressure-sensitive conductivity is imparted by blending special conductive powder with elastic materials such as silicone rubber are disclosed in Japanese Patent Publication No. 56-9137, etc.; It is extremely difficult to impart properties such as printing, painting, and coating to body compositions, and there are limits to the precision, thinning, and weight reduction of switch elements and electronic components, and excellent pressure sensitivity is extremely difficult. The emergence of a pressure-sensitive resistance variable conductive material that has the characteristics of printing, painting, coating, etc. has been desired.

■ 発明の目的 本発明の目的は、加圧圧縮によってその電気抵抗が加圧
圧縮されていない場合の電気抵抗に比較して大幅な低下
を示し、かつ加圧力の増大によりその抵抗が滑らかに減
少する感圧導電性体をあたえる組成物を提供することに
ある。
■ Purpose of the Invention The purpose of the present invention is to provide a method that shows a significant reduction in electrical resistance due to pressurization compared to the electrical resistance when not pressurized, and that the resistance decreases smoothly as the pressurizing force increases. It is an object of the present invention to provide a composition that provides a pressure-sensitive conductive material that provides a pressure-sensitive conductive material.

本発明の他の目的は、印刷、塗装、コーティング等に適
用することができる感圧抵抗変化型導電性組成物を提供
することにある。
Another object of the present invention is to provide a pressure-sensitive resistance variable conductive composition that can be applied to printing, painting, coating, etc.

■ 発明の構成 本発明の第1の態様は、有機高分子材料100重量部に
対し、グラファイト40〜180重量部、三二酸化クロ
ム110〜340重量部を含有し、前記グラファイトと
前記三二酸化クロムの総和を280〜390重量部とし
てなることを特徴とする感圧抵抗変化型導電性組成物を
提供する。
■ Structure of the Invention The first aspect of the present invention contains 40 to 180 parts by weight of graphite and 110 to 340 parts by weight of chromium sesquioxide with respect to 100 parts by weight of an organic polymer material, and the graphite and the chromium sesquioxide Provided is a pressure-sensitive resistance variable conductive composition characterized in that the total amount is 280 to 390 parts by weight.

本発明の第2の態様は、有機高分子材料100重量部に
対し、グラファイト40〜180重量部、三二酸化クロ
ム110〜340重量部および有機溶媒を含有し、前記
グラファイトと前記三二酸化クロムの総和を280〜3
90重量部としてなることを特徴とする感圧抵抗変化型
導電性組成物を提供する。
A second aspect of the present invention contains 40 to 180 parts by weight of graphite, 110 to 340 parts by weight of chromium sesquioxide, and an organic solvent based on 100 parts by weight of the organic polymer material, and the total of the graphite and the chromium sesquioxide 280~3
Provided is a pressure-sensitive resistance variable conductive composition characterized in that the amount is 90 parts by weight.

ここで、前記有機高分子材料が、塩化ビニル・酢酸ビニ
ル共重合体である感圧抵抗変化型導電性組成物が良い。
Here, a pressure-sensitive resistance variable conductive composition in which the organic polymer material is a vinyl chloride/vinyl acetate copolymer is preferable.

また、前記有機溶媒がエチレングリコールモノブチルエ
ーテルおよび/または酢酸エチレングリコールモノブチ
ルエーテルである感圧抵抗変化型導電性組成物が好まし
い。
Further, a pressure-sensitive resistance change type conductive composition in which the organic solvent is ethylene glycol monobutyl ether and/or acetic acid ethylene glycol monobutyl ether is preferable.

以下に本発明の構成を詳述する。The configuration of the present invention will be explained in detail below.

本発明において使用されるバインダーとしての有機高分
子材料は、例えばフェノール樹脂、ユリア樹脂、メラミ
ン樹脂、フラン樹脂、不飽和ポリエステル樹脂、エポキ
シ樹脂、ケイ素樹脂、ボリウレタン樹脂等の熱硬化性樹
脂、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル
樹脂、アクリル樹脂、スチロール樹脂、ポリアミド樹脂
等の熱可塑性樹脂、ニトロセルロース、アセチルセルロ
ース、エチルセルロース等の繊維素誘導体、塩化ゴム、
塩酸ゴム、シリコンゴム等のゴム誘導体などを例示する
ことができるが、印刷、塗装、コーティング等が可能な
ものであれば如何なるものでもよいが、塩化ビニル・酢
酸ビニル共重合体の使用が特に好ましい。
The organic polymer material used as a binder in the present invention is, for example, a thermosetting resin such as a phenol resin, a urea resin, a melamine resin, a furan resin, an unsaturated polyester resin, an epoxy resin, a silicone resin, a polyurethane resin, or a chlorinated resin. Vinyl resin, vinylidene chloride resin, vinyl acetate resin, acrylic resin, styrene resin, thermoplastic resin such as polyamide resin, cellulose derivatives such as nitrocellulose, acetylcellulose, ethylcellulose, chlorinated rubber,
Examples include rubber derivatives such as hydrochloric acid rubber and silicone rubber, but any material that can be printed, painted, coated, etc. may be used, but vinyl chloride/vinyl acetate copolymer is particularly preferred. .

本発明においてグラファイトが導電性体として使用され
る。特に好ましくは、鱗片状のグラファイトでそのサイ
ズが6.0ミクロン程度のもの。またグラファイトの配
合量は、バインダーの有機高分子材料100重量部に対
して40重量部から180重量部の範囲であり、より好
ましくは45重量部から110重量部の範囲が良い。
Graphite is used as a conductive material in the present invention. Particularly preferred is flaky graphite having a size of about 6.0 microns. The blending amount of graphite is in the range of 40 parts by weight to 180 parts by weight, more preferably in the range of 45 parts by weight to 110 parts by weight, based on 100 parts by weight of the organic polymer material of the binder.

40重量部未満であると、加圧による抵抗変化のない絶
縁状態を示すのみであり、180重量部超であると加圧
による抵抗変化が急激に過ぎ感圧抵抗変化型になりlj
jないからである。
If it is less than 40 parts by weight, it will only exhibit an insulating state with no resistance change due to pressurization, and if it exceeds 180 parts by weight, the resistance change due to pressurization will be too rapid and it will become a pressure-sensitive resistance change type.
This is because there is no j.

本発明において三二酸化クロムが、絶縁体として使用さ
れる。三二酸化クロムは、好ましくは粒状のものが良い
。また三二酸化クロムの配合量は、バインダー樹脂10
0重量部に対して110重量部から340重量部の範囲
であり、より好ましくは、その粒径が0.1〜0.3ミ
クロン程度の三二酸化クロムを225重量部から325
重量部配合すれば良い。
Chromium sesquioxide is used in the present invention as an insulator. Chromium sesquioxide is preferably in the form of particles. The blending amount of chromium sesquioxide is 10% of the binder resin.
The range is from 110 parts by weight to 340 parts by weight, more preferably from 225 parts by weight to 325 parts by weight of chromium sesquioxide having a particle size of about 0.1 to 0.3 microns.
It is sufficient to mix parts by weight.

三二酸化クロムの配合量が110重量部未満であると、
加圧による抵抗変化が急激に過ぎ、感圧抵抗変化型にな
り得ないためであり、340重量部超であると加圧によ
る抵抗変化のない絶縁状態を示すのみだからである。
When the amount of chromium sesquioxide is less than 110 parts by weight,
This is because the resistance change due to pressurization is too rapid and it cannot become a pressure-sensitive resistance change type, and if it exceeds 340 parts by weight, it only shows an insulating state with no resistance change due to pressurization.

また、グラファイトと三二酸化クロムの総和は、有機高
分子材料100重量部に対し280〜390重量部とす
る。280重量部未満であっても、また390重量部超
であっても感圧抵抗変化型にはなり得ないからである。
Further, the total amount of graphite and chromium sesquioxide is 280 to 390 parts by weight based on 100 parts by weight of the organic polymer material. This is because even if it is less than 280 parts by weight or more than 390 parts by weight, it cannot become a pressure-sensitive resistance variable type.

本発明の第2の態様において使用される溶剤としては、
例えば、工業用ガソリン、灯油等の脂肪族炭化水素、低
沸点芳香族石油ナフサ、中沸点芳香族石油ナフサ等の芳
香族石油ナフサ、ペンゾール、ドルオール、キシロごル
、ソルベントナフサ等の芳香族炭化水素、テレピン油、
ジペンテン、パインオイル等のテルペン族炭化水素、メ
チレンクロライド、トリクロルエチレン、パークロルエ
チレン、オルトジクロルベンゼン等の塩化炭化水素、2
−ニトロプロパン等のニトロ化炭化水素、メチルアルコ
ール、エチルアルコール、イソプロピルアルコール、イ
ソブチルアルコール等の脂肪族アルコール、エチレング
リコールモノメチルエーテル、エチレングリコールモノ
エチルエーテル、エチレングリコールモノブチルエーテ
ル、ジエチレングリコール千ツメチルエーテル、ジエチ
レングリコールモノブチルエーテル等のエーテルアルコ
ール、ジオキサン等のエーテル、酢酸メチル、酢酸エチ
ル、酢酸イソプロピル等の酢酸エステル、酢酸エチレン
グリコールモノメチルエーテル、酢酸エチレングリコー
ルモノエチルエーテル、酢酸エチレングリコールモノブ
チルエーテル、酢酸ジエチレングリコールモノエチルエ
ーテル等のエーテルエステルなどを例示することができ
る。
The solvent used in the second aspect of the present invention includes:
For example, aliphatic hydrocarbons such as industrial gasoline and kerosene, aromatic petroleum naphthas such as low-boiling aromatic petroleum naphtha, medium-boiling aromatic petroleum naphtha, aromatic carbonization such as penzol, doluol, xylogol, and solvent naphtha. hydrogen, turpentine,
Terpene hydrocarbons such as dipentene and pine oil, chlorinated hydrocarbons such as methylene chloride, trichloroethylene, perchlorethylene, orthodichlorobenzene, 2
-Nitrated hydrocarbons such as nitropropane, aliphatic alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, isobutyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol methyl ether, diethylene glycol monomethyl ether, etc. Ether alcohols such as butyl ether, ethers such as dioxane, acetic esters such as methyl acetate, ethyl acetate, isopropyl acetate, ethylene glycol monomethyl acetate, ethylene glycol monoethyl acetate, ethylene glycol monobutyl acetate, diethylene glycol monoethyl acetate, etc. Examples include ether ester.

印刷、塗装、コーティング等の方法とバインダーおよび
溶剤の揮発速度を考慮した上で、使用可能な溶剤であれ
ば如何なる溶剤でもよいが、特に好ましいのはエチレン
グリコールモノブチルエーテルおよび/または酢酸エチ
レングリコールモノブチルエーテルである。   ′ 本発明の第1の態様の感圧抵抗変化型導電性組成物の製
造方法は、いかなる方法でもよいが、1例を挙げると、
導電性材料であるグラファイトと電気絶縁材料である三
二酸化クロムと有機高分子バインダーとを適当な溶媒中
に溶解分散させた本発明の第2の態様の組成物を、ポリ
エステルフィルム等の基材上にて溶媒を蒸発させる事に
よって得られる。使用する基材としてはポリエステルフ
ィルムに限らず、印刷、塗装、コーティングに適したも
のであれば如何なるものでもよい。
Any usable solvent may be used, taking into account printing, painting, coating, etc. methods and the volatilization rate of the binder and solvent, but particularly preferred are ethylene glycol monobutyl ether and/or acetic acid ethylene glycol monobutyl ether. It is. ' The pressure-sensitive resistance variable conductive composition of the first aspect of the present invention may be produced by any method, but one example is as follows:
The composition of the second aspect of the present invention, in which graphite as a conductive material, chromium sesquioxide as an electrically insulating material, and an organic polymer binder are dissolved and dispersed in a suitable solvent, is applied onto a substrate such as a polyester film. It is obtained by evaporating the solvent at . The base material to be used is not limited to polyester film, but any material suitable for printing, painting, and coating may be used.

本発明の感圧抵抗変化型導電性組成物は、グラファイト
と三二酸化クロムの比率を変える事により、加圧力に対
する抵抗の変化率(以下、感度という事がある)を制御
する事が可能である。
In the pressure-sensitive resistance change type conductive composition of the present invention, it is possible to control the rate of change in resistance (hereinafter sometimes referred to as sensitivity) with respect to applied force by changing the ratio of graphite and chromium sesquioxide. .

■ 実施例 以下に実施例により、更に具体的に説明する。■ Example A more specific explanation will be given below with reference to Examples.

(実施例1) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト(サイズ約6.0μ)52重量部、三二酸化クロ
ム320重量部、酢酸エチレングリコールモノブチルエ
ーテル115重量部、エチレングリコールモノブチルエ
ーテル485重量部からなる印刷用インキ組成物を厚さ
188ミクロンのポリエステルフィルム上に印刷した後
、溶媒である酢酸エチレングリコールモノブチルエーテ
ル、エチレングリコールモツプチルエーテルを除去する
為に加熱乾燥処理を行い、厚さ70ミクロンの感圧導電
体層を有する感圧抵抗変化型導電性組成物を得た。この
組成物を平らな櫛目電極上に置き、直径10mmの平坦
な先端を有する棒で加圧および除圧を繰り返して特性を
観察した。
(Example 1) 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 52 parts by weight of graphite (size approximately 6.0μ), 320 parts by weight of chromium sesquioxide, 115 parts by weight of ethylene glycol monobutyl ether acetate, 485 parts by weight of ethylene glycol monobutyl ether After printing a printing ink composition consisting of parts by weight on a polyester film with a thickness of 188 microns, heat drying is performed to remove the solvents ethylene glycol monobutyl ether acetate and ethylene glycol mobutyl ether, and the thickness A pressure-sensitive resistance variable conductive composition having a pressure-sensitive conductor layer of 70 microns was obtained. This composition was placed on a flat comb electrode, and its properties were observed by repeatedly applying and removing pressure using a rod with a flat tip having a diameter of 10 mm.

特性を第1図に示す。ヒステリシスカーブの上のカーブ
は加圧測定であり、下のカーブは減圧測定(以下第1図
〜第7図において同じ)である。
The characteristics are shown in Figure 1. The upper curve of the hysteresis curve is the pressure measurement, and the lower curve is the reduced pressure measurement (the same applies to FIGS. 1 to 7 below).

第1図に示されるように、加圧力と抵抗との関係は、加
圧が始まると直ちに且つ滑らかに抵抗が下って導通状態
となり、加圧が解除されると直ちに且つ滑らかに元の抵
抗値に復帰し、加圧力と抵抗値がほぼ逆比例関係を示す
As shown in Figure 1, the relationship between pressurization force and resistance is such that as soon as pressurization starts, the resistance drops smoothly and becomes conductive, and when pressurization is released, it immediately and smoothly returns to its original resistance value. , and the pressurizing force and resistance value show an almost inversely proportional relationship.

また、この状態は、棒での繰り返し100万回の加圧に
よっても変化を生じなかった。
Moreover, this state did not change even after repeated pressurization with a rod 1 million times.

本発明の組成物が加圧と解放の繰り返しに対する耐久性
に優れていることがわかる。
It can be seen that the composition of the present invention has excellent durability against repeated pressurization and release.

(実施例2) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト41重量部、三二酸化クロム330重量部、酢酸
エチレングリコールモノブチルエーテル90重量部、エ
チレングリコールモノブチルエーテル510重量部から
なる印刷用インキ組成物を厚さ188ミクロンのポリエ
ステルフィルム上に印刷した後、溶媒である酢酸エチレ
ングリコールモノブチルエーテル、エチレングリコール
モノブチルエーテルを除去する為に加熱乾燥処理を行い
厚さ70ミクロンの感圧導電体層を有する感圧抵抗変化
型導電性組成物を得た。この組成物を平らな櫛目電極上
に置き、直径10ma+の平坦な先端を有する棒で加圧
および除圧を繰り返して特性を観察した。
(Example 2) Printing ink consisting of 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 41 parts by weight of graphite, 330 parts by weight of chromium sesquioxide, 90 parts by weight of ethylene glycol monobutyl ether acetate, and 510 parts by weight of ethylene glycol monobutyl ether. After printing the composition on a polyester film with a thickness of 188 microns, a heat-drying process was performed to remove the solvent ethylene glycol monobutyl ether acetate and ethylene glycol monobutyl ether, and a pressure-sensitive conductor layer with a thickness of 70 microns was formed. A pressure-sensitive resistance variable conductive composition having the following properties was obtained. This composition was placed on a flat comb electrode, and its properties were observed by repeatedly applying and removing pressure using a rod having a flat tip with a diameter of 10 ma+.

特性を第2図に示す。The characteristics are shown in Figure 2.

第2図に示されるように、加圧力と抵抗との関係は、加
圧が始まると直ちに且つ滑らかに抵抗が下って導通状態
となり、加圧が解除されると直ちに且つ滑らかに元の抵
抗値に復帰する。
As shown in Figure 2, the relationship between pressurizing force and resistance is such that as soon as pressurization starts, the resistance drops smoothly and becomes conductive, and when pressurization is released, it immediately and smoothly returns to its original resistance value. to return to.

(実施例3) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト180i合部、三二酸化クロムrtxli部、酢
酸エチレングリコールモノブチルエーテル420重量部
、エチレングリコールモノブチルエーテル180重量部
からなる印刷用インキ組成物を厚さ188ミクロンのポ
リエステルフィルムトに印刷した後、溶媒である酢酸エ
チレングリコールモノブチルエーテル、エチレングリコ
ールモノブチルエーテルを除去する為に加熱乾燥処理を
行い厚さ70ミクロンの感圧導電体層を有する感圧抵抗
変化型導電性組成物を得た。この組成物を平らな櫛目電
極上に置き、直径10mmの平坦な先端を有する棒で加
圧および除圧を繰り返して特性を観察した。
(Example 3) Printing ink composition consisting of 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 180i graphite, rtxli parts of chromium sesquioxide, 420 parts by weight of ethylene glycol monobutyl ether acetate, and 180 parts by weight of ethylene glycol monobutyl ether. After printing on a polyester film with a thickness of 188 microns, a heat-drying process is performed to remove the solvent ethylene glycol monobutyl ether acetate and ethylene glycol monobutyl ether, resulting in a pressure-sensitive conductor layer with a thickness of 70 microns. A pressure-sensitive resistance variable conductive composition was obtained. This composition was placed on a flat comb electrode, and its properties were observed by repeatedly applying and removing pressure using a rod with a flat tip having a diameter of 10 mm.

特性を第3図に示す。The characteristics are shown in Figure 3.

第3図に示されるように、加圧力と抵抗との関係は、加
圧が始まると直ちに且つ滑らかに抵抗が下って導通状態
となり、加圧が解除されると直ちに且つ滑らかに元の抵
抗値に復帰する。
As shown in Figure 3, the relationship between pressurization force and resistance is such that as soon as pressurization starts, the resistance drops smoothly and becomes conductive, and when pressurization is released, it immediately and smoothly returns to its original resistance value. to return to.

(比較例1) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト250重量部を酢酸エチレングリコールモノブチ
ルエーテル600重量部に溶解混合して得られる印刷用
インキ組成物を厚さ188ミクロンのポリエステルフィ
ルム上に印刷した後、酢酸エチレングリコールモノブチ
ルエーテル、を除去する為に加熱乾燥処理を行い乾燥膜
厚70ミクロンの組成物を得た。この組成物を平らな櫛
目電極上に置き、直径10mmの平坦な先端を有する棒
で加圧および除圧を繰り返して特性を観察した。
(Comparative Example 1) A printing ink composition obtained by dissolving and mixing 100 parts by weight of vinyl chloride/vinyl acetate copolymer and 250 parts by weight of graphite in 600 parts by weight of ethylene glycol monobutyl ether acetate was applied to a polyester film with a thickness of 188 microns. After printing on the surface, a heating drying treatment was carried out to remove ethylene glycol monobutyl ether acetate to obtain a composition with a dry film thickness of 70 microns. This composition was placed on a flat comb electrode, and its properties were observed by repeatedly applying and removing pressure using a rod with a flat tip having a diameter of 10 mm.

特性を第4図に示す。The characteristics are shown in Figure 4.

この比較例では、第4図の加圧カー抵抗の関係グラフか
ら明らかなように、加圧が始まると抵抗が急降下して導
通状態となり、他方加圧が解除されると抵抗値が急上昇
して絶縁状態となり本発明の感圧抵抗変化型には成り得
ない。
In this comparative example, as is clear from the relationship graph of pressurized Kerr resistance in Figure 4, when pressurization starts, the resistance suddenly drops and becomes conductive, and when pressurization is released, the resistance value sharply increases. This results in an insulating state, and the variable pressure sensitive resistance type of the present invention cannot be realized.

(比較例2) 塩化ビニル・酢酸ビニル共重合体100重量部、三二酸
化クロム400重量部をエチレングリコールモノブチル
エーテル600重量部に溶解混合して得られる印刷用イ
ンキ組成物から比較例1と同様の方法で乾燥膜厚70ミ
クロンの組成物を作成し、比較例1と同一の特性を観察
した。
(Comparative Example 2) A printing ink composition similar to Comparative Example 1 was prepared by dissolving and mixing 100 parts by weight of vinyl chloride/vinyl acetate copolymer and 400 parts by weight of chromium sesquioxide in 600 parts by weight of ethylene glycol monobutyl ether. A composition with a dry film thickness of 70 microns was prepared using the method, and the same characteristics as in Comparative Example 1 were observed.

特+′Lを第5図に示す。The characteristic +'L is shown in FIG.

この比較例では、第5図の加圧カー抵抗の関係グラフか
ら明らかなように、加圧が始まっても抵抗値は全く変化
せず絶縁状態のままで、加圧が解除されても抵抗値は変
化せず絶縁状態のままであった。
In this comparative example, as is clear from the relationship graph of pressurized Kerr resistance in Figure 5, the resistance value does not change at all even when pressurization starts and remains in an insulated state, and even when pressurization is released, the resistance value remained unchanged and remained insulated.

(比較例3) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト227重量部、三二酸化クロム36重Bk部、酢
酸エチレングリコールモノブチルエーテル540 ff
lffi部、エチレングリコールモノブチルエーテル6
0重量部からなる印刷用インキ組成物を厚さ188ミク
ロンのポリエステルフィルム上に印刷した後、溶媒であ
る酢酸エチレングリコールモノブチルエーテル、エチレ
ングリコールモノブチルエーテルを除去する為に加熱乾
燥処理を行い厚さ70ミクロンの組成物を得た。この組
成物を平らな櫛目電極上に置き、直径10mmの平坦な
先端を有する棒で加圧および除圧を繰り返して特性を観
察した。
(Comparative Example 3) 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 227 parts by weight of graphite, 36 parts by weight of chromium sesquioxide, 540 ff of ethylene glycol monobutyl acetate
lffi part, ethylene glycol monobutyl ether 6
After printing the printing ink composition consisting of 0 parts by weight on a polyester film with a thickness of 188 microns, a heat drying treatment was performed to remove the solvent ethylene glycol monobutyl ether acetate and ethylene glycol monobutyl ether, and the film had a thickness of 70 microns. A micron composition was obtained. This composition was placed on a flat comb electrode, and its properties were observed by repeatedly applying and removing pressure using a rod with a flat tip having a diameter of 10 mm.

特性を第6図に示す。The characteristics are shown in Figure 6.

第6図に示すように、加圧力と抵抗との関係は、加圧が
始まると抵抗が急降下して導通状態となり、他方加圧が
解除されると抵抗値が急上昇して絶縁状態となる。この
例での組成物の感度は、実施例1および3よりも比較例
1に近い。よって、この例での組成物は、本発明の感圧
抵抗変化型には成り得ない。
As shown in FIG. 6, the relationship between the pressurizing force and the resistance is such that when pressurization starts, the resistance drops rapidly and becomes conductive, and when pressurization is released, the resistance value sharply increases and becomes insulated. The sensitivity of the composition in this example is closer to Comparative Example 1 than to Examples 1 and 3. Therefore, the composition in this example cannot be used as the pressure-sensitive resistance variable type of the present invention.

(比較例4) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト35重量部、三二酸化クロム360重量部、酢酸
エチレングリコールモノブチルエーテル60重量部、エ
チレングリコールモノブチルエーテル540重量部から
なる印刷用インキ組成物を厚さ188ミクロンのポリエ
ステルフィルム上に印刷した後、溶媒である酢酸エチレ
ングリコールモノブチルエーテル、エチレングリコール
モツプチルエーテルを除去する為に加熱乾燥処理を行い
厚さ70ミクロンの組成物を得゛た。
(Comparative Example 4) Printing ink consisting of 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 35 parts by weight of graphite, 360 parts by weight of chromium sesquioxide, 60 parts by weight of ethylene glycol monobutyl ether acetate, and 540 parts by weight of ethylene glycol monobutyl ether. After printing the composition on a polyester film with a thickness of 188 microns, a heat drying treatment was performed to remove the solvents ethylene glycol monobutyl ether acetate and ethylene glycol mobutyl ether to obtain a composition with a thickness of 70 microns. Ta.

この組成物を平らな櫛目電極上に置き、直径10III
mの平坦な先端を有する棒で加圧および除圧を繰り返し
て特性を観察した。
This composition was placed on a flat comb electrode with a diameter of 10III.
Pressure was repeatedly applied and depressurized using a rod with a flat tip of m, and the characteristics were observed.

特性を第7図に示す。The characteristics are shown in Figure 7.

この比較例では、第7図の加圧カー抵抗の関係グラフか
ら明らかなように、加圧が始まっても抵抗はあまり変化
せず絶縁状態のままで、感度も小さい。また加圧が解除
されても抵抗値は変化せず絶縁状態のままであった。こ
の例での組成物は、本発明の感圧抵抗変化型には成り得
ない。
In this comparative example, as is clear from the relationship graph of pressurized Kerr resistance in FIG. 7, even when pressurization starts, the resistance does not change much and remains in an insulated state, and the sensitivity is low. Furthermore, even when the pressure was removed, the resistance value remained unchanged and remained in an insulated state. The composition in this example cannot be used as the pressure-sensitive resistance variable type of the present invention.

■ 発明の効果 本発明の感圧抵抗変化型導電性組成物は、繰り返し加圧
に耐え、更に加圧力の増大によって滑らかに抵抗値の減
少する特性を持ち、加圧力変換素子として、或いは可変
抵抗体などの用途に適する。
■ Effects of the Invention The pressure-sensitive resistance variable conductive composition of the present invention has the property of being able to withstand repeated pressurization and smoothly decreasing its resistance value as the pressurizing force increases. Suitable for uses such as the body.

さらに本発明の感圧抵抗変化型導電性組成物は、加圧に
よって作動するスイッチの素子として耐久性の点でIf
kt′している。
Furthermore, the pressure-sensitive resistance variable conductive composition of the present invention has If as an element of a switch operated by pressurization in terms of durability.
kt'.

また本発明の感圧抵抗変化型導電性組成物は、加圧力と
抵抗値が逆比例関係を示し、加圧力検出器などの各種セ
ンサーとしても応用できる。
Further, the pressure-sensitive resistance variable conductive composition of the present invention exhibits an inversely proportional relationship between applied force and resistance value, and can be applied as various sensors such as applied force detectors.

更に、本発明の感圧抵抗変化型導電性組成物は、印刷、
塗装、コーティング等の塗布特性を有し、スクリーン印
刷等の手法を用いることにより種々の形状に印刷が可能
である。
Furthermore, the pressure-sensitive resistance variable conductive composition of the present invention can be used for printing,
It has application properties such as painting and coating, and can be printed into various shapes by using techniques such as screen printing.

本発明は、キーボードスイッチ、自動ドアのスイッチ、
各種圧力接点スイッチ、その他のセンサーとして広範囲
に利用できる。
The present invention is a keyboard switch, an automatic door switch,
Can be widely used as various pressure contact switches and other sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1の組成物の特性を示すグラフである
。 第2図は、実施例2の組成物の特性を示すグラフである
。 第3図は、実施例3の組成物の特性を示すグラフである
。 第4図は、比較例1の組成物の特性を示すグラフである
。 第5図は、比較例2の組成物の特性を示すグラフである
。 第6図は、比較例3の組成物の特性を示すグラフである
。 第7図は、比較例4の組成物の特性を示すグラフである
。 F I G、 1 力Od   力 (に9) F I G、 2 シロ  、圧  力 (に9) FIG、3 力ロμ力(に9) FIG、4 カロ  1エ カ (に9) F I G、 5 カロ /I   力 (に9) FIG、6 カロ 、圧  力 (に9)
FIG. 1 is a graph showing the characteristics of the composition of Example 1. FIG. 2 is a graph showing the characteristics of the composition of Example 2. FIG. 3 is a graph showing the characteristics of the composition of Example 3. FIG. 4 is a graph showing the characteristics of the composition of Comparative Example 1. FIG. 5 is a graph showing the characteristics of the composition of Comparative Example 2. FIG. 6 is a graph showing the characteristics of the composition of Comparative Example 3. FIG. 7 is a graph showing the characteristics of the composition of Comparative Example 4. F I G, 1 force Od force (to 9) F I G, 2 shi, pressure (to 9) FIG, 3 force ro μ force (to 9) FIG, 4 karo 1 eka (to 9) F I G , 5 calo/I force (in 9) FIG, 6 calo, pressure (in 9)

Claims (5)

【特許請求の範囲】[Claims] (1)有機高分子材料100重量部に対し、グラファイ
ト40〜180重量部、三二酸化クロム110〜340
重量部を含有し、前記グラファイトと前記三二酸化クロ
ムの総和を280〜390重量部としてなることを特徴
とする感圧抵抗変化型導電性組成物。
(1) 40 to 180 parts by weight of graphite and 110 to 340 parts by weight of chromium sesquioxide to 100 parts by weight of organic polymer material
1. A pressure-sensitive resistance variable conductive composition, characterized in that the graphite and the chromium sesquioxide contain 280 to 390 parts by weight in total.
(2)前記有機高分子材料が、塩化ビニル・酢酸ビニル
共重合体である特許請求の範囲第1項に記載の感圧抵抗
変化型導電性組成物。
(2) The pressure-sensitive resistance variable conductive composition according to claim 1, wherein the organic polymer material is a vinyl chloride/vinyl acetate copolymer.
(3)有機高分子材料100重量部に対し、グラファイ
ト40〜180重量部、三二酸化クロム110〜340
重量部および有機溶媒を含有し、前記グラファイトと前
記三二酸化クロムの総和を280〜390重量部として
なることを特徴とする感圧抵抗変化型導電性組成物。
(3) 40 to 180 parts by weight of graphite and 110 to 340 parts by weight of chromium sesquioxide for 100 parts by weight of organic polymer material
1. A pressure-sensitive resistance change type electrically conductive composition containing 280 to 390 parts by weight of the graphite and the chromium sesquioxide.
(4)前記有機高分子材料が、塩化ビニル・酢酸ビニル
共重合体である特許請求の範囲第3項に記載の感圧抵抗
変化型導電性組成物。
(4) The pressure-sensitive resistance variable conductive composition according to claim 3, wherein the organic polymer material is a vinyl chloride/vinyl acetate copolymer.
(5)前記有機溶媒がエチレングリコールモノブチルエ
ーテルおよび/または酢酸エチレングリコールモノブチ
ルエーテルである特許請求の範囲第3項または第4項に
記載の感圧抵抗変化型導電性組成物。
(5) The pressure-sensitive resistance variable conductive composition according to claim 3 or 4, wherein the organic solvent is ethylene glycol monobutyl ether and/or acetic acid ethylene glycol monobutyl ether.
JP27774486A 1986-11-20 1986-11-20 Pressure-sensitive, variable-resistance conductive composition Pending JPH01168761A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27774486A JPH01168761A (en) 1986-11-20 1986-11-20 Pressure-sensitive, variable-resistance conductive composition
JP62294796A JPH0787123B2 (en) 1986-11-20 1987-11-20 Pressure-sensitive resistance changeable conductive coating film forming composition used as switch element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27774486A JPH01168761A (en) 1986-11-20 1986-11-20 Pressure-sensitive, variable-resistance conductive composition

Publications (1)

Publication Number Publication Date
JPH01168761A true JPH01168761A (en) 1989-07-04

Family

ID=17587721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27774486A Pending JPH01168761A (en) 1986-11-20 1986-11-20 Pressure-sensitive, variable-resistance conductive composition

Country Status (1)

Country Link
JP (1) JPH01168761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033193A1 (en) * 1997-01-25 1998-07-30 Peratech Ltd Polymer composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033193A1 (en) * 1997-01-25 1998-07-30 Peratech Ltd Polymer composition

Similar Documents

Publication Publication Date Title
JP2544892B2 (en) Polymer thick film resistor composition
US3948811A (en) Electrically conductive sheet composition
KR20110088593A (en) High conductivity polymer thick film silver conductor composition for use in rfid and other applications
US5843342A (en) Polymer compositions containing chlorided conductive particles
CA2127379A1 (en) Pressure sensitive membrane and method therefor
US4036786A (en) Fluorinated carbon composition and resistor utilizing same
US6939484B2 (en) Thick film conductor compositions for use in membrane switch applications
JPH0311602A (en) Resistance paste proper to manufacture of electric resistance layer and resistance layer manufactured from said resistance paste
JPH02158105A (en) Laminated type pressure sensitive material
JPH02186604A (en) Pressure-sensitive resistance changing type conductive composition
JPH01168761A (en) Pressure-sensitive, variable-resistance conductive composition
US4765929A (en) Silk-screenable circuit paste
DE2748161A1 (en) RECORDING MEDIA FOR REGISTRATION DEVICES
JPH09171898A (en) Method of protecting article from electrostatic discharge
JPH01243401A (en) Pressure sensitive variable resistance type conductive composition
JPH0198674A (en) Conductive composition
JPH07254308A (en) Conductive paste
JPH05151828A (en) Pressure-sensitive conductive material
KR20040083296A (en) allowance method for volume conductivity on tray
CA1037631A (en) Printing ink
JPH03247662A (en) Pressure-sensitive and resistance-variable conductive composition
JPS6015464A (en) Pigment
JPH0487208A (en) Composition for pressure sensitive conductive body, pressure sensitive conductive body and its manufacture
JPH0473809A (en) Transparent conductiv film
JPS6120962B2 (en)