JPH01243401A - Pressure sensitive variable resistance type conductive composition - Google Patents

Pressure sensitive variable resistance type conductive composition

Info

Publication number
JPH01243401A
JPH01243401A JP9939287A JP9939287A JPH01243401A JP H01243401 A JPH01243401 A JP H01243401A JP 9939287 A JP9939287 A JP 9939287A JP 9939287 A JP9939287 A JP 9939287A JP H01243401 A JPH01243401 A JP H01243401A
Authority
JP
Japan
Prior art keywords
pressure
weight
parts
graphite
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9939287A
Other languages
Japanese (ja)
Inventor
Yoshihiro Soeda
善弘 添田
Toshio Kobayashi
俊夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP9939287A priority Critical patent/JPH01243401A/en
Priority to JP62294796A priority patent/JPH0787123B2/en
Publication of JPH01243401A publication Critical patent/JPH01243401A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a pressure sensitive conductor excellent in repetitive durability, by containing graphite, titanium dioxide and organic polymer binder of specified weight ratios respectively. CONSTITUTION:For 100 pts.wt. of organic polymer material, the following are contained; 30-160 pts.wt. of graphite and 50-150 pts.wt. of titanium dioxide, in the manner that the sum total of graphite and titanium is made 170-200 pts.wt. By changing the ratio of graphite and titanium dioxide in this manner, the rate of change of resistance with respect to applied pressure can be controlled. Thereby, an applied pressure converting element or a variable resistor being excellent in the durability for the repletion of pressure applying and releasing, and having characteristics wherein the resistance value smoothly decreases in accordance with the increase of applied pressure, can be obtained.

Description

【発明の詳細な説明】 工 技術分野 本発明は印刷、塗装、コーティング等の特性を具備した
感圧抵抗変化型導電性組成物に関し、さらに詳しくは非
加圧時には高抵抗性あるいは絶縁性を示し、加圧時には
低抵抗性あるいは導電性を示す感圧抵抗変化型導電性組
成物に関するものである。
[Detailed Description of the Invention] Technical Field The present invention relates to a pressure-sensitive resistance change type conductive composition that has properties such as printing, painting, and coating, and more specifically, a composition that exhibits high resistance or insulation when no pressure is applied. , relates to a pressure-sensitive resistance change type conductive composition that exhibits low resistance or conductivity when pressurized.

■ 従来技術 従来からかかる感圧抵抗変化特性を有する材料は知られ
ている。 例えば、米国特許第2.044,080号明
細書には、粒状の炭素(Granulated (:a
rbon)の如き導電材料を電極の間にはさみ込んだ材
料を圧迫すると、その材料の抵抗値が低下するという発
明が開示されている。 これと同様の例は米国特許第3
.806.471号明細書にも開示されており、ここに
は各種の半導体物質を使用すること、粉粒状物質がバイ
ンダーでまとめられること、ビステリシス現象を小さく
する為および摩耗を防ぐ為に球状または粒状物質を使用
する事などが述べられている。 さらに米国特許第3,
710゜050号明細書には導電性粉体に20〜50%
のゴム粉末を加′え粉体の感圧導電性を引き出した発明
が開示されている゛。
■Prior Art Materials having such pressure-sensitive resistance change characteristics have been known for a long time. For example, U.S. Pat. No. 2,044,080 describes granulated carbon (:a
An invention has been disclosed in which, when a conductive material such as (rbon) is sandwiched between electrodes and the material is compressed, the resistance value of the material decreases. A similar example is U.S. Pat.
.. No. 806.471 also discloses the use of various semiconductor materials, the fact that particulate materials are held together by a binder, the spherical or granular shape to reduce the bisteresis phenomenon and to prevent wear. The use of substances is mentioned. Furthermore, U.S. Patent No. 3,
No. 710゜050 specifies that conductive powder contains 20 to 50%
An invention has been disclosed in which rubber powder is added to bring out the pressure-sensitive conductivity of the powder.

これらの例では、かかる粉末状の材料がゴム等の分散媒
を用いずそのままの状態で使用されるため、感圧導電性
材料は特別な容器に収容されなければならない等の欠点
がある。
In these examples, the powdered material is used as it is without using a dispersion medium such as rubber, so there are drawbacks such as the pressure-sensitive conductive material having to be housed in a special container.

前述の米国特許第3,806,471号明細書の発明で
は、粉粒状物がバインダーでまとめられる工夫かなされ
ているが、材料の可撓性は不十分であった。
In the invention disclosed in the above-mentioned US Pat. No. 3,806,471, an idea was made to bind the powder and granules together with a binder, but the flexibility of the material was insufficient.

特開昭56−108279号明細書には、このバインダ
ーの厚さを25.4μ以下にする発明が開示されている
。 また、粉体を発泡体のセルの空間にとじこめる発明
が米国特許第2゜305.717号明細書に開示されて
いるが、この発明によっても粉体の脱落は完全に防止で
きない。 粉体脱落の問題は、例えば米国特許第3,6
29,774号明細書に記載のように、発泡体のセルの
面を導電粉体を含有する塗膜でおおうことにより解消す
る。 しかしこの技術で得られる感圧導電体の抵抗値の
変化範囲は小さなものである。 すなわち、開放時の抵
抗値自体が十分には高くはなく、加圧時の抵抗値に対す
る開放時の抵抗値の比も小さいため、例えばスイッチ素
子としては好ましいものではない。
JP-A-56-108279 discloses an invention in which the thickness of this binder is made 25.4 microns or less. Furthermore, although an invention for trapping powder in the cell spaces of a foam is disclosed in US Pat. No. 2,305,717, this invention cannot completely prevent the powder from falling off. The problem of powder shedding can be solved, for example, in US Pat.
29,774, by covering the cell surfaces of the foam with a coating containing conductive powder. However, the range of change in the resistance value of the pressure-sensitive conductor obtained by this technique is small. That is, the resistance value itself when open is not sufficiently high, and the ratio of the resistance value when open to the resistance value when pressurized is small, so it is not preferable as a switch element, for example.

またシリコーンゴム等の弾性材料に特殊な導電性粉体を
配合し感圧導電性を付、与した感圧導電性弾性体組成物
が特公昭56−9187等に開示されているが、これら
の弾性体組成物に印刷、塗装、コーティング等の特性を
付与することはきわめて困難であり、スイッチ素子や電
子部品等の精密化、薄膜化、軽量化に対しては自ずと限
界があり、すぐれた感圧性と印刷、塗装、コーティング
等の特性を兼備した感圧抵抗変化型導電性材料の出現が
望まれていた。
In addition, pressure-sensitive conductive elastomer compositions in which special conductive powder is blended with an elastic material such as silicone rubber to impart pressure-sensitive conductivity are disclosed in Japanese Patent Publication No. 56-9187, etc., but these It is extremely difficult to impart properties such as printing, painting, and coating to elastic body compositions, and there are limits to the precision, thinning, and weight reduction of switch elements and electronic components, and it is difficult to achieve excellent sensibility. There has been a desire for the emergence of a pressure-sensitive resistance change type conductive material that has both pressure resistance and properties such as printing, painting, and coating.

■ 発明の目的 本発明の目的は、加圧圧縮によってその電気抵抗が加圧
圧縮されていない場合の電気抵抗に比較して大巾な低下
を示し、かつ加圧力の増大によりその抵抗が滑らかに減
少する印刷、塗装、コーティング等の特性を存した感圧
導電性体をあたえる感圧抵抗変化型導電性組成物を提供
することにある。
■Object of the Invention The object of the present invention is to provide a method in which the electrical resistance is significantly reduced by pressurization compared to the electrical resistance when the pressure is not compressed, and the resistance is smoothed by increasing the pressurizing force. An object of the present invention is to provide a pressure-sensitive resistance variable conductive composition that provides a pressure-sensitive conductive body with reduced printing, painting, coating, etc. characteristics.

本発明の他の目的は、加圧と解放の繰り返しに対する耐
久性の優れた感圧導電性体を与える感圧抵抗変化型導電
性組成物を提供することにある。
Another object of the present invention is to provide a pressure-sensitive resistance variable conductive composition that provides a pressure-sensitive conductive body with excellent durability against repeated pressurization and release.

■ 発明の構成 本発明は印刷インキあるいは塗料、コーテイング材とし
ての特性を有した感圧抵抗変化型導電性組成物に関する
ものである。
(2) Structure of the Invention The present invention relates to a pressure-sensitive resistance variable conductive composition having properties as a printing ink, paint, or coating material.

本発明の感圧抵抗変化型導電性組成物は、導電性材料で
あるグラファイトと、電気絶縁材料である二酸化チタン
と、有機高分子バインダーとを含むものであり、さらに
好ましくはこれらを適当な溶媒中に溶解分散させておけ
ば印刷、塗装、コーティング等に優れた組成物となる。
The pressure-sensitive resistance change type conductive composition of the present invention contains graphite as a conductive material, titanium dioxide as an electrically insulating material, and an organic polymer binder, and more preferably in a suitable solvent. If it is dissolved and dispersed in the liquid, it becomes a composition that is excellent for printing, painting, coating, etc.

たとえばこれをポリエステルフィルム等の基材上に塗布
して溶媒を蒸発させることによって成膜化することがで
きる。
For example, it can be formed into a film by coating it on a base material such as a polyester film and evaporating the solvent.

本発明の感圧抵抗変化型導電性組成物は、グラファイト
と二酸化チタンの比率を変える事により、加圧力に対す
る抵抗の変化率(以下、感度という事がある)を制御す
る事が可能である。
In the pressure-sensitive resistance change type conductive composition of the present invention, the rate of change in resistance (hereinafter sometimes referred to as sensitivity) against applied pressure can be controlled by changing the ratio of graphite and titanium dioxide.

本発明において使用される有機高分子材料(バインダー
)としては、例えばフェノール樹脂、ユリア樹脂、メラ
ミン樹脂、フラン樹脂、不飽和ポリエステル樹脂、エポ
キシ樹脂、ケイ素樹脂、ポリウレタン樹脂等の熱硬化性
樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニ
ル樹脂、アクリル樹脂、スチロール樹脂、ポリアミド樹
脂等の熱可塑性樹脂、ニトロセルロース、アセチルセル
ロース、エチルセルロース等の繊維素誘導体、塩化ゴム
、塩酸ゴム、シリコンゴム等のゴム誘導体などを例示す
ることができる。
Examples of the organic polymer material (binder) used in the present invention include thermosetting resins such as phenol resins, urea resins, melamine resins, furan resins, unsaturated polyester resins, epoxy resins, silicone resins, polyurethane resins, and chlorinated resins. Thermoplastic resins such as vinyl resin, vinylidene chloride resin, vinyl acetate resin, acrylic resin, styrene resin, polyamide resin, cellulose derivatives such as nitrocellulose, acetylcellulose, and ethylcellulose, rubber derivatives such as chlorinated rubber, hydrochloric acid rubber, silicone rubber, etc. For example,

本発明ではこれらに限られることなく印刷、塗装、コー
ティング等が可能なものであれば如何なるものでもよい
が、塩化ビニル・酢酸ビニル共重合体ならびにその変性
体の使用が特に好ましい。
In the present invention, any material may be used as long as it can be printed, painted, coated, etc., but it is particularly preferable to use vinyl chloride/vinyl acetate copolymer and modified products thereof.

本発明において使用される導電性体としては、グラファ
イトが好ましい。 特に好ましくは、鱗片状のグラファ
イトでそのサイズが6.0ミクロン程度のものがよい。
Graphite is preferred as the conductive material used in the present invention. Particularly preferred is flaky graphite having a size of about 6.0 microns.

 またグラファイトの配合量は、有機高分子材料(バイ
ンダー樹脂)100重量部に対して30重量部から16
0重量部の範囲であり、より好ましくは33重量部から
148重量部の範囲が良い。
The blending amount of graphite is from 30 parts by weight to 16 parts by weight per 100 parts by weight of the organic polymer material (binder resin).
The range is 0 parts by weight, more preferably 33 parts by weight to 148 parts by weight.

本発明において使用される絶縁性体は、二酸化チタンが
好ましい。 また二酸化チタンの配合量は、有機高分子
材料(バインダー樹脂)100重量部に対して50重量
部から150重量部の範囲であり、より好ましくはその
粒径が0.1〜0.3ミクロン程度のものが良い。
The insulator used in the present invention is preferably titanium dioxide. The amount of titanium dioxide to be blended is in the range of 50 parts by weight to 150 parts by weight per 100 parts by weight of the organic polymer material (binder resin), and more preferably the particle size is about 0.1 to 0.3 microns. The one is good.

そして、導電性体としてのグラファイトと絶縁性体とし
ての二酸化チタンの総和は170〜220重量部の範囲
にするのがよい。 これが170重量部未満あるいは2
20重量部をこえると感圧抵抗型には成り得ない。
The total amount of graphite as a conductive material and titanium dioxide as an insulating material is preferably in the range of 170 to 220 parts by weight. This is less than 170 parts by weight or 2
If it exceeds 20 parts by weight, a pressure-sensitive resistor type cannot be obtained.

本発明において使用される溶剤としては、例えば、工業
用ガソリン、灯油等の脂肪族炭化水素、低沸点芳香族石
油ナフサ、中沸点芳香族石油ナフサ等の芳香族石油ナフ
サ、ペンゾール、ドルオール、キジロール、ソルベント
ナフサ等の芳香族炭化水素、テレピン油、ジペンテン、
パインオイル等のテルペン族炭化水素、メチレンクロラ
イド、トリクロルエチレン、パークロルエチレン、オル
トジクロルベンゼン等の塩化炭化水素、2−ニトロプロ
パン等のニトロ化炭化水素、メチルアルコール、エチル
アルコール、イソプロピルアルコール、イソブチルアル
コール等の脂肪族アルコール、エチレングリコールモノ
メチルエーテル、エチレングリコールモノエチルエーテ
ル、エチレングリコールモノブチルエーテル、ジエチレ
ングリコールモノメチルエーテル、ジエチレングリコー
ルモノブチルエーテル等のエーテルアルコール、ジオキ
サン等のエーテル、酢酸メチル、酢酸エチル、°酢酸イ
ソプロピル等の酢酸エステル、酢酸エチレングリコール
モノメチルエーテル、酢酸エチレングリコールモノエチ
ルエーテル、酢酸エチレングリコールモノブチルエーテ
ル、酢酸ジエチレングリコールモノエチルエーテル等の
エーテルエステルなどを例示することができる。
Examples of the solvent used in the present invention include industrial gasoline, aliphatic hydrocarbons such as kerosene, aromatic petroleum naphthas such as low-boiling aromatic petroleum naphtha, medium-boiling aromatic petroleum naphtha, penzole, doluol, and kijirole. , aromatic hydrocarbons such as solvent naphtha, turpentine oil, dipentene,
Terpene hydrocarbons such as pine oil, chlorinated hydrocarbons such as methylene chloride, trichlorethylene, perchlorethylene, orthodichlorobenzene, nitrated hydrocarbons such as 2-nitropropane, methyl alcohol, ethyl alcohol, isopropyl alcohol, isobutyl Aliphatic alcohols such as alcohol, ether alcohols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, ethers such as dioxane, methyl acetate, ethyl acetate, isopropyl acetate, etc. Examples include ether esters such as acetic acid ester, ethylene glycol monomethyl acetate, ethylene glycol monoethyl acetate, ethylene glycol monobutyl acetate, and diethylene glycol monoethyl acetate.

しかし、本発明ではこれらに限定されることなく印刷、
塗装、コーティングの方法とバインダーおよび溶剤の揮
発速度を考慮した上で、使用可能な溶剤であれば如何な
る溶剤でもよいが、特に好ましいのは酢酸エチレングリ
コールモノブチルエーテルである。
However, the present invention is not limited to printing,
Any usable solvent may be used, taking into account the method of painting and coating and the volatilization rate of the binder and solvent, but ethylene glycol monobutyl acetate is particularly preferred.

本発明において使用される基材としては、印刷、塗装、
コーティングに適したものであれば如何なるものでもよ
い。
The base material used in the present invention includes printing, painting,
Any material suitable for coating may be used.

■ 実施例 以下、本発明を実施例および比較例について具体的に説
明する。
(2) Examples Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

(実施例1) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト50重量部、二酸化チタン134重量部、酢酸エ
チレングリコールモノブチルエーテル504重量部を含
む印刷用インキ組成物を厚さ188ミクロンのポリエス
テルフィルム上に印刷した後、溶媒である酢酸エチレン
グリコールモノブチルエーテルを除去する為に加熱乾燥
処理を行い、厚さ70ミクロンの感圧導電体層を有する
感圧抵抗変化型導電性組成物を得た。 この組成物を平
らな櫛目電極上に置き、直径10mmの平坦な先端を有
する棒で加圧および除圧を繰り返して特性を観察した。
(Example 1) A printing ink composition containing 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 50 parts by weight of graphite, 134 parts by weight of titanium dioxide, and 504 parts by weight of ethylene glycol monobutyl ether acetate was applied to a polyester film having a thickness of 188 microns. After printing on the film, a heat-drying treatment was performed to remove the solvent ethylene glycol monobutyl ether acetate, thereby obtaining a pressure-sensitive resistance variable conductive composition having a pressure-sensitive conductor layer with a thickness of 70 microns. . This composition was placed on a flat comb electrode, and its properties were observed by repeatedly applying and removing pressure using a rod with a flat tip having a diameter of 10 mm.

この例での感圧抵抗変化型導電性組成物の特性は、第1
図に示されている。 この第1図は加圧力と抵抗との関
係を示し、加圧が始まると直ちに且つ滑らかに抵抗が下
って導通状態となり、加圧が解除されると直ちに且つ滑
らかに元の抵抗値に復帰する状態が示されている。
The characteristics of the pressure-sensitive resistance variable conductive composition in this example are as follows:
As shown in the figure. This figure 1 shows the relationship between pressurization force and resistance; as soon as pressurization starts, the resistance drops smoothly and becomes conductive, and when pressurization is released, it immediately and smoothly returns to the original resistance value. The condition is shown.

また、この状態は、前記棒で繰返し100万回の加圧を
行っても変化がなく、本発明の組成物が加圧と解放の繰
返しに対し耐久性に慢れていることを示している。
Furthermore, this state did not change even when the rod was repeatedly pressurized 1 million times, indicating that the composition of the present invention has excellent durability against repeated pressurization and release. .

(実施例2) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト33重量部、二酸化チタン146重量部、酢酸エ
チレングリコールモノブチルエーテル497重量部を含
む印刷用インキ組成物を厚さ188ミクロンのポリエス
テルフィルム上に印刷した後、溶媒である酢酸エチレン
グリコールモノブチルエーテルを除去する為に加熱乾燥
処理を行い、厚さ70ミクロンの感圧導電体層を有する
感圧抵抗変化型導電性組成物を得た。 この組成物を平
らな櫛目電極上に置き、直径10mmの平坦な先端を有
する棒で加圧および除圧を繰り返して特性を観察した。
(Example 2) A printing ink composition containing 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 33 parts by weight of graphite, 146 parts by weight of titanium dioxide, and 497 parts by weight of ethylene glycol monobutyl ether acetate was applied to a polyester film having a thickness of 188 microns. After printing on the film, a heat-drying treatment was performed to remove the solvent ethylene glycol monobutyl ether acetate, thereby obtaining a pressure-sensitive resistance variable conductive composition having a pressure-sensitive conductor layer with a thickness of 70 microns. . This composition was placed on a flat comb electrode, and its properties were observed by repeatedly applying and removing pressure using a rod with a flat tip having a diameter of 10 mm.

特性を第2図に示す。The characteristics are shown in Figure 2.

第2図に示されるように、加圧力と抵抗との関係は、加
圧が始まると直ちに且つ滑らかに抵抗が下って導通状態
となり、加圧が解除されると直ちに且つ滑らかに元の抵
抗値に復帰する。
As shown in Figure 2, the relationship between pressurizing force and resistance is such that as soon as pressurization starts, the resistance drops smoothly and becomes conductive, and when pressurization is released, it immediately and smoothly returns to its original resistance value. to return to.

(実施例3) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト148重量部、二酸化チタン58重量部、酢酸エ
チレングリコールモノブチルエーテル547重量部を含
む印刷用インキ組成物から実施例1と同様の方法で乾燥
膜厚7゜ミクロンの組成物を作成し、実施例1と同一の
方法で特性を観察した。。
(Example 3) The same method as in Example 1 was prepared from a printing ink composition containing 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 148 parts by weight of graphite, 58 parts by weight of titanium dioxide, and 547 parts by weight of ethylene glycol monobutyl ether acetate. A composition having a dry film thickness of 7.degree. microns was prepared using the same method as in Example 1, and its properties were observed using the same method as in Example 1. .

特性を第3図に示す。The characteristics are shown in Figure 3.

第3図に示されるように、加圧力と抵抗との関係は、加
圧が始まると直ちに且つ滑らかに抵抗が下って導通状態
となり、加圧が解除されると直ちに且つ滑らかに元の抵
抗値に復帰する。
As shown in Figure 3, the relationship between pressurization force and resistance is such that as soon as pressurization starts, the resistance drops smoothly and becomes conductive, and when pressurization is released, it immediately and smoothly returns to its original resistance value. to return to.

(比較例1) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト225重量部を酢酸エチレングリコールモノブチ
ルエーテル580重量部に溶解混合して得られる印刷用
インキ組成物を厚さ188ミクロンのポリエステルフィ
ルム上に印刷した後、酢酸エチレングリコールモノブチ
ルエーテルを除去する為に加熱乾燥処理を行い、乾燥膜
厚70ミクロンの組成物を得た。
(Comparative Example 1) A printing ink composition obtained by dissolving and mixing 100 parts by weight of vinyl chloride/vinyl acetate copolymer and 225 parts by weight of graphite in 580 parts by weight of ethylene glycol monobutyl ether acetate was applied to a polyester film with a thickness of 188 microns. After printing on top, a heating drying treatment was performed to remove ethylene glycol monobutyl ether acetate, yielding a composition with a dry film thickness of 70 microns.

この組成物を平らな櫛目電極上に置き、直径10mmの
平坦な先端を有する棒で加圧および除圧を繰り返して特
性を観察した。
This composition was placed on a flat comb electrode, and its properties were observed by repeatedly applying and removing pressure using a rod with a flat tip having a diameter of 10 mm.

特性を第4図に示す。The characteristics are shown in Figure 4.

この比較例では、第4図の加圧カー抵抗の関係グラフか
ら明らかなように、加圧が始まると抵抗が急降下して導
通状態となり、他方加圧が解除されると抵抗値が急上昇
して絶縁状態となり、本発明の感圧抵抗変化型には成り
得ない。
In this comparative example, as is clear from the relationship graph of pressurized Kerr resistance in Figure 4, when pressurization starts, the resistance suddenly drops and becomes conductive, and when pressurization is released, the resistance value sharply increases. This results in an insulating state, and the pressure-sensitive resistance variable type of the present invention cannot be achieved.

(比較例2) 塩化ビニル・酢酸ビニル共重合体100重量部、二酸化
チタン170重量部を酢酸エチレングリコールモノブチ
ルエーテル480重量部に溶解混合して得られる印刷用
インキ組成物から比較例1と同様の方法で乾燥膜厚70
ミクロンの組成物を作成し、比較例1と同一の特性を観
察した。
(Comparative Example 2) The same method as in Comparative Example 1 was prepared from a printing ink composition obtained by dissolving and mixing 100 parts by weight of vinyl chloride/vinyl acetate copolymer and 170 parts by weight of titanium dioxide in 480 parts by weight of ethylene glycol monobutyl ether acetate. dry film thickness 70
A micron composition was prepared and the same characteristics as Comparative Example 1 were observed.

特性を第5図に示す。The characteristics are shown in Figure 5.

この比較例では、第5図の加圧カー抵抗の関係グラフか
ら明らかなように、加圧が始まっても抵抗値は全く変化
せず絶縁状態のままであり、加圧が解除されても抵抗値
は変化せず絶縁状態のままであった。
In this comparative example, as is clear from the relationship graph of pressurized Kerr resistance in Figure 5, the resistance value does not change at all even when pressurization starts and remains in an insulated state, and even when pressurization is released, the resistance value remains unchanged. The value did not change and remained in an insulating state.

(比較例3) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト198重量部、二酸化チタン20重量部、酢酸エ
チレングリコールモノブチルエーテル569重量部を含
む印刷用インキ組成物から比較例1と同様の方法で乾燥
膜厚70ミクロンの組成物を作成し、比較例1と同一の
特性を観察した。
(Comparative Example 3) The same method as in Comparative Example 1 was prepared from a printing ink composition containing 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 198 parts by weight of graphite, 20 parts by weight of titanium dioxide, and 569 parts by weight of ethylene glycol monobutyl ether acetate. A composition with a dry film thickness of 70 microns was prepared using the method, and the same characteristics as in Comparative Example 1 were observed.

特性を第6図に示す。 この第6図は、加圧力と抵抗と
の関係を示し、加圧が始まると抵抗が急降下して導通状
態となり、他方加圧が解除されると抵抗値が急上昇して
絶縁状態となる。
The characteristics are shown in Figure 6. FIG. 6 shows the relationship between the pressurizing force and the resistance. When pressurization starts, the resistance rapidly drops to a conductive state, and when the pressurization is released, the resistance value sharply increases to an insulating state.

この例での組成物の感度は、実施例1.2および3より
も比較例1に近い。 よって、この例での組成物は、本
発明の感圧抵抗変化型には成り得ない。
The sensitivity of the composition in this example is closer to Comparative Example 1 than to Examples 1.2 and 3. Therefore, the composition in this example cannot be used as the pressure-sensitive resistance variable type of the present invention.

(比較例4) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト19重量部、二酸化チタン157重量部、酢酸エ
チレングリコールモノブチルエーテル490重量部を含
む印刷用インキ組成物から比較例1と同様の方法で乾燥
膜厚70ミクロンの組成物を作成し、比較例1と同一の
特性を観察した。
(Comparative Example 4) The same method as in Comparative Example 1 was prepared from a printing ink composition containing 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 19 parts by weight of graphite, 157 parts by weight of titanium dioxide, and 490 parts by weight of ethylene glycol monobutyl ether acetate. A composition with a dry film thickness of 70 microns was prepared using the method, and the same characteristics as in Comparative Example 1 were observed.

特性を第7図に示す。The characteristics are shown in Figure 7.

この比較例では、第7図の加圧カー抵抗の関係グラフか
ら明らかなように、加圧が始まっても抵抗値の変化は掻
くわずかであり、その感度も非常に小さい。また加圧が
解除されても抵抗値は変化せず絶縁状態のままであった
。 この例での組成物は、本発明の感圧抵抗変化型には
成り得ない。
In this comparative example, as is clear from the relationship graph of pressurized resistance in FIG. 7, even when pressurization starts, the resistance value changes only slightly, and its sensitivity is also very small. Furthermore, even when the pressure was removed, the resistance value remained unchanged and remained in an insulated state. The composition in this example cannot be used as the pressure-sensitive resistance variable type of the present invention.

■ 効果の説明 本発明の感圧抵抗変化型導電性組成物は、繰り返し加圧
に耐え、さらに加圧力の増大によフて滑らかに抵抗値の
減少する特性を持ち、加圧力変換素子として或いは可変
抵抗体などの用途に適する。
■Description of Effects The pressure-sensitive resistance variable conductive composition of the present invention has the property of withstanding repeated pressurization and smoothly decreasing its resistance value as the pressurizing force increases, and can be used as a pressurizing force converting element or Suitable for applications such as variable resistors.

さらに本発明の感圧抵抗変化型導電性組成物は、加圧力
と抵抗値が逆比例関係を示し、加圧力検出器などの各種
センサーとしても応用できる。
Further, the pressure-sensitive resistance variable conductive composition of the present invention exhibits an inversely proportional relationship between applied force and resistance value, and can be applied as various sensors such as applied force detectors.

また、本発明の感圧抵抗変化型導電性組成物は、印刷、
塗装、コーティング等の塗布特性を有し、スクリーン印
刷等の手法を用いることにより種々の形状に印刷が可能
である。
Moreover, the pressure-sensitive resistance variable conductive composition of the present invention can be used for printing,
It has application properties such as painting and coating, and can be printed into various shapes by using techniques such as screen printing.

本発明は、キーボードスイッチ、自動ドアのスイッチ、
各種圧力接点スイッチ、その他のセンサーとして広範囲
に利用できる。
The present invention is a keyboard switch, an automatic door switch,
Can be widely used as various pressure contact switches and other sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は全て、それぞれ感圧特性を示すための圧力と抵抗
値との関係図である。 第1図、第2図および第3図はそれぞれ実施例1.2お
よび3における組成物の特性を示すグラフである。 第4図、第5図、第6図および第7図はそれぞれ比較例
1.2.3および4における組成物の特性を示すグラフ
である。 FIG、1 加 F カ(に9) FIG、2 カOg    力 (に9) FIG、3 加 圧 カ(に9) FIG、4 カロ  圧   力 (に9) FIG、5 力OLE   力 (に9) FIG、6 カロ  I五   力 (に9)
All of the drawings are relationship diagrams between pressure and resistance values to show pressure-sensitive characteristics. Figures 1, 2 and 3 are graphs showing the properties of the compositions in Examples 1.2 and 3, respectively. FIG. 4, FIG. 5, FIG. 6, and FIG. 7 are graphs showing the characteristics of the compositions in Comparative Examples 1.2.3 and 4, respectively. FIG, 1 Add F power (to 9) FIG, 2 KaOg force (to 9) FIG, 3 Pressure power (to 9) FIG, 4 Calo pressure (to 9) FIG, 5 force OLE force (to 9) FIG, 6 Calo I5 Power (Ni9)

Claims (5)

【特許請求の範囲】[Claims] (1)有機高分子材料100重量部に対し、グラファイ
ト30〜160重量部、二酸化チタン50〜150重量
部を含有し、前記グラファイトと前記二酸化チタンの総
和を170〜220重量部としてなることを特徴とする
感圧抵抗変化型導電性組成物。
(1) It contains 30 to 160 parts by weight of graphite and 50 to 150 parts by weight of titanium dioxide with respect to 100 parts by weight of the organic polymer material, and the total of the graphite and titanium dioxide is 170 to 220 parts by weight. A pressure-sensitive resistance variable conductive composition.
(2)前記有機高分子材料が、塩化ビニル・酢酸ビニル
共重合体である特許請求の範囲第1項に記載の感圧抵抗
変化型導電性組成物。
(2) The pressure-sensitive resistance variable conductive composition according to claim 1, wherein the organic polymer material is a vinyl chloride/vinyl acetate copolymer.
(3)有機高分子材料100重量部に対し、グラファイ
ト30〜160重量部、二酸化チタン50〜150重量
部および有機溶媒を含有し、前記グラファイトと前記二
酸化チタンの総和を170〜220重量部としてなるこ
とを特徴とする感圧抵抗変化型導電性組成物。
(3) Contains 30 to 160 parts by weight of graphite, 50 to 150 parts by weight of titanium dioxide, and an organic solvent to 100 parts by weight of the organic polymer material, and the total of the graphite and titanium dioxide is 170 to 220 parts by weight. A pressure-sensitive resistance variable conductive composition characterized by the following.
(4)前記有機高分子材料が、塩化ビニル・酢酸ビニル
共重合体である特許請求の範囲第3項に記載の感圧抵抗
変化型導電性組成物。
(4) The pressure-sensitive resistance variable conductive composition according to claim 3, wherein the organic polymer material is a vinyl chloride/vinyl acetate copolymer.
(5)前記有機溶媒が酢酸エチレングリコールモノブチ
ルエーテルである特許請求の範囲第3項または第4項に
記載の感圧抵抗変化型導電性組成物。
(5) The pressure-sensitive resistance variable conductive composition according to claim 3 or 4, wherein the organic solvent is acetic acid ethylene glycol monobutyl ether.
JP9939287A 1986-11-20 1987-04-22 Pressure sensitive variable resistance type conductive composition Pending JPH01243401A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9939287A JPH01243401A (en) 1987-04-22 1987-04-22 Pressure sensitive variable resistance type conductive composition
JP62294796A JPH0787123B2 (en) 1986-11-20 1987-11-20 Pressure-sensitive resistance changeable conductive coating film forming composition used as switch element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9939287A JPH01243401A (en) 1987-04-22 1987-04-22 Pressure sensitive variable resistance type conductive composition

Publications (1)

Publication Number Publication Date
JPH01243401A true JPH01243401A (en) 1989-09-28

Family

ID=14246224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9939287A Pending JPH01243401A (en) 1986-11-20 1987-04-22 Pressure sensitive variable resistance type conductive composition

Country Status (1)

Country Link
JP (1) JPH01243401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198482A (en) * 2008-01-24 2009-09-03 Tokai Rubber Ind Ltd Sensor thin film, manufacturing method thereof and deformation sensor
JP2018070879A (en) * 2016-10-24 2018-05-10 積水化学工業株式会社 Thermally-expandable refractory sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198482A (en) * 2008-01-24 2009-09-03 Tokai Rubber Ind Ltd Sensor thin film, manufacturing method thereof and deformation sensor
JP2018070879A (en) * 2016-10-24 2018-05-10 積水化学工業株式会社 Thermally-expandable refractory sheet

Similar Documents

Publication Publication Date Title
US5470643A (en) Polymer thick film resistor compositions
US3947278A (en) Duplex resistor inks
JP2974256B2 (en) Highly conductive polymer thick film composition
CA2046571A1 (en) Ink compositions containing modified pigment particles
KR20110088593A (en) High conductivity polymer thick film silver conductor composition for use in rfid and other applications
US4036786A (en) Fluorinated carbon composition and resistor utilizing same
US20050121657A1 (en) Thick film conductor compositions for use in membrane switch applications
US4830922A (en) Removable controlled thickness conformal coating
JPH01243401A (en) Pressure sensitive variable resistance type conductive composition
US5756007A (en) Composition for protection of devices
US4765929A (en) Silk-screenable circuit paste
DE2748161A1 (en) RECORDING MEDIA FOR REGISTRATION DEVICES
JPH02186604A (en) Pressure-sensitive resistance changing type conductive composition
JPH0198674A (en) Conductive composition
WO2001010962A1 (en) Electrically conductive ink or paint, process for the preparation thereof and writing implements having the ink packed therein
JPH01168761A (en) Pressure-sensitive, variable-resistance conductive composition
US4576985A (en) Hot-melt adhesive
JPS6015464A (en) Pigment
KR20040083296A (en) allowance method for volume conductivity on tray
JPH08255521A (en) Composition for forming conductive film and its formation
JPH05151828A (en) Pressure-sensitive conductive material
JPH03247662A (en) Pressure-sensitive and resistance-variable conductive composition
SU603353A3 (en) Material for manufacturing capacitor contact coating
DE2166805C3 (en)
KR870007216A (en) Crosslinked polymer fine particles and coating composition containing the same