JPH01168322A - Multistage fine bubble generator - Google Patents

Multistage fine bubble generator

Info

Publication number
JPH01168322A
JPH01168322A JP62324845A JP32484587A JPH01168322A JP H01168322 A JPH01168322 A JP H01168322A JP 62324845 A JP62324845 A JP 62324845A JP 32484587 A JP32484587 A JP 32484587A JP H01168322 A JPH01168322 A JP H01168322A
Authority
JP
Japan
Prior art keywords
rotor
gas
fine bubble
rotors
bubble generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62324845A
Other languages
Japanese (ja)
Other versions
JPH0555177B2 (en
Inventor
Shikazo Nakagawa
中川 鹿藏
Kaoru Aoki
薫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SANGYO GIJUTSU KK
Original Assignee
NIPPON SANGYO GIJUTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SANGYO GIJUTSU KK filed Critical NIPPON SANGYO GIJUTSU KK
Priority to JP62324845A priority Critical patent/JPH01168322A/en
Publication of JPH01168322A publication Critical patent/JPH01168322A/en
Publication of JPH0555177B2 publication Critical patent/JPH0555177B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2336Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer
    • B01F23/23362Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer the gas being introduced under the stirrer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE:To effectively utilize a gaseous raw material by providing a plurality of rotors at a suitable intervals on a shaft rotated at high velocity in liquid contained in the same tank and allowing gas fed through a feed pipe to be finely bubbled via the rotor in order from the lower part to the upper part. CONSTITUTION:A plurality of rotors 1 are provided at the suitable intervals on a shaft 2 which is provided in liquid 6 contained in the same tank 5 and rotated at high velocity. The tip of a gas feed pipe 3 inserted into the tank 5 from the outside is opened to the underside of the lowermost rotor selected from among these rotors 1 and the gas fed through the feed pipe 3 allows to be finely bubbled via the rotor in order from the rotor 1' of the lower part to the upper part 1. As a result, effective treatment of difficultly reactive gas, enhancement of utilization efficiency of a specified component incorporated in a gaseous raw material and effective utilization of the gaseous raw material can be contrived and also the title bubble generator can be utilized for an equipment necessitating uniform reaction velocity in respective parts e.g., a sewage disposal equipment due to activated sludge.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は難反応性気体の有効処理、原料気体中の特定成
分の利用効率の向上、原料気体の有効利用を図ると共に
、各部分均一な反応速度を必要とする装置、例えば活性
汚泥による下水処理装置等に利用できる多段式微細気泡
発生装置に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention aims to effectively treat refractory gases, improve the utilization efficiency of specific components in the raw material gas, and effectively utilize the raw material gas. The present invention relates to a multistage fine bubble generator that can be used in devices that require high reaction speeds, such as sewage treatment devices using activated sludge.

(従来の技術) 従来の気液接触装置、自吸式微細気泡発生装置としては
特公昭43−13121号公報、特公昭51−1942
4号公報、特公昭58−29127号公報、特開昭61
−35832号公報に示すものが提案されている。先ず
特公昭43−13121号公報に示す気液接触装置は、
回転子は1個で、密実、中空又は有底であり、この回転
子の下方に気体送入口を設置してなるものである。また
特公昭58−29127号公報に示す微細気泡発生装置
も回転子は1個であり、外周面の1710〜1/3に当
る表面に均−高さの凸起を均一間隔で縦縞状に凸段して
なるものである。
(Prior art) Conventional gas-liquid contact devices and self-priming microbubble generators are disclosed in Japanese Patent Publication No. 13121/1983 and Japanese Patent Publication No. 1942/1983.
Publication No. 4, Japanese Patent Publication No. 58-29127, Japanese Patent Application Publication No. 1983
The one shown in Japanese Patent No. 35832 has been proposed. First, the gas-liquid contact device shown in Japanese Patent Publication No. 43-13121 is
There is only one rotor, which is solid, hollow, or has a bottom, and a gas inlet is installed below the rotor. Furthermore, the microbubble generator disclosed in Japanese Patent Publication No. 58-29127 has one rotor, and the surface corresponding to 1710 to 1/3 of the outer circumferential surface has protrusions of uniform height in the form of vertical stripes at uniform intervals. It happens in stages.

また特開昭61−35832号公報に示す自吸式微細気
泡発生装置も回転子は1個で、上下両端有蓋であり、上
面又は下面に放射状の羽根翼を設け、かつ外周側面に中
心線に平行な縦縞状の畝を植設し、該羽根翼部に外部か
ら吸引した気体を供給するようにしてなるものである。
Furthermore, the self-priming microbubble generator disclosed in JP-A No. 61-35832 has one rotor, has lids on both the upper and lower ends, has radial blades on the upper or lower surface, and has a center line on the outer peripheral side. Parallel vertical striped ridges are planted, and gas sucked in from the outside is supplied to the blades.

以上の各公報に示すものは、夫々回転子を液中に1個だ
け設けた場合であるが、特公昭51−19424号公報
に示すものは、1本の駆動軸に複数の回転子を間隔をお
いて取付けてなるものである。そして各回転子は隔壁で
上下に仕切られた各液槽内に1個づつ設けられており、
各液槽内の液体は上下2槽を繋ぐオーバーフロー管によ
って連通し、下方槽で発生した気泡は前記隔壁の中央部
に設けた開口部より上部槽にtF+ !されるようにな
っている。
What is shown in each of the above publications is a case where only one rotor is provided in the liquid, but what is shown in Japanese Patent Publication No. 51-19424 is a case in which multiple rotors are installed on one drive shaft at intervals. It is installed after the One rotor is installed in each liquid tank, which is partitioned into an upper and lower part by a partition wall.
The liquid in each tank is communicated through an overflow pipe that connects the upper and lower tanks, and air bubbles generated in the lower tank are transferred to the upper tank through an opening provided in the center of the partition wall. It is now possible to do so.

(発明が解決しようとする問題点) しかしながら前記従来装置のうち、特公昭43−131
21号公報、特公昭5B−29127号公報、特開昭6
1−35832号公報に示す装置の回転子は何れも1個
であるため、難反応性気体の有効処理乃至原料気体の有
効利用を図るためには、回転子上部の液高を高(する必
要があり、従って気体の供給圧力を高くする必要がある
などの問題があった。
(Problems to be solved by the invention) However, among the conventional devices,
Publication No. 21, Japanese Patent Publication No. 5B-29127, Japanese Patent Publication No. 6
Since each of the devices shown in Publication No. 1-35832 has one rotor, it is necessary to increase the liquid level above the rotor in order to effectively treat refractory gases or effectively utilize raw material gases. Therefore, there were problems such as the need to increase the gas supply pressure.

また特公昭51−19424号公報に示す装置は、複数
の回転子が1本の駆動軸に上下に間隔を置いて多段に設
けられているが、この場合の各回転子は仕切板で離隔さ
れた気相と液相とを有する槽内で夫々使用され、各種は
上下に複数積重ねられている。従って気体が先ず最下部
の回転子に供給されて微細化された気泡は、槽上部の気
体層を通ってその上の回転子の下部に供給されるため、
折角下部の回転子で微細化された気泡を気体層で全部消
滅させた後、再びこれを集めて次の上部の回転子で改め
て微細化することになる。従ってこれは多段で処理する
ものではなく、各種が独立したもので、これが上下に複
数個積重ねられたものにすぎず、しかも各種の液高をオ
ーバーフロー管を設けて一定に保ち、気体の供給圧力、
即ち供給気体量を一定に保つ必要があり、運転上程々の
困難があると共に、構造も複雑になる等の問題があった
Furthermore, in the device shown in Japanese Patent Publication No. 51-19424, a plurality of rotors are provided on one drive shaft in multiple stages with vertical intervals, but in this case, each rotor is separated by a partition plate. Each type is used in a tank having a gas phase and a liquid phase, and a plurality of each type are stacked one above the other. Therefore, gas is first supplied to the rotor at the bottom, and the bubbles are then supplied to the lower part of the rotor above it through the gas layer at the top of the tank.
After all the bubbles that have been made fine by the rotor at the bottom are extinguished in the gas layer, they are collected again and made fine again by the next rotor at the top. Therefore, this is not a multi-stage process, but each type is independent, and it is just a stack of multiple layers one above the other.Moreover, an overflow pipe is installed to keep the various liquid levels constant, and the gas supply pressure is ,
That is, it is necessary to keep the amount of gas supplied constant, which poses problems such as moderate operational difficulties and a complicated structure.

本発明は前記従来の問題点を解決するために提案された
もので、最下部の回転子で生成した微細気泡のうち、比
較的大粒の気泡は軸心に多く集まることから、これを上
部の回転子で更に細かく再微細化することを目的とする
ものである。
The present invention was proposed in order to solve the above-mentioned conventional problems. Among the fine bubbles generated in the lowermost rotor, many relatively large bubbles gather around the axis. The purpose of this is to further refine the structure using a rotor.

(問題点を解決するための手段) このため本発明は、同一槽内の液体中に配設されて高速
回転する軸上に複数個の回転子を適当な間隔を設けて配
設し、該回転子のうち最下部のものの下面に外部から前
記槽内に挿入された気体供給管の先端を開口し、供給さ
れた気体を下方の回転子から順次上部の回転子を経て微
細気泡化するようにしてなるもので、これを問題点解決
のための手段とするものである。
(Means for Solving the Problems) Therefore, the present invention provides a plurality of rotors disposed at appropriate intervals on a shaft that is disposed in the liquid in the same tank and rotates at high speed. The tip of a gas supply pipe inserted into the tank from the outside is opened on the bottom surface of the lowest rotor, so that the supplied gas is turned into fine bubbles from the lower rotor through the upper rotor. It is intended to be used as a means to solve problems.

(作用) 複数の回転子が軸の回転により同時に、回転し、最下部
の回転子の下面に気体供給管より気体を供給すると、気
体は微細気泡化され、そのうち比較的大粒の気泡は軸心
部に多く集まって、その上の回転子の位置に上昇して再
微細化され、気液接触反応が増大する。
(Function) When multiple rotors are rotated simultaneously by the rotation of the shaft and gas is supplied from the gas supply pipe to the bottom surface of the lowest rotor, the gas becomes fine bubbles, and relatively large bubbles move toward the center of the shaft. It gathers in large quantities in the upper part of the rotor, rises to the position of the rotor above it, becomes finer again, and increases the gas-liquid catalytic reaction.

(実施例) 以下本発明を図面の実施例について説明すると、第1図
及び第2図は本発明の夫々異なる実施例を示す。
(Embodiments) The present invention will be described below with reference to embodiments shown in the drawings. FIGS. 1 and 2 show different embodiments of the present invention.

さて本願の回転子1は、前記従来の特公昭43−131
21号公報、特公昭58−29127号公報、特開昭6
1−35832号公報に示す回転子が利用できる。即ち
、密実、中空文は有底で外周表面をフラットとした円筒
状のもの、外周面の1710〜1/3に当る表面に均−
高さの凸起を均一間隔で縦縞状に6設した円筒状のもの
、上下両端有蓋で、下面に羽根翼を設け、かつ外周側面
に中心線に平行な縦縞状の畝を植設した円筒状のもの等
が利用できる。また第1図及び第2図における2は回転
子軸中心線、3は気体供給管、4は邪魔板、5は槽、6
は液体であり、第2図の最下部の回転子1′の下面には
羽根翼7が設けられている。
Now, the rotor 1 of the present application is similar to the conventional Japanese Patent Publication No. 43-131.
Publication No. 21, Japanese Patent Publication No. 58-29127, Japanese Patent Publication No. 1983
The rotor shown in Japanese Patent No. 1-35832 can be used. In other words, the Mitsugi and Hollow letters are cylindrical with a bottom and a flat outer circumferential surface, and the outer circumferential surface is flat.
A cylindrical shape with 6 protrusions of equal height arranged in vertical stripes at uniform intervals, a cylinder with lids on both the top and bottom, blades on the lower surface, and vertical striped ridges parallel to the center line on the outer circumferential side. You can use the following. In addition, in FIGS. 1 and 2, 2 is the rotor axis center line, 3 is the gas supply pipe, 4 is the baffle plate, 5 is the tank, and 6
is a liquid, and blades 7 are provided on the lower surface of the rotor 1' at the lowest position in FIG.

以下下記具体例により詳述する。This will be explained in detail below using the following specific examples.

具体例 A9回転数を一定とし、回転子を1個の場合と2個の場
合を比較した。
Specific Example A9 The number of rotations was kept constant, and a case with one rotor and a case with two rotors were compared.

(1)0.2モルの亜硫酸ソーダ溶液20Jを、第1図
に示す如き内径200mmφ、高さ750wmhの透明
アクリル製円筒容器に入れ、回転子は50■■φX75
tmbの透明アクリル製円筒体で、その外周表面の中央
に帯状に幅311、高さ31m、長さ9關の縦縞を等間
隔に12枚凸設したもので、これを図示のように最下部
に取付け、回転数を250OR,P、M、に保持しなが
ら外部から回転子の内側に向けて毎分101の空気を流
量計で計測しながら供給した。
(1) Put 20 J of 0.2 mol of sodium sulfite solution into a transparent acrylic cylindrical container with an inner diameter of 200 mmφ and a height of 750 wmh as shown in Fig. 1, and the rotor is 50 mmφ x 75
TMB transparent acrylic cylindrical body, with 12 vertical stripes 311 mm wide, 31 meters high, and 9 meters long protruding from the center of its outer circumferential surface at equal intervals. The rotation speed was maintained at 250 OR, P, M, and air was supplied from the outside to the inside of the rotor at a rate of 101/min while being measured with a flow meter.

なお、中心軸と器壁との中間の位置に内径11m、外径
205M、高さ745■■のアクリル管4本を中心軸に
対して対称になるようにSUS製底板に樹立して邪魔棒
となし、導入空気を微細気泡化し反応させた。実験は1
0分毎に試料を採取して分析し、PHを計り、回転数、
電流、電圧、電力を測定して得た結果は第1表の通りで
ある。第1表中酸素利用効率とは、0 、2mo lの
亜硫酸ソーダ溶液201中に含まれるNa、SO,は5
04grで、これを全部酸化するのに要する酸素量は6
4grである。
In addition, four acrylic tubes with an inner diameter of 11 m, an outer diameter of 205 m, and a height of 745 mm were installed on the SUS bottom plate symmetrically with respect to the central axis at the midpoint between the central axis and the vessel wall. The introduced air was made into fine bubbles and reacted. Experiment 1
Samples are collected and analyzed every 0 minutes, the pH is measured, the rotation speed,
The results obtained by measuring current, voltage, and power are shown in Table 1. The oxygen utilization efficiency in Table 1 means that Na, SO, contained in 0.2 mol of sodium sulfite solution 201 are 5.
04 gr, the amount of oxygen required to oxidize all of it is 6
It is 4gr.

64grの02を含む空気量は275.86grで、容
積にすると空気の比重は1.2928gr/ lである
から213.38 ji!となる。この場合反応完了ま
でに容器に供給した空気量は6日01であるから、この
内酸化に使用された02即ち酸素利用効率は31.38
%である。
The amount of air including 02 of 64gr is 275.86gr, and the specific gravity of air is 1.2928gr/l, so it is 213.38 ji! becomes. In this case, since the amount of air supplied to the container until the reaction is completed is 6 days 01, the amount of air used for oxidation is 02, that is, the oxygen utilization efficiency is 31.38
%.

(2)多段式微細気泡発生装置を構成するには、(1)
記載の最下部回転子の蓋面から20on離して上部回転
子の底面が位置するように、最下部回転子と同軸に取付
ける。該上部回転子は50冨富φX75m++hの透明
アクリル製円筒体で、上下に蓋と底とを有し、円筒体の
外周側面の中央帯に幅3n、高さ3鰭、長さ9mlの縦
縞を等間隔に12枚凸設した。反応容器の大きさ、亜硫
酸ソーダの濃度及び液量、供給空気量、回転子の回転数
もすべて前記(1)と同じにして得られた結果は、TI
)と比較に便利なように第1表中に並記した。
(2) To configure a multi-stage fine bubble generator, (1)
It is installed coaxially with the lowermost rotor so that the bottom surface of the upper rotor is located 20 on apart from the lid surface of the lowermost rotor. The upper rotor is a transparent acrylic cylindrical body measuring 50 Tomomi φ x 75 m++h, with a lid and a bottom at the top and bottom, and a vertical stripe with a width of 3 nm, a height of 3 fins, and a length of 9 ml in the central band on the outer peripheral side of the cylinder. 12 protrusions were placed at equal intervals. The size of the reaction vessel, the concentration and volume of sodium sulfite, the amount of air supplied, and the rotation speed of the rotor were all the same as in (1) above, and the results obtained were TI
) are listed in Table 1 for convenience of comparison.

第 1 表(回転子1個と2個との比較)B6回転子1
個を高速にした場合と、具体例の(2)の比較的低速2
段とによる電力、酸素利用効率の比較。
Table 1 (Comparison between 1 rotor and 2 rotors) B6 rotor 1
When the speed is set to high speed, and when the speed is relatively low in (2) of the specific example.
Comparison of power and oxygen utilization efficiency between stages.

(3)  具体例(1)記載の最下部回転子のR,P、
M、を3500と4500とにした場合と、具体例(2
)記載の回転子2段でR,P、 M、2500の場合と
を第2表に並記する。
(3) R, P of the lowest rotor described in specific example (1),
When M is set to 3500 and 4500, and a specific example (2
Table 2 also shows the case of two-stage rotor with R, P, M, and 2500 as described in ).

第2表から回転子を高速度で運転して大きな電力を消費
するよりも低速度で回転子の数を増した方が、消費動力
は小さく、酸素利用効率は遥かに大きくなり、反応容器
の高さを低くすることの出来る明るい希望が得られた。
Table 2 shows that rather than operating the rotor at high speed and consuming a large amount of power, increasing the number of rotors at low speed results in lower power consumption, much higher oxygen utilization efficiency, and There was a bright hope that the height could be lowered.

C0自吸式微細気泡発生装置の回転子を多段にした効果
Effect of multi-stage rotor of CO self-priming micro bubble generator.

(4)  自吸式の場合、最下部回転子は50mmφ×
75mbの円筒体の下面の蓋に垂直に、且つ放射状に高
さ16wm、幅17fl、厚さ3鶴のアクリル板製羽根
翼8枚を植設し、更にこの円筒体の側面に円筒体の中心
線に平行に幅3龍、高さ3鶴、長さ9龍の縦縞12本を
、それらの頭を蓋面から7.5n離した線上に揃え、頭
を下にして配設し、羽根翼を下に向け、直径17NMφ
の5US304製回転軸に取付け、一方面径200鰭φ
、高さ750鶴りの透明アクリル製反応塔の底面中心の
穴から塔外に通ずる内径12鶴φの垂直管を中心線とし
、管の上端に回転子の羽根翼の形成する仮想の平面から
、これに平行に31■離した位置に直径75flφの硬
質プラスチック製円板を配設し、回転子の高速回転によ
って周囲の液中に起こる渦流に随伴する自吸作用により
塔外から吸引される空気は前述の内径12Bの垂直管を
経て、塔底外において吸気の脈動調節を行ってから流量
計に連結し、自吸した空気量を測定し、この時の回転数
、動力、酸素利用効率を求め第3表に表示した。
(4) In the case of self-priming type, the bottom rotor is 50mmφ×
Eight acrylic blades with a height of 16 wm, a width of 17 fl, and a thickness of 3 mm were planted perpendicularly and radially to the bottom lid of the 75 mb cylinder, and the center of the cylindrical body was placed on the side of the cylindrical body. Twelve vertical stripes with a width of 3 long, a height of 3, and a length of 9 are parallel to the line, their heads aligned on a line 7.5n away from the lid surface, and arranged with the heads facing down. facing down, diameter 17NMφ
Mounted on the 5US304 rotating shaft, one side has a diameter of 200 fins.
, the center line is a vertical pipe with an inner diameter of 12 φ that leads from the hole in the center of the bottom of the transparent acrylic reaction tower to the outside of the tower, and from the imaginary plane formed by the blades of the rotor at the upper end of the pipe. A hard plastic disc with a diameter of 75flφ is installed parallel to this at a distance of 31 mm, and the liquid is sucked in from outside the tower by the self-priming effect accompanying the vortex generated in the surrounding liquid by the high speed rotation of the rotor. The air passes through the aforementioned vertical pipe with an inner diameter of 12B, and after adjusting the intake air pulsation outside the bottom of the tower, it is connected to a flow meter to measure the amount of self-suctioned air, and calculate the rotation speed, power, and oxygen utilization efficiency at this time. were calculated and shown in Table 3.

(5)最下部回転子は具体例の(4)のものをそのまま
使用し、この回転子の上端から上部回転子の下端までの
距離を200寵離して、直径17 s*φの5US30
4製回転軸に配設した。上部回転子は具体例(2)に記
載のものと全く同じである。回転子の回転数は具体例(
41(5)共に流量計がIQ It /minを指示す
るに至った時の回転数を採用し、電力、酸素利用効率と
共に第3表に並記した。
(5) For the lowermost rotor, use the one in the specific example (4) as is, and set the distance from the upper end of this rotor to the lower end of the upper rotor by 200 cm, and make a 5US30 with a diameter of 17 s*φ.
It was installed on a rotating shaft manufactured by No. 4. The upper rotor is exactly the same as that described in Example (2). The rotation speed of the rotor is shown in a specific example (
41(5), the rotational speed at which the flow meter indicated IQ It /min was adopted and is listed in Table 3 together with the electric power and oxygen utilization efficiency.

第 3 表(自吸式微細気泡発生装置による多段式の効
果) 以上は何れも亜硫酸ソーダ溶液を空気で酸化した場合で
あるから、気体中の特定成分として酸素を特定し、その
利用効率を示したが、例えば半導体製造時の排ガスを処
理する場合には当該半導体ガスが特定成分となり、それ
らの排除効率が示される。なお、以上は実験装置の都合
で上部回転子1個の場合を例示したが適用現場の状況に
応じて上部回転子の数を増し、直径も変化すると更に高
効率が期待される。
Table 3 (Effects of multi-stage self-priming microbubble generator) Since the above cases are based on the oxidation of sodium sulfite solution with air, oxygen is identified as a specific component in the gas, and its utilization efficiency is shown. However, for example, when exhaust gas from semiconductor manufacturing is treated, the semiconductor gas becomes a specific component, and the removal efficiency of these components is indicated. In addition, although the case where one upper rotor is used is illustrated above due to the experimental equipment, even higher efficiency is expected if the number of upper rotors is increased and the diameter is changed depending on the situation at the field of application.

(発明の効果) 以上詳細に説明した如く本発明は構成されているので、
以下のような効果を奏するものである。
(Effects of the Invention) Since the present invention is configured as explained in detail above,
This provides the following effects.

(イ)消費動力の面から云えば、最下部回転子が液相中
で先ず気体を微細気泡とし、比重の小さい気液混和を形
成し、その内で上部回転子が回転するので、複数個の上
部回転子の個々の消費動力は最下部回転子のそれより逼
かに小さい。
(b) In terms of power consumption, the lowermost rotor first turns the gas into fine bubbles in the liquid phase, forming a gas-liquid mixture with a small specific gravity, and the upper rotor rotates within that, so multiple The individual power consumption of the top rotor is much smaller than that of the bottom rotor.

(ロ)また気体中の特定成分の利用効率の面から云えば
、最下部回転子の直径を一定にし、回転数を増し、気体
中の特定成分の利用効率を最高にした時の回転数をN回
とし、消費動力をQK−とすると、この最下部回転子と
同軸上に一定の間隔を離して同じ直径の回転子を1個配
設しただけで、全体の回転数を約N/2回に低減するこ
とによって消費動力を0.58QK−に節減することが
出来ると共に、気体中の特定成分の利用効率を15〜2
0%も向上することが出来る。
(b) Also, from the point of view of the utilization efficiency of specific components in the gas, the rotation speed when the diameter of the lowest rotor is kept constant and the rotation speed is increased to maximize the utilization efficiency of the specific components in the gas. If the number of rotations is N, and the power consumption is QK-, then by simply arranging one rotor of the same diameter coaxially with this lowest rotor and spaced apart from it by a certain distance, the total number of rotations can be reduced to approximately N/2. By reducing the number of times, power consumption can be reduced to 0.58QK-, and the utilization efficiency of specific components in the gas can be reduced by 15 to 2.
It can be improved by as much as 0%.

(ハ)最下部回転子が吸気装置を併有する場合は、一定
量の吸気に必要な回転数を確保した上で、同軸上に所定
の間隔を離して同じ直径の回転子を1個配設しただけで
同量の吸気を続けると、消費動力は若干増加するが、回
転数は反対に約5%低減し、気体中の特定成分の利用効
率は10%程度向上するとの知見を得た。この場合プラ
ント全体として考えると、自吸式の併用による消費動力
節減効果のウェイトは大きい。
(c) If the lowest rotor is also equipped with an intake device, after ensuring the rotational speed necessary for a certain amount of intake, place one rotor of the same diameter on the same axis with a predetermined distance apart. They found that if the same amount of air is continued to be taken in, the power consumption will increase slightly, but the rotational speed will decrease by about 5%, and the utilization efficiency of specific components in the gas will improve by about 10%. In this case, when considering the plant as a whole, the effect of reducing power consumption by using the self-priming system in combination is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々本発明の実施例を示す多段式微
細気泡発生装置の縦断面図である。 図の主要部分の説明 1−・回転子     2・・一回転子軸中心線3−・
気体供給管   5−・槽 6−液体 第1図        第2図 6・・・液体 手続補正書 昭和63年3月4 日 特許庁長官 小 川 邦 夫 殿 1、事件の表示 特願昭62−324845号 2、発明の名称 多段式微細気泡発生装置 3、補正をする者 事件との関係   特許出願人 名称 日本産業技術株式会社 4、代理人 6、補正の対象 発明の詳細な説明の欄、図面の簡単な説明の欄、図面 補正の内容 1、明細書第12頁第8行目の「測定し、この時の」の
記載を次のように補正する。 「測定した。この際の邪魔板は第2図に示す邪魔板4の
みを槽内壁に沿って設置し、この時の」2、同第13頁
の第3表を次の通り補正する。 3、同第15頁第13行目の「6−液体」の記載の後に
次の記載を挿入する。 「7−・・羽根翼」 4、図面の第2図を別紙の通り補正する。 以上
1 and 2 are longitudinal cross-sectional views of a multi-stage fine bubble generator showing an embodiment of the present invention, respectively. Explanation of main parts of the diagram 1-・Rotor 2・・1 rotor axis center line 3-・
Gas supply pipe 5-・Tank 6-Liquid Figure 1 Figure 2 6...Liquid procedure amendment March 4, 1986 Director General of the Patent Office Kunio Ogawa 1, Patent Application for Indication of Case 1988-324845 No. 2, Name of the invention Multi-stage micro bubble generator 3, Relationship with the case of the person making the amendment Patent applicant name: Japan Industrial Technology Co., Ltd. 4, Agent 6, Column for detailed explanation of the invention subject to amendment, Drawings The statement "measured at this time" in the brief explanation column, content 1 of drawing correction, page 12, line 8 of the specification, will be corrected as follows. "Measurements were made. At this time, only the baffle plate 4 shown in FIG. 2 was installed along the inner wall of the tank," 2, Table 3 on page 13 of the same was corrected as follows. 3. Insert the following statement after the statement "6-liquid" on page 15, line 13. "7--Blade" 4. Correct Figure 2 of the drawing as shown in the attached sheet. that's all

Claims (6)

【特許請求の範囲】[Claims] (1)同一槽内の液体中に配設されて高速回転する軸上
に複数個の回転子を適当な間隔を設けて配設し、該回転
子のうち最下部のものの下面に外部から前記槽内に挿入
された気体供給管の先端を開口し、供給された気体を下
方の回転子から順次上部の回転子を経て微細気泡化する
ことを特徴とする多段式微細気泡発生装置。
(1) A plurality of rotors are placed at appropriate intervals on a shaft that is placed in the liquid in the same tank and rotates at high speed. A multi-stage fine bubble generator characterized by opening the tip of a gas supply pipe inserted into a tank and turning the supplied gas into fine bubbles from a lower rotor through an upper rotor.
(2)回転子を下部を開口し、上部を閉塞した円筒体と
したことを特徴とする特許請求の範囲第1項記載の多段
式微細気泡発生装置。
(2) The multi-stage fine bubble generator according to claim 1, wherein the rotor is a cylindrical body with an open bottom and a closed top.
(3)回転子を上下両端とも閉塞した円柱体としたこと
を特徴とする特許請求の範囲第1項記載の多段式微細気
泡発生装置。
(3) The multi-stage fine bubble generator according to claim 1, wherein the rotor is a cylindrical body with both upper and lower ends closed.
(4)回転子の外周側の一部に帯状に、中心軸に対して
放射状に等間隔をもって縦条を凸設したことを特徴とす
る特許請求の範囲第1項記載の多段式微細気泡発生装置
(4) Multi-stage micro-bubble generation according to claim 1, characterized in that longitudinal stripes are provided in a band shape on a part of the outer circumferential side of the rotor at equal intervals radially with respect to the central axis. Device.
(5)気体を最下部回転子の下方中心部に気体供給装置
により供給することを特徴とする特許請求の範囲第1項
記載の多段式微細気泡発生装置。
(5) The multi-stage fine bubble generating device according to claim 1, wherein the gas is supplied to the lower center of the lowermost rotor by a gas supply device.
(6)最下部回転子の下面に放射状に羽根翼を設け、該
羽根翼下方に、上端に回転子の直径の1.1〜1.5倍
の外径を有する平板又は拡大管を設けた上向開放端を有
する気体吸引管より気体を吸引供給することを特徴とす
る特許請求の範囲第1項記載の多段式微細気泡発生装置
(6) Blades are provided radially on the lower surface of the lowest rotor, and below the blades, a flat plate or expansion tube having an outer diameter of 1.1 to 1.5 times the diameter of the rotor is provided at the upper end. 2. The multi-stage fine bubble generating device according to claim 1, wherein the gas is sucked and supplied from a gas suction pipe having an upward open end.
JP62324845A 1987-12-22 1987-12-22 Multistage fine bubble generator Granted JPH01168322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62324845A JPH01168322A (en) 1987-12-22 1987-12-22 Multistage fine bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324845A JPH01168322A (en) 1987-12-22 1987-12-22 Multistage fine bubble generator

Publications (2)

Publication Number Publication Date
JPH01168322A true JPH01168322A (en) 1989-07-03
JPH0555177B2 JPH0555177B2 (en) 1993-08-16

Family

ID=18170312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324845A Granted JPH01168322A (en) 1987-12-22 1987-12-22 Multistage fine bubble generator

Country Status (1)

Country Link
JP (1) JPH01168322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049769A1 (en) * 2020-09-07 2022-03-10 三菱重工エンジニアリング株式会社 Wet-type ammonia cleaning apparatus and fertilizer production plant provided with said wet-type ammonia cleaning apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023071A (en) * 1973-07-05 1975-03-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023071A (en) * 1973-07-05 1975-03-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049769A1 (en) * 2020-09-07 2022-03-10 三菱重工エンジニアリング株式会社 Wet-type ammonia cleaning apparatus and fertilizer production plant provided with said wet-type ammonia cleaning apparatus

Also Published As

Publication number Publication date
JPH0555177B2 (en) 1993-08-16

Similar Documents

Publication Publication Date Title
US4572821A (en) Apparatus for dissolving ozone in a fluid
SU663297A3 (en) Device for biological cleaning of waste water
US5314076A (en) Installation for the mixing of two fluid phases by mechanical stirring, notably for the treatment of water by transfer of oxidizing gas, and use of such an installation
CN102133509B (en) Gas and liquid mixed circulation generating device
JP2593309B2 (en) Flotation vessel for liquid
FI970977A0 (en) Gas treatment / flotation reactor with devices for separating solids from liquids
CN102249374A (en) Transfer apparatus and system, and uses thereof
CN101047250A (en) Fuel cell system
JPH01168322A (en) Multistage fine bubble generator
GB2113562A (en) Treatment process
CN208727170U (en) High gravity desulfurization device
NO141748B (en) DEVICE FOR BIOLOGICAL CLEANING WORKS
US1498839A (en) Mixing unit for liquid-purification apparatus
CN108889108A (en) High gravity desulfurization system
CN212127692U (en) Biological treatment device for sewage
JPS63503523A (en) Gas-liquid separation equipment
CN207546526U (en) A kind of stirring decoloration device for clopidol synthesis
JP2003047951A (en) Gas-liquid separation apparatus and ozone water generation apparatus
CN212441135U (en) Air injection device capable of adjusting gas-liquid contact mode
JPS6031540B2 (en) Aerator
CN214681015U (en) Flue gas purification desulfurization is with filled tower
SU738630A1 (en) Mass-exchange cyclone apparatus for distillation of liquid
SU1688024A2 (en) Steam-generating device
JPS6135832A (en) Self-sucking type fine air bubble generation appratus
SU967531A1 (en) Mass exchange apparatus with barbling bed