JPS6031540B2 - Aerator - Google Patents

Aerator

Info

Publication number
JPS6031540B2
JPS6031540B2 JP51018035A JP1803576A JPS6031540B2 JP S6031540 B2 JPS6031540 B2 JP S6031540B2 JP 51018035 A JP51018035 A JP 51018035A JP 1803576 A JP1803576 A JP 1803576A JP S6031540 B2 JPS6031540 B2 JP S6031540B2
Authority
JP
Japan
Prior art keywords
water
air supply
casing
oxygen
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51018035A
Other languages
Japanese (ja)
Other versions
JPS52102196A (en
Inventor
菊生 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51018035A priority Critical patent/JPS6031540B2/en
Publication of JPS52102196A publication Critical patent/JPS52102196A/en
Publication of JPS6031540B2 publication Critical patent/JPS6031540B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【発明の詳細な説明】 本発明はェアレータにかかり、特に水中への酸素の溶解
能力を向上したェアレータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aerator, and particularly to an aerator with improved ability to dissolve oxygen into water.

ヱアレータは活性汚泥法による汚水処理・塚気から養魚
用水の処理に至るまで広く活用されている。
Ealator is widely used in everything from sewage treatment and mound aeration using the activated sludge method to fish farming water treatment.

従来のェアレータは、他の中層又は低層の水を汲み上げ
、水面に放射状に散布する。
Conventional aerators pump up water from other medium or low levels and distribute it radially onto the water surface.

この構造においては大気中に放射された大気圧の水が、
大気と接触する時に大気圧における許容大気溶解度で水
中へ酸素を溶解する。この場合ェアレータの性能は水と
大気との接触の状況すなわち水の放流角度と放流速度で
きまつてくる。しかし放流時に水中の空気が飽和溶解度
に達することはないので、池の内部の水の酸素溶解度を
高めるには長時間の運転又は大容量のェアレータの設置
が必要となる。本発明は上記の問題点にかんがみてなさ
れたもので、その目的は、酸素の溶解度を飛躍的に向上
し得るェアレータを提供することである。
In this structure, atmospheric pressure water radiated into the atmosphere,
When in contact with the atmosphere, it dissolves oxygen in water at the permissible atmospheric solubility at atmospheric pressure. In this case, the performance of the aerator is determined by the conditions of contact between the water and the atmosphere, that is, the water discharge angle and discharge speed. However, since the air in the water does not reach saturated solubility during discharge, long-term operation or installation of a large-capacity aerator is required to increase the oxygen solubility of the water inside the pond. The present invention has been made in view of the above problems, and its purpose is to provide an aerator that can dramatically improve the solubility of oxygen.

以下、本発明の−−実施例を図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

図において、6はケーシングで、一端が筒状に閉口し池
端は放射状に閉口する。このケーシング5の放射状に閉
口する他端の放水口7には複数のステ−ペン6を所定角
度にて設ける。8はフロートで、上記ケーシング5を、
上記筒状に閉口する一端が水中に位置しかつ放射状に閉
口する他端の放水口7が水面上に位置する如く支持する
In the figure, 6 is a casing, one end of which is closed in a cylindrical shape, and the pond end is closed radially. A plurality of stay pens 6 are provided at a predetermined angle at a water discharge port 7 at the other end of the casing 5 that closes radially. 8 is a float, and the casing 5 is
It is supported so that one end of the cylindrical closed end is located underwater, and the water discharge port 7 of the other radially closed end is located above the water surface.

4は吸込管で、テーパ状を成し、上記ケーシング5の筒
状に閉口する叫端と連結する。
Reference numeral 4 denotes a suction pipe which has a tapered shape and is connected to the cylindrical closed end of the casing 5.

3はィンベラーで、前記ケーシング5の前記筒状部内に
設けられその回転により筒状部内の水を放射状に開□す
る池端の放水口7に向って圧送する。
Reference numeral 3 denotes an inveter, which is provided in the cylindrical portion of the casing 5, and its rotation forces the water in the cylindrical portion radially toward the water outlet 7 at the end of the pond.

このィンベラ−は駆動用のモータ1と主軸2により直結
している。9は給気管で、その一端の空気給気□12は
、前記ィンベラ日近くのィンベラーによる水流側に閉口
する。
This inverter is directly connected to a driving motor 1 and a main shaft 2. 9 is an air supply pipe, and the air supply □ 12 at one end thereof is closed to the water flow side by the invera near the invera.

また池端の空気吸込ロー1は気体源である大気中に閉口
する。さらにこの給気管9の中間部には給気量調筒機構
10を設ける。一般に気体の液体への溶解度は圧力の上
昇によって増大する。図面においてィンベラー3の下流
すなわち、ケーシング5の図示内側上部は、ポンプの流
れにおいて最大圧力の発生する場所であり従って給気管
9から供給された大気(又は酸素)は、この場所で充分
に水に溶解され、水は良好な酸素熔解状態で放水口7か
ら放流される。この際、放水口7以降の圧力は大気圧で
あるから、流水は圧力が大気圧まで低下するために過飽
和の状態となって、液化した大気(又は酸素)の一部は
再び気化するが全体として池へ流入する水は、その時の
大気の温度と圧力に相当した飽和溶解状態に保たれる。
こ机こよって水中の酸素の溶解度を従来のェアレータに
くらべて飛躍的に増大することが出来る。次にィンベラ
ー上流側への給気方法について説明する。
Furthermore, the air suction row 1 at the end of the pond is closed to the atmosphere, which is a gas source. Furthermore, an air supply amount adjustment mechanism 10 is provided in the middle of the air supply pipe 9. Generally, the solubility of a gas in a liquid increases with increasing pressure. In the drawing, the downstream of the inflator 3, that is, the upper part of the inner side of the casing 5 shown in the figure is the place where the maximum pressure occurs in the flow of the pump, and therefore the atmosphere (or oxygen) supplied from the air supply pipe 9 is sufficiently absorbed into the water at this place. The dissolved water is discharged from the water outlet 7 in a good oxygen-dissolved state. At this time, since the pressure after the water outlet 7 is atmospheric pressure, the pressure of the flowing water decreases to atmospheric pressure, resulting in a supersaturated state, and some of the liquefied air (or oxygen) vaporizes again, but the whole The water that enters the pond is kept at a saturated state of solution corresponding to the temperature and pressure of the atmosphere at that time.
This device can dramatically increase the solubility of oxygen in water compared to conventional aerators. Next, a method of supplying air to the upstream side of the inveter will be explained.

吸込管4から放水口7に至る流路において、最低圧力が
生ずるのはィンベラー3の直上流である。この近傍の圧
力は大気圧以下になるのでこ)に給気管を閉口させれば
何らの補助動力なしに、大気を自然吸気することが出来
る。すなわち閉口部の圧力Pを実例に基いて概算すれば
次の通りである。子=HS−き錫−(・心渋 ここで・ y :水の比重 Hs:給気管開口部の水面からの深さ き :吸込管の損失係数 V,こ吸込管入口の流連 タ :重力の加速度(98肌/s2) f :給気管開□部の形状による局部圧力降下係数V,
:ィンベラー入口部の流速 具体的な実施例によれば HSニ0,3の − Q Vi:芸−を■毒−岬 − 0.25 −を(o.多−o.・〆)=4.2の/s従って ;−。
In the flow path from the suction pipe 4 to the water outlet 7, the lowest pressure occurs immediately upstream of the inflator 3. Since the pressure in this area is below atmospheric pressure, if the air supply pipe is closed at this point, atmospheric air can be taken in naturally without any auxiliary power. That is, the pressure P at the closed portion can be estimated as follows based on an actual example. y: Specific gravity of water Hs: Depth of the air supply pipe opening from the water surface: Loss coefficient V of the suction pipe, Flow rate at the suction pipe inlet: Acceleration of gravity (98 skins/s2) f: Local pressure drop coefficient V due to the shape of the air supply pipe opening □,
:According to a specific example, the flow rate at the inlet of the inveter is: HS Ni0.3 - Q Vi: Gei - ■ Poison - Misaki - 0.25 - (o. multi-o.・〆) = 4. 2/s Therefore;-.

‐6−(場十ぎ−濠)となる。-6- (Batogi-Hori).

この式から分る通りき、fの値に関係なく大気圧より0
.6の以上の負圧になることが導かれ、実験結果とほゞ
一致する。尚、Qは流量(で/s)、Do、Dはそれぞ
れィンベラの外径および内径(机)である。目※吸気が
可能であることは、従来のェアレータにくらべて製作コ
ストの上昇を最低限に抑えることが可能となり実用性が
高い。またポンプ流路に大気(又は酸素)を給気するに
際して、自然の吸気力を利用せず強製給気を行なえば、
一般に製作コストは上昇するが、多量の大気(又は酸素
)を溶解せしめることが可能となり、池に返される流れ
が、確実に飽和熔解状態に保たれ得る。さらに目的とす
る酸素を、大気よりも高い濃度の状態で供給すると溶解
酸素量の増大に著しい効果が得られる。また給気管の閉
口位置については、最も安価な方法として吸込管の管壁
に開□させることが出来る。また吸込管の内部へ給気管
を突出させ、開□部の局部圧力降下係数ぎが大きくなる
ように形状を定めれば、自然給気の能力を著しく高める
ことが可能である。更に又、給気管に弁などの給気量調
節機構を設けることは全体の運転効率を高めるのに役立
つ。以上説明した通り、本発明によれば、空気その他酸
素を含む気体をポンプの流路内に送入し、ポンプの高圧
部において上記気体を水中に有効に溶解させるようにし
た経済的で性能の高いヱァレータを得ることが出来る。
As you can see from this equation, regardless of the value of f, it is 0 below atmospheric pressure.
.. It is derived that the negative pressure is greater than 6, which is almost in agreement with the experimental results. Note that Q is the flow rate (in/s), and Do and D are the outer diameter and inner diameter (disc) of the inflator, respectively. *Being able to take in air makes it possible to minimize the increase in production costs compared to conventional aerators, making it highly practical. Also, when supplying atmospheric air (or oxygen) to the pump flow path, if a strong air supply is performed without using the natural suction force,
Although generally more expensive to manufacture, it allows a greater amount of atmosphere (or oxygen) to be dissolved and ensures that the stream returned to the pond remains saturated with melt. Furthermore, if the target oxygen is supplied at a higher concentration than the atmosphere, a remarkable effect can be obtained in increasing the amount of dissolved oxygen. As for the closed position of the air supply pipe, the cheapest method is to open it in the wall of the suction pipe. Furthermore, if the air supply pipe is made to protrude into the interior of the suction pipe and the shape is determined so that the local pressure drop coefficient of the open part becomes large, it is possible to significantly increase the ability of natural air supply. Furthermore, providing an air supply amount adjusting mechanism such as a valve in the air supply pipe helps to improve the overall operating efficiency. As explained above, according to the present invention, air or other oxygen-containing gas is introduced into the flow path of the pump, and the gas is effectively dissolved in water in the high-pressure section of the pump. You can get a high rate.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明によるェアレータを示す図である。 1・・…・モータ、3・・・・・・インベラ、4・・・
・・・吸込管、5…・・・ケーシング、7・・・・・・
放水口、9…・・・給気管、10・・・・・・調整機構
、11…・・・吸入口、12・・・・・・給気□。
The drawing shows an aerator according to the invention. 1...Motor, 3...Invera, 4...
...Suction pipe, 5...Casing, 7...
Water discharge port, 9...Air supply pipe, 10...Adjustment mechanism, 11...Intake port, 12...Air supply □.

Claims (1)

【特許請求の範囲】[Claims] 1 一端が筒状に開口し他端は放射状に開するケーシン
グと、このケーシングを上記筒状に開口する一端が水中
に位置しかつ放射状に開口する他端が水面上に位置する
如く支持するフロートと、前記ケーシングの前記筒状部
内に設けられその回転により筒状内部の水を放射状に開
口する他端に向つて圧送するインペラーおよびその駆動
用のモータと、前記インペラー近くのインペラーによる
水流の流側に一端が開口し他端は気体源に開口する給気
管とを備えたエアレータ。
1. A casing with one end opening in a cylindrical shape and the other end opening radially, and a float that supports this casing so that the one end opening in the cylindrical shape is located underwater and the other end opening radially is located above the water surface. an impeller that is provided in the cylindrical part of the casing and that rotates to force water inside the cylindrical part toward the other end that opens radially; and a motor for driving the impeller; and a water flow produced by an impeller near the impeller. An aerator with an air supply pipe that is open at one end on the side and open at the other end to a gas source.
JP51018035A 1976-02-23 1976-02-23 Aerator Expired JPS6031540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51018035A JPS6031540B2 (en) 1976-02-23 1976-02-23 Aerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51018035A JPS6031540B2 (en) 1976-02-23 1976-02-23 Aerator

Publications (2)

Publication Number Publication Date
JPS52102196A JPS52102196A (en) 1977-08-26
JPS6031540B2 true JPS6031540B2 (en) 1985-07-23

Family

ID=11960405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51018035A Expired JPS6031540B2 (en) 1976-02-23 1976-02-23 Aerator

Country Status (1)

Country Link
JP (1) JPS6031540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021174916A1 (en) * 2020-03-06 2021-09-10 蓝深集团股份有限公司 Solar aerator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005358A (en) * 2008-06-28 2010-01-14 Takeshi Tachikawa Blood flow-improving instrument for calf which can deal with massage of sole
CN105523629B (en) * 2015-12-08 2019-01-15 蒋发俊 A kind of promotion multi-function device that water layer exchange and sediments re-suspension discharge up and down
CN105557617A (en) * 2015-12-16 2016-05-11 蒋发俊 Submersible pump type multifunctional upper-lower water layer exchange machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021174916A1 (en) * 2020-03-06 2021-09-10 蓝深集团股份有限公司 Solar aerator

Also Published As

Publication number Publication date
JPS52102196A (en) 1977-08-26

Similar Documents

Publication Publication Date Title
JPS6031540B2 (en) Aerator
JP3413121B2 (en) Aeration device
JP2002095942A (en) Gas dissolving device
JPS60101B2 (en) Pump device that diffuses air bubbles into water
JP3385047B2 (en) Water purification equipment
US3123651A (en) Impeller device
CN215480070U (en) High-solubility oxygen generator
US20030102580A1 (en) Impingment jet aeration
JPS60114331A (en) Gas liquid mixing apparatus
JP2007005289A (en) Fuel cell system
JPH10249380A (en) Underwater aerator
JP3742165B2 (en) Gas dissolving device
JP2001149945A (en) Algae controller
TWI768236B (en) High efficiency steam mixing device
SU1542567A1 (en) Apparatus for degassing liquids
KR102365005B1 (en) A Method For Water Purifying Using Ultrafine Bubble
JPS588394Y2 (en) Aeration device
JP2002018252A (en) Aerator
JP3801430B2 (en) Pumping equipment
JP2955820B2 (en) Water flow generator with aeration and fountain functions
JPH03238096A (en) Device for supplying oxygen to deep layer water
KR200272578Y1 (en) dissolved oxygen supply apparatus
CN206213037U (en) A kind of lifting type aerating aerator
FR2707974A1 (en) Water aerator
JPS63178899A (en) Aeration device