WO2022049769A1 - Wet-type ammonia cleaning apparatus and fertilizer production plant provided with said wet-type ammonia cleaning apparatus - Google Patents

Wet-type ammonia cleaning apparatus and fertilizer production plant provided with said wet-type ammonia cleaning apparatus Download PDF

Info

Publication number
WO2022049769A1
WO2022049769A1 PCT/JP2020/033783 JP2020033783W WO2022049769A1 WO 2022049769 A1 WO2022049769 A1 WO 2022049769A1 JP 2020033783 W JP2020033783 W JP 2020033783W WO 2022049769 A1 WO2022049769 A1 WO 2022049769A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
fine bubble
carbon dioxide
bubble generator
absorption liquid
Prior art date
Application number
PCT/JP2020/033783
Other languages
French (fr)
Japanese (ja)
Inventor
光一朗 吉徳
範明 仙波
幸男 田中
敦弘 行本
隆仁 米川
真也 福澤
知広 大谷
康平 磯谷
Original Assignee
三菱重工エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジニアリング株式会社 filed Critical 三菱重工エンジニアリング株式会社
Priority to PCT/JP2020/033783 priority Critical patent/WO2022049769A1/en
Publication of WO2022049769A1 publication Critical patent/WO2022049769A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C9/00Fertilisers containing urea or urea compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present disclosure relates to a wet ammonia cleaning device and a fertilizer manufacturing plant equipped with this wet ammonia cleaning device.
  • a fertilizer production plant that produces fertilizer using methane-containing gas such as natural gas has an ammonia production unit that produces ammonia from methane-containing gas and a urea production unit that produces a urea solution by reacting ammonia with carbon dioxide. , Equipped with a urea granulation unit that produces granular solid urea from a urea solution. In the urea granulation unit, a basic gas containing urea dust such as solid urea powder and ammonia is generated.
  • Patent Document 1 describes a wet ammonia cleaning device in which urea dust is removed by gas-liquid contact between water and a basic gas, and ammonia is removed by gas-liquid contact between an absorption liquid containing carbon dioxide and a basic gas. Are listed.
  • At least one embodiment of the present disclosure is an object of providing a wet ammonia cleaning device capable of improving the treatment efficiency of a basic gas and a fertilizer production plant equipped with the wet ammonia cleaning device.
  • the wet ammonia cleaning device is a wet ammonia cleaning device that treats a basic gas containing carbon dioxide, and is a gas-liquid contact between an absorbing liquid containing carbon dioxide and the basic gas.
  • Ammonia scrubber to be generated and a fine bubble generator for producing the absorption liquid from carbon dioxide and water are provided, and the fine bubble generator is at least a first fine bubble generator for producing the first absorption liquid from carbon dioxide and water.
  • a second fine bubble generator that produces the absorption liquid from carbon dioxide and the first absorption liquid.
  • the wet ammonia cleaning device of the present disclosure when carbon dioxide is absorbed by one fine bubble generator by absorbing carbon dioxide in at least each of the first fine bubble generator and the second fine bubble generator. As compared with this, the carbon dioxide concentration of the absorbing liquid can be increased, so that the processing efficiency of the basic gas can be improved.
  • the wet ammonia cleaning device of the present disclosure treats, for example, a basic gas containing ammonia generated from a fertilizer production plant. Specifically, the wet ammonia cleaning device removes ammonia from the basic gas by bringing the basic gas containing ammonia into gas-liquid contact with the absorbing liquid.
  • the basic gas targeted in the present disclosure is not limited to that generated from a fertilizer production plant, and the basic gas containing ammonia is targeted regardless of where it is generated.
  • the wet ammonia cleaning device 10 includes an ammonia scrubber 11 and a fine bubble generator 12 for producing an absorption liquid supplied to the ammonia scrubber 11. ..
  • the ammonia scrubber 11 has a housing 13 having an internal space 13a through which a basic gas flows, and an absorbing liquid circulation line 14 for extracting the absorbing liquid stored in the housing 13 and returning it to the gas phase in the housing 13.
  • a pump 15 provided in the absorption liquid circulation line 14.
  • the absorption liquid extraction line 22 is branched from the absorption liquid circulation line 14 on the downstream side of the pump 15 in the direction in which the absorption liquid flows through the absorption liquid circulation line 14.
  • a pipe 17 for supplying the basic gas to the internal space 13a is connected between the top and bottom of the housing 13 to allow the basic gas in gas-liquid contact with the absorption liquid to flow out from the internal space 13a.
  • the exhaust line 18 is connected to the top of the housing 13.
  • the internal space 13a is provided with a nozzle 16 for sprinkling make-up water in the internal space 13a and a nozzle 20 for sprinkling the absorbing liquid in the internal space 13a.
  • a make-up water supply pipe 19 for supplying make-up water to the nozzle 16 is connected to the nozzle 16, and the nozzle 20 is provided at the downstream end of the absorption liquid circulation line 14.
  • the nozzle 20 may be configured to inject the absorbing liquid toward the tray 21 (for example, composed of a perforated plate) installed in the internal space 13a.
  • the number of trays 21 may be one or any number of two or more.
  • the nozzle 16 is drawn so as to be located above the nozzle 20 and the tray 21, but the present invention is not limited to this form.
  • the nozzle 16 may be configured to be located between the nozzle 20 and the tray 21, or may be configured to be located below the tray 21.
  • the nozzle 20 is provided at a position above the tray 21 and at a position between trays adjacent to each other in the vertical direction when two or more trays 21 are provided, but the present invention is limited to this form.
  • the nozzle 20 may be provided only at a position above the tray 21.
  • the fine bubble generator 12 includes a first fine bubble generator 12a and a second fine bubble generator 12b arranged in series with each other.
  • the first fine bubble generator 12a and the second fine bubble generator 12b are provided on the absorption liquid circulation line 14 on the downstream side of the pump 15, and the second fine bubble generator 12b is more than the first fine bubble generator 12a. It is provided on the downstream side.
  • the configuration of the first fine bubble generator 12a and the second fine bubble generator 12b is not particularly limited, and carbon dioxide and water (or water in the absorbing liquid) supplied via the carbon dioxide supply line 118 are not particularly limited. Any device can be used as long as it can produce an absorbent liquid from (including), but a fine bubble generator that generates carbon dioxide bubbles of 100 micrometers or less is preferable.
  • an ejector method, a cavitation method, a swirling flow method, a pressure melting method, or the like can be used.
  • a more preferable configuration for the fine bubble generator 12 is to use a fine bubble generator that generates carbon dioxide bubbles of 1 to 100 micrometers as the first fine bubble generator 12a and 50 to several as the second fine bubble generator 12b. It is configured to use a fine bubble generator that generates 100 (for example, 500) nanometers of carbon dioxide bubbles.
  • an ejector type device is adopted as the first fine bubble generator 12a in order to generate carbon dioxide bubbles within the above range. 2
  • a pressure melting type device can be adopted as the fine bubble generator 12b.
  • the basic gas flowing through the pipe 17 flows into the housing 13 (internal space 13a) of the ammonia scrubber 11.
  • the basic gas flows upward, it is contained in the basic gas by flowing through the absorption liquid circulation line 14 by the pump 15 and making gas-liquid contact with the absorption liquid injected from the nozzle 20.
  • Ammonia is absorbed by the absorption liquid and the ammonia is removed from the basic gas.
  • the basic gas from which ammonia has been removed flows out of the internal space 13a via the exhaust line 18 and is exhausted.
  • the absorption liquid retained in the internal space 13a the absorbed ammonia is present in the liquid in the form of at least one of ammonia molecules and ammonium ions.
  • the absorbent liquid is manufactured by the fine bubble generator 12. Specifically, a part of the absorbing liquid staying in the internal space 13a is extracted from the internal space 13a by the pump 15 and circulated through the absorbing liquid circulation line 14, and the water in the absorbing liquid in the first fine bubble generator 12a.
  • the first absorption liquid is produced by blowing carbon dioxide into the first absorption liquid, and then carbon dioxide is blown into the first absorption liquid in the second fine bubble generator 12b to produce the absorption liquid.
  • the fine bubble generator 12 includes two devices, that is, a first fine bubble generator 12a and a second fine bubble generator 12b. Therefore, by absorbing carbon dioxide in each of these, the carbon dioxide concentration of the absorbing liquid can be increased as compared with the case where carbon dioxide is absorbed by one fine bubble generator.
  • the first fine bubble generator 12a is an ejector type device and the second fine bubble generator 12b is a pressure dissolution type device
  • carbon dioxide is dissolved in water by the first fine bubble generator 12a
  • the fine bubble generator 12b supplies carbon dioxide to the first absorbing liquid as fine bubbles (fine bubbles).
  • the absorbed liquid and the basic gas having a carbon dioxide partial pressure lower than the equilibrium carbon dioxide partial pressure are brought into gas-liquid contact, so that carbon dioxide in the absorbed liquid is contained.
  • the fine bubble 200 As a result, it is possible to suppress a decrease in the concentration of carbon dioxide in the absorption liquid. Since the smaller the diameter of the fine bubble 200, the lower the speed at which the fine bubble 200 floats in the absorbing liquid, the residence time of the fine bubble 200 in the liquid becomes longer, and the fine bubble 200 is less likely to be released to the basic gas side. Further, as the diameter of the fine bubble 200 is smaller, the internal pressure of the fine bubble 200 is increased, so that the dissolution rate in the absorbing liquid is also improved.
  • the concentration of ammonia in the absorption liquid staying in the internal space 13a increases, so the ammonia removal rate decreases, and eventually ammonia. Cannot be removed. Therefore, while a part of the absorption liquid flowing through the absorption liquid circulation line 14 is extracted through the absorption liquid extraction line 22, make-up water is injected from the nozzle 16 into the internal space 13a. As a result, the concentration of ammonia in the absorbing liquid staying in the internal space 13a decreases, so that the decrease in the ammonia removal rate can be suppressed.
  • both the first fine bubble generator 12a and the second fine bubble generator 12b are provided on the absorbing liquid circulation line 14, but the embodiment is not limited to this.
  • the second fine bubble generator 12b is provided in the absorption liquid circulation line 14, and the first absorption liquid produced by the first fine bubble generator 12a is configured to be supplied to the second fine bubble generator 12b. You can also.
  • the absorption liquid produced by the fine bubble generator 12 is absorbed in the absorption liquid circulation line 14.
  • the concentration of carbon dioxide in the absorption liquid supplied to the internal space 13a is higher than that in the case of supplying to the internal space 13a or the configuration for supplying the internal space 13a. This is because there is a limit to the amount of carbon dioxide that can be supplied to the circulating flow rate of the absorbent liquid in the fine bubble generator 12, so it is better to provide the fine bubble generator 12 on the line where the flow rate of the absorbent liquid is as large as possible. This is because the supply amount of carbon dioxide increases and the amount of carbon dioxide in the absorption liquid also increases. As a result, the processing efficiency of the basic gas can be improved.
  • the fine bubble generator 12 includes two fine bubble generators, that is, a first fine bubble generator 12a and a second fine bubble generator 12b, but the present invention is not limited to the two. It may be equipped with one or more fine bubble generators. Even in this case, it is preferable that at least two fine bubble generators are arranged in series with each other, and it is further preferable that all the fine bubble generators are arranged in series with each other.
  • the wet ammonia cleaning device according to the second embodiment is obtained by adding a membrane separation device for removing ammonia from the absorbent liquid flowing through the absorbent liquid circulation line 14 to the first embodiment.
  • a membrane separation device for removing ammonia from the absorbent liquid flowing through the absorbent liquid circulation line 14 to the first embodiment.
  • the absorption liquid circulation line 14 is provided with the first fine bubble generator 12a and the second fine bubble generator 12b. ..
  • the absorption liquid circulation line 14 is provided with a membrane separation device 30 for removing ammonia from the absorption liquid between the pump 15 and the first fine bubble generator 12a.
  • the configuration of the membrane separation device 30 is not particularly limited, and for example, a membrane separation device provided with a reverse osmosis membrane (RO membrane) can be used.
  • RO membrane reverse osmosis membrane
  • the absorbent liquid circulation line 14 may be provided with a tank 31 in which make-up water is stored between the membrane separation device 30 and the first fine bubble generator 12a.
  • Other configurations are the same as those of the first embodiment except that the absorption liquid extraction line 22 (see FIG. 1) is not provided.
  • a part of the absorbing liquid staying in the internal space 13a is extracted from the internal space 13a by the pump 15 and circulates in the absorbing liquid circulation line 14.
  • the absorption liquid flows into the membrane separation device 30, only water passes through the separation membrane (for example, RO membrane) provided in the membrane separation device 30, and at least one of ammonia molecules, ammonium ions, carbonate ions, etc. that dissolves in the absorption liquid. Since the part cannot pass through the separation membrane, the absorption liquid flows out from the membrane separation device 30 in a state where the concentrations of ammonia and carbon dioxide dissolved in the absorption liquid are lowered. Ammonia molecules or concentrates of ammonium ions, carbonate ions, etc.
  • the separation membrane that could not pass through the separation membrane are supplied to, for example, a stripper (not shown), and carbon dioxide and ammonia can be recovered and reused in the stripper. If the concentration of these molecules or ions is high, the concentrate can be reused as it is in the urea production process of the fertilizer production plant.
  • the absorption liquid flowing out of the membrane separation device 30 flows into the tank 31, then flows into the fine bubble generator 12 from the tank 31, and carbon dioxide is blown into the water in the absorption liquid in the first fine bubble generator 12a. 1 Absorption liquid is produced, and then carbon dioxide is blown into the first absorption liquid in the second fine bubble generator 12b to produce the absorption liquid.
  • the operation after this is the same as that of the first embodiment.
  • the concentrations of ammonia and carbon dioxide in the absorbing liquid flowing into the fine bubble generator 12 are lower than those in the first embodiment. Therefore, the dissolution of carbon dioxide in the fine bubble generator 12 is promoted, and the carbon dioxide / ammonia ratio in the absorbing liquid becomes large.
  • the larger this ratio in the absorption liquid is, the more the removal of ammonia from the basic gas by the gas-liquid contact between the absorption liquid and the basic gas is promoted, so that the treatment efficiency of the basic gas is higher than that in the first embodiment. Can be improved.
  • the wet ammonia cleaning device according to the third embodiment is obtained by adding a cooling device for cooling the basic gas to the first or second embodiment before the basic gas flows into the ammonia scrubber 11.
  • a cooling device for cooling the basic gas
  • the third embodiment will be described with a configuration in which a cooling device is added to the configuration of the first embodiment, but the third embodiment may be configured by adding a cooling device to the configuration of the second embodiment. ..
  • the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the pipe 17 has a cooling device 40, for example, heat exchange between a cooling medium and a basic gas flowing through the pipe 17.
  • a vessel is provided in the absorption liquid circulation line 14.
  • the cooling device 41 for example, the cooling medium and the absorption liquid flowing through the absorption liquid circulation line 14 exchange heat between the pump 15 and the first fine bubble generator 12a.
  • a heat exchanger may be provided in the absorption liquid circulation line 14.
  • any fluid can be used as the cooling medium flowing through each of the cooling devices 40 and 41, for example, ammonia produced by an ammonia production unit which is a component of a fertilizer production plant equipped with a wet ammonia cleaning device 10. Can be used. Other configurations are the same as those in the first embodiment.
  • the basic gas is cooled by the cooling device 40 before the basic gas is supplied to the ammonia scrubber 11.
  • the operation of removing ammonia from the basic gas in the ammonia scrubber 11 is the same as that of the first embodiment.
  • the cooling device 41 When the cooling device 41 is provided in the absorbing liquid circulation line 14, the absorbing liquid is cooled in the cooling device 41 before flowing into the fine bubble generator 12.
  • the solubility of carbon dioxide increases as the temperature of water decreases, so that the concentration of carbon dioxide in the absorbing liquid can be increased as compared with the case where the absorbing liquid is not cooled before flowing into the fine bubble generator 12.
  • the temperature of the absorbed liquid in the ammonia scrubber 11 rises due to the gas-liquid contact between the basic gas and the absorbed liquid in the ammonia scrubber 11 as compared with the first embodiment. Is suppressed. Therefore, since the absorbing liquid having a high concentration of carbon dioxide comes into gas-liquid contact with the basic gas, the processing efficiency of the basic gas can be improved as compared with the first embodiment.
  • the fourth embodiment of the present disclosure will be described.
  • the wet ammonia cleaning device according to any one of the first to third embodiments is provided in the fertilizer production plant.
  • the fourth embodiment will be described with the configuration in which the wet ammonia cleaning device 10 of the first embodiment is provided in the fertilizer production plant, but the wet ammonia cleaning device 10 of the second or third embodiment is provided in the fertilizer production plant.
  • Form 4 may be configured.
  • the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the fertilizer production plant 100 produces a urea solution by reacting ammonia and carbon dioxide with an ammonia production unit 5 that produces ammonia using a raw material gas such as a natural gas containing methane. It is provided with a urea production unit 70 for producing urea, a urea granulation unit 60 for producing granular solid urea from a urea solution, and a wet ammonia cleaning device 10 for treating basic gas generated from the urea granulation unit 60. ..
  • the fertilizer production plant 100 includes a reformer 1 that reforms the raw material gas, a modifier 2 that modifies carbon monoxide and steam in the gas supplied from the reformer 1, and a gas flowing out from the reformer 2.
  • a carbon dioxide recovery device 3 for recovering carbon dioxide and a steaming device 4 for converting carbon dioxide and carbon monoxide in the gas flowing out from the carbon dioxide recovery device 3 into methane, respectively, may be further provided.
  • the methanizer 4 and the ammonia production unit 5 are connected.
  • the urea production unit 70 includes a compressor 71 and a urea production apparatus 72.
  • the compressor 71 and the urea production apparatus 72 are connected to each other via a pipe 121.
  • the carbon dioxide recovery device 3 and the compressor 71 are connected to each other via a pipe 122.
  • the ammonia supply line 123 is provided so that the ammonia produced by the ammonia production unit 5 is supplied to the pipe 121, and the ammonia supply line 123 is provided with a compressor 76 for boosting the ammonia.
  • the carbon dioxide supply line 118 branches from the upstream side of the position where the ammonia supply line 123 joins in the pipe 121, and the carbon dioxide supply line 118 is the first fine bubble generator 12a and the second fine bubble generator 12b (FIG. 1). See) connected to each.
  • the wet ammonia cleaning device 10 removes ammonia from the dust scrubber 51 that removes solid components such as urea dust from the basic gas generated from the urea granulation unit 60 and the basic gas from which the solid components have been removed from the dust scrubber 51. It is equipped with an ammonia scrubber 11.
  • the urea granulation unit 60 and the dust scrubber 51 are connected via a basic gas flow line 111.
  • the dust scrubber 51 and the ammonia scrubber 11 are connected to each other via a pipe 17.
  • the other end of the make-up water supply pipe 19 to which one end is connected to the nozzle 16 (see FIG. 1) provided in the ammonia scrubber 11 is the compressor 71 or the pipe 6 connecting the reformer 1 and the modifier 2. It is connected to at least one of them.
  • the make-up water water supply pipe 19 is connected to the compressor 71
  • the drain generated in the compressor 71 is drained from the compressor 71 via the make-up water water supply pipe 19 so that the make-up water can be drained.
  • the water supply pipe 19 is connected to the pipe 6, the condensate contained in the gas flowing out from the reforming device 1 is drained from the pipe 6.
  • the raw material gas is reformed by air and steam in the reformer 1 to become a gas containing at least hydrogen and carbon dioxide. Since the reformer 1 also takes in air, the gas discharged from the reformer 1 and supplied to the modifier 2 in the subsequent stage also includes components derived from air. Specifically, the gas discharged from the reformer 1 also includes nitrogen and the like. This gas also contains carbon monoxide, which is converted into carbon dioxide and hydrogen by a chemical reaction with water in the modifier 2 in the subsequent stage.
  • the carbon dioxide recovery device 3 downstream of the denaturant 2 can suppress the introduction of carbon dioxide into the ammonia production unit 5 and suppress the influence on the ammonia production catalyst. ..
  • the recovery of carbon dioxide in the carbon dioxide recovery device 3 can be performed, for example, by bringing an alkaline aqueous solution into contact with the gas.
  • the recovered carbon dioxide is separated from the alkaline aqueous solution by heating the alkaline aqueous solution or the like, and then supplied to the fine bubble generator 12 (see FIG. 1) of the urea production unit 70 and the wet ammonia cleaning device 10.
  • Carbon monoxide and carbon monoxide are each converted to methane.
  • the introduction of carbon oxide into the ammonia production unit 5 is suppressed. This makes it possible to suppress the influence of carbon oxide on the ammonia production catalyst.
  • the gas flowing out of the methanizer 4 and flowing into the ammonia production unit 5 contains hydrogen and nitrogen, and contains methane as an impurity.
  • a chemical reaction represented by the following chemical formula (1) occurs, and ammonia is produced.
  • the generated ammonia sequentially flows through the ammonia supply line 123 and the pipe 121 by the compressor 76 and flows into the urea production apparatus 72 of the urea production unit 70. Further, the carbon dioxide recovered by the carbon dioxide recovery device 3 flows out from the carbon dioxide recovery device 3, flows through the pipe 122, is boosted by the compressor 71, and flows into the urea production apparatus 72 through the pipe 121. ..
  • urea (urea solution) is produced from carbon dioxide and ammonia by a chemical reaction represented by the following chemical formula (2). 2NH 3 + CO 2 ⁇ (NH 2 ) 2 CO + H 2 O ⁇ ⁇ ⁇ (2)
  • the urea solution produced by the urea production unit 70 flows into the urea granulation unit 60.
  • the urea supplied from the urea production unit 70 is granulated.
  • Granular urea obtained by granulation of urea is shipped and used as fertilizer.
  • urea granulation unit 60 a basic gas containing urea dust, which is a powder of solid urea, and ammonia is generated during the granulation of urea.
  • the basic gas flows through the basic gas flow line 111 and flows into the wet ammonia cleaning device 10.
  • urea dust is removed from the basic gas by the gas-liquid contact between the cleaning water and the basic gas in the dust scrubber 51.
  • the basic gas from which the urea dust has been removed flows into the ammonia scrubber 11 via the pipe 17.
  • ammonia scrubber 11 ammonia is removed from the basic gas by the same operation as that described in the first embodiment.
  • the basic gas from which ammonia has been removed is exhausted through the exhaust line 18.
  • At least one of the condensates contained in the drain generated in the compressor 71 or the gas flowing out from the reformer 1 is supplied to the ammonia scrubber 11 as make-up water via the make-up water supply pipe 19. .
  • the drain and condensate are carbonated water in which carbon dioxide is dissolved, carbonated water is supplied to the ammonia scrubber 11 as make-up water.
  • carbonated water is supplied to the ammonia scrubber 11 as make-up water.
  • not only carbonated water as an absorption liquid but also carbonated water as make-up water can absorb ammonia, so that treatment of basic gas is performed as compared with the case of supplying water containing no carbon dioxide as make-up water. Efficiency can be improved.
  • carbonated water is used as the make-up water supplied to the ammonia scrubber 11 as the condensate contained in the drain generated in the compressor 71 or the gas flowing out from the reforming device 1, but the present invention is limited to this embodiment. is not it.
  • An apparatus for producing carbonated water as make-up water may be provided in the fertilizer production plant 100.
  • Such a device can be a device for extracting a part of carbon dioxide flowing through the carbon dioxide supply line 118 and dissolving it in water, and the configuration of this device is a filling type filled with a filler such as Raschig ring. It is possible to adopt an absorption tower, a plate-type absorption tower, an absorption tower in which the plate can be cooled in the plate-type absorption tower, and the like.
  • carbonated water generated or produced at an arbitrary location in the fertilizer production plant 100 is used as make-up water, but instead of or in combination with this form, carbonated water is generated as a first fine bubble. It may be supplied to at least one of the device 12a and the second fine bubble generator 12b.
  • the pipe branched from the make-up water supply pipe 19 has a configuration in which carbonated water is connected to at least one of the first fine bubble generator 12a and the second fine bubble generator 12b.
  • the wet ammonia cleaning device 10 is provided with two fine bubble generators and may be further provided with three or more fine bubble generators, but the present invention is not limited to this embodiment. As long as it is a fine bubble generator capable of producing carbonated water having a sufficient carbon dioxide concentration, the wet ammonia cleaning device 10 may be configured to include one fine bubble generator provided in the absorption liquid circulation line 14.
  • the wet ammonia cleaning device is A wet ammonia cleaning device (10) that treats a basic gas containing ammonia.
  • Ammonia scrubber (11) that brings carbon dioxide-containing absorption liquid into gas-liquid contact with basic gas,
  • a fine bubble generator (12) for producing the absorbent liquid from carbon dioxide and water is provided.
  • the fine bubble generator (12) is at least A first fine bubble generator (12a) that produces a first absorbent liquid from carbon dioxide and water, and It includes carbon dioxide and a second fine bubble generator (12b) for producing the absorption liquid from the first absorption liquid.
  • the wet ammonia cleaning device of the present disclosure when carbon dioxide is absorbed by one fine bubble generator by absorbing carbon dioxide in at least each of the first fine bubble generator and the second fine bubble generator. As compared with this, the carbon dioxide concentration of the absorbing liquid can be increased, so that the processing efficiency of the basic gas can be improved.
  • the wet ammonia cleaning device according to another aspect is the wet ammonia cleaning device according to [1].
  • the fine bubble generator (12) generates carbon dioxide bubbles of 100 micrometers or less.
  • carbon dioxide bubbles of 100 micrometers or less are supplied to the water and the first absorbing liquid, so that the dissolution of carbon dioxide can be promoted.
  • the wet ammonia cleaning device is the wet ammonia cleaning device of [2].
  • the first fine bubble generator (12a) is an ejector type fine bubble generator
  • the second fine bubble generator (12b) is a pressure melting type fine bubble generator.
  • carbon dioxide is dissolved in water by the first fine bubble generator, and carbon dioxide is supplied to the first absorbing liquid as fine bubbles (fine bubbles) by the second fine bubble generator. ..
  • the absorbed liquid and the basic gas having a lower carbon dioxide partial pressure than the equilibrium carbon dioxide partial pressure come into gas-liquid contact, so that the carbon dioxide in the absorbed liquid is released to the basic gas side.
  • the fine bubble supplements the amount corresponding to the emitted carbon dioxide and the carbon dioxide dissociated in the absorption liquid. As a result, it is possible to suppress a decrease in the concentration of carbon dioxide in the absorption liquid, so that the treatment efficiency of the basic gas can be improved.
  • the wet ammonia cleaning device is the wet ammonia cleaning device according to any one of [1] to [3].
  • the ammonia scrubber (11) is provided with an absorbent liquid circulation line (14) for extracting the absorbent liquid stored therein and returning it to the gas phase in the ammonia scrubber (11).
  • the fine bubble generator (12) is provided in the absorbent liquid circulation line (14).
  • the gas of the ammonia scrubber is compared with the case of supplying the absorbent liquid produced by the fine bubble generator to the absorbent liquid circulation line or the case of supplying the absorbent liquid stored inside the ammonia scrubber. Since the concentration of carbon dioxide in the absorption liquid supplied in the phase is increased, the treatment efficiency of the basic gas can be improved.
  • the wet ammonia cleaning device is the wet ammonia cleaning device according to [4].
  • a membrane separation device (30) for removing ammonia from the absorbent liquid flowing through the absorbent liquid circulation line (14) is further provided.
  • the membrane separation device is provided in the absorption liquid circulation line so as to be located upstream of the fine bubble generator in the flow direction of the absorption liquid.
  • the wet ammonia cleaning device is the wet ammonia cleaning device according to any one of [1] to [5].
  • a cooling device (40) for cooling the basic gas before the basic gas flows into the ammonia scrubber (11) is further provided.
  • the fertilizer production plant is A fertilizer production plant (100) for producing fertilizer from a raw material gas containing methane.
  • An ammonia production unit (5) that produces ammonia from the raw material gas
  • a urea production unit (70) that produces a urea solution by reacting ammonia with carbon dioxide, and the like.
  • a urea granulation unit (60) for producing granular solid urea from the urea solution, and a urea granulation unit (60).
  • the wet ammonia cleaning device (10) according to any one of [1] to [6] for treating the basic gas generated from the urea granulation unit (60) is provided.
  • the carbonated water generated in the fertilizer production plant (100) is configured to be supplied in the gas phase in the ammonia scrubber (11) or to the fine bubble generator (12).
  • the fertilizer production plant of the present disclosure by supplying carbonated water to the ammonia scrubber as make-up water supplied to the ammonia scrubber, not only the carbonated water as the absorption liquid but also the carbonated water as the make-up water is ammonia. Can be absorbed, so that the treatment efficiency of basic gas can be improved as compared with the case of supplying water containing no carbon dioxide as make-up water.
  • the fertilizer production plant is the fertilizer production plant of [7].
  • the urea production unit (70) is The urea production apparatus (72) for producing the urea solution, and The urea production apparatus (72) is provided with a compressor (71) for supplying carbon dioxide. The carbonated water is a drain generated by the compressor (71).
  • the fertilizer production plant is the fertilizer production plant of [7] or [8].
  • a reformer (1) for reforming the raw material gas with air and steam before the raw material gas flows into the ammonia production unit (5) is further provided.
  • the carbonated water is a condensate contained in the gas flowing out from the reformer (1).

Abstract

A wet-type ammonia cleaning apparatus for treating a basic gas containing ammonia, the apparatus comprising: an ammonia scrubber that causes gas-liquid contact between the basic gas and an absorption liquid containing carbon dioxide; and fine bubble generating devices for producing the absorption liquid from carbon dioxide and water, wherein the fine bubble generating devices include at least a first fine bubble generating device for producing a first absorption liquid from carbon dioxide and water, and a second fine bubble generating device for producing an absorption liquid from carbon dioxide and the first absorption liquid.

Description

湿式アンモニア洗浄装置及びこの湿式アンモニア洗浄装置を備える肥料製造プラントWet ammonia cleaning device and fertilizer production plant equipped with this wet ammonia cleaning device
 本開示は、湿式アンモニア洗浄装置及びこの湿式アンモニア洗浄装置を備える肥料製造プラントに関する。 The present disclosure relates to a wet ammonia cleaning device and a fertilizer manufacturing plant equipped with this wet ammonia cleaning device.
 天然ガス等のメタン含有ガスを用いて肥料を製造する肥料製造プラントは、メタン含有ガスからアンモニアを製造するアンモニア製造ユニットと、アンモニアと二酸化炭素とを反応させて尿素溶液を製造する尿素製造ユニットと、尿素溶液から粒状の固体の尿素を製造する尿素造粒ユニットとを備えている。尿素造粒ユニットでは、固体尿素の粉体等である尿素ダスト及びアンモニアを含む塩基性ガスが発生する。特許文献1には、水と塩基性ガスとの気液接触によって尿素ダストが除去されるとともに二酸化炭素を含む吸収液と塩基性ガスとの気液接触によってアンモニアが除去される湿式アンモニア洗浄装置が記載されている。 A fertilizer production plant that produces fertilizer using methane-containing gas such as natural gas has an ammonia production unit that produces ammonia from methane-containing gas and a urea production unit that produces a urea solution by reacting ammonia with carbon dioxide. , Equipped with a urea granulation unit that produces granular solid urea from a urea solution. In the urea granulation unit, a basic gas containing urea dust such as solid urea powder and ammonia is generated. Patent Document 1 describes a wet ammonia cleaning device in which urea dust is removed by gas-liquid contact between water and a basic gas, and ammonia is removed by gas-liquid contact between an absorption liquid containing carbon dioxide and a basic gas. Are listed.
国際公開第2019/234816号International Publication No. 2019/234816
 しかしながら、系統の温度が高くなるとガスの溶解度が低下し、吸収液の二酸化炭素の濃度が低下してしまうので、塩基性ガスの処理効率が低下してしまうといった問題点があり、吸収液の二酸化炭素の濃度の上昇技術が求められている。特許文献1に記載される湿式アンモニア洗浄装置では、吸収液と塩基性ガスとの気液接触が行われるアンモニアスクラバを循環する吸収液に供給できる二酸化炭素の量に制約があり、吸収液中の二酸化炭素の濃度をさらに高めるためには、ファインバブル発生装置を多段式とし、2段目以降でさらに二酸化炭素を吸収液に供給する必要がある。 However, when the temperature of the system rises, the solubility of the gas decreases and the concentration of carbon dioxide in the absorption liquid decreases, so there is a problem that the processing efficiency of the basic gas decreases, and the carbon dioxide in the absorption liquid decreases. There is a need for a technique for increasing the concentration of carbon. In the wet ammonia cleaning device described in Patent Document 1, the amount of carbon dioxide that can be supplied to the absorption liquid circulating in the ammonia scrubber where the absorption liquid and the basic gas are in gas-liquid contact is limited, and the amount of carbon dioxide in the absorption liquid is limited. In order to further increase the concentration of carbon dioxide, it is necessary to make the fine bubble generator a multi-stage type and further supply carbon dioxide to the absorbing liquid in the second and subsequent stages.
 上述の事情に鑑みて、本開示の少なくとも1つの実施形態は、塩基性ガスの処理効率を向上できる湿式アンモニア洗浄装置及びこの湿式アンモニア洗浄装置を備える肥料製造プラントを提供することを目的とする。 In view of the above circumstances, at least one embodiment of the present disclosure is an object of providing a wet ammonia cleaning device capable of improving the treatment efficiency of a basic gas and a fertilizer production plant equipped with the wet ammonia cleaning device.
 上記目的を達成するため、本開示に係る湿式アンモニア洗浄装置は、アンモニアを含む塩基性ガスを処理する湿式アンモニア洗浄装置であって、二酸化炭素を含む吸収液と前記塩基性ガスとを気液接触させるアンモニアスクラバと、二酸化炭素及び水から前記吸収液を製造するファインバブル発生装置とを備え、前記ファインバブル発生装置は少なくとも、二酸化炭素及び水から第1吸収液を製造する第1ファインバブル発生装置と、二酸化炭素及び前記第1吸収液から前記吸収液を製造する第2ファインバブル発生装置とを含む。 In order to achieve the above object, the wet ammonia cleaning device according to the present disclosure is a wet ammonia cleaning device that treats a basic gas containing carbon dioxide, and is a gas-liquid contact between an absorbing liquid containing carbon dioxide and the basic gas. Ammonia scrubber to be generated and a fine bubble generator for producing the absorption liquid from carbon dioxide and water are provided, and the fine bubble generator is at least a first fine bubble generator for producing the first absorption liquid from carbon dioxide and water. And a second fine bubble generator that produces the absorption liquid from carbon dioxide and the first absorption liquid.
 本開示の湿式アンモニア洗浄装置によれば、少なくとも第1ファインバブル発生装置及び第2ファインバブル発生装置のそれぞれにおいて二酸化炭素を吸収させることにより、1つのファインバブル発生装置で二酸化炭素を吸収させる場合に比べて吸収液の二酸化炭素濃度を高めることができるので、塩基性ガスの処理効率を向上することができる。 According to the wet ammonia cleaning device of the present disclosure, when carbon dioxide is absorbed by one fine bubble generator by absorbing carbon dioxide in at least each of the first fine bubble generator and the second fine bubble generator. As compared with this, the carbon dioxide concentration of the absorbing liquid can be increased, so that the processing efficiency of the basic gas can be improved.
本開示の実施形態1に係る湿式アンモニア洗浄装置の構成模式図である。It is a structural schematic diagram of the wet ammonia cleaning apparatus which concerns on Embodiment 1 of this disclosure. 本開示の実施形態1に係る湿式アンモニア洗浄においてファインバブル発生装置による二酸化炭素の溶解挙動を説明するための図である。It is a figure for demonstrating the dissolution behavior of carbon dioxide by a fine bubble generator in the wet ammonia cleaning which concerns on Embodiment 1 of this disclosure. 本開示の実施形態2に係る湿式アンモニア洗浄装置の構成模式図である。It is a structural schematic diagram of the wet ammonia cleaning apparatus which concerns on Embodiment 2 of this disclosure. 本開示の実施形態3に係る湿式アンモニア洗浄装置の構成模式図である。It is a structural schematic diagram of the wet ammonia cleaning apparatus which concerns on Embodiment 3 of this disclosure. 本開示の実施形態4に係る湿式アンモニア洗浄装置を備えた肥料製造プラントの構成模式図である。It is a structural schematic diagram of the fertilizer production plant provided with the wet ammonia cleaning apparatus which concerns on Embodiment 4 of this disclosure.
 以下、本開示の実施の形態による湿式アンモニア洗浄装置について、図面に基づいて説明する。係る実施の形態は、本開示の一態様を示すものであり、この開示を限定するものではなく、本開示の技術的思想の範囲内で任意に変更可能である。 Hereinafter, the wet ammonia cleaning device according to the embodiment of the present disclosure will be described with reference to the drawings. The embodiment thereof shows one aspect of the present disclosure, does not limit the disclosure, and can be arbitrarily changed within the scope of the technical idea of the present disclosure.
 本開示の湿式アンモニア洗浄装置は、例えば肥料製造プラントから発生するアンモニアを含む塩基性ガスを処理するものである。湿式アンモニア洗浄装置は具体的には、アンモニアを含む塩基性ガスと吸収液とを気液接触させることにより塩基性ガスからアンモニアを除去するものである。ただし、本開示で対象とする塩基性ガスは、肥料製造プラントから発生するものに限定するものではなく、どこから発生したものであるかにかかわらず、アンモニアを含む塩基性ガスを対象とする。 The wet ammonia cleaning device of the present disclosure treats, for example, a basic gas containing ammonia generated from a fertilizer production plant. Specifically, the wet ammonia cleaning device removes ammonia from the basic gas by bringing the basic gas containing ammonia into gas-liquid contact with the absorbing liquid. However, the basic gas targeted in the present disclosure is not limited to that generated from a fertilizer production plant, and the basic gas containing ammonia is targeted regardless of where it is generated.
(実施形態1)
<本開示の実施形態1に係る湿式アンモニア洗浄装置の構成>
 図1に示されるように、本開示の実施形態1に係る湿式アンモニア洗浄装置10は、アンモニアスクラバ11と、アンモニアスクラバ11に供給される吸収液を製造するファインバブル発生装置12とを備えている。アンモニアスクラバ11は、塩基性ガスが流れる内部空間13aを有する筐体13と、筐体13内に貯留される吸収液を抜き出して筐体13内の気相中に戻すための吸収液循環ライン14と、吸収液循環ライン14に設けられたポンプ15とを備えている。吸収液循環ライン14を吸収液が流通する方向においてポンプ15よりも下流側で吸収液循環ライン14から吸収液抜き出しライン22が分岐している。
(Embodiment 1)
<Structure of the wet ammonia cleaning device according to the first embodiment of the present disclosure>
As shown in FIG. 1, the wet ammonia cleaning device 10 according to the first embodiment of the present disclosure includes an ammonia scrubber 11 and a fine bubble generator 12 for producing an absorption liquid supplied to the ammonia scrubber 11. .. The ammonia scrubber 11 has a housing 13 having an internal space 13a through which a basic gas flows, and an absorbing liquid circulation line 14 for extracting the absorbing liquid stored in the housing 13 and returning it to the gas phase in the housing 13. And a pump 15 provided in the absorption liquid circulation line 14. The absorption liquid extraction line 22 is branched from the absorption liquid circulation line 14 on the downstream side of the pump 15 in the direction in which the absorption liquid flows through the absorption liquid circulation line 14.
 塩基性ガスを内部空間13aに供給するための配管17が、筐体13の塔頂と塔底との間に接続され、吸収液と気液接触した塩基性ガスを内部空間13aから流出させるための排気ライン18が、筐体13の塔頂に接続されている。内部空間13aには、内部空間13aにメイクアップ水を散水するためのノズル16と、内部空間13aに吸収液を散水するためのノズル20が設けられている。ノズル16には、ノズル16にメイクアップ水を供給するためのメイクアップ水給水管19が接続され、ノズル20は吸収液循環ライン14の下流端に設けられている。尚、ノズル20は、内部空間13a内に設置されたトレイ21(例えば多孔板により構成される)に向けて吸収液を噴射するように構成されてもよい。尚、トレイ21は1つでもよいし、2以上の任意の個数であってもよい。 A pipe 17 for supplying the basic gas to the internal space 13a is connected between the top and bottom of the housing 13 to allow the basic gas in gas-liquid contact with the absorption liquid to flow out from the internal space 13a. The exhaust line 18 is connected to the top of the housing 13. The internal space 13a is provided with a nozzle 16 for sprinkling make-up water in the internal space 13a and a nozzle 20 for sprinkling the absorbing liquid in the internal space 13a. A make-up water supply pipe 19 for supplying make-up water to the nozzle 16 is connected to the nozzle 16, and the nozzle 20 is provided at the downstream end of the absorption liquid circulation line 14. The nozzle 20 may be configured to inject the absorbing liquid toward the tray 21 (for example, composed of a perforated plate) installed in the internal space 13a. The number of trays 21 may be one or any number of two or more.
 図1では、ノズル16がノズル20及びトレイ21よりも上方に位置するように描かれているが、この形態に限定するものではない。ノズル16は、ノズル20とトレイ21との間に位置するように構成されてもよいし、トレイ21よりも下方に位置するように構成されてもよい。また、図1では、ノズル20は、トレイ21よりも上方の位置と、2以上のトレイ21が設けられる場合に上下方向に隣り合うトレイ間の位置とに設けられているが、この形態に限定するものではなく、ノズル20は、トレイ21よりも上方の位置だけに設けられてもよい。 In FIG. 1, the nozzle 16 is drawn so as to be located above the nozzle 20 and the tray 21, but the present invention is not limited to this form. The nozzle 16 may be configured to be located between the nozzle 20 and the tray 21, or may be configured to be located below the tray 21. Further, in FIG. 1, the nozzle 20 is provided at a position above the tray 21 and at a position between trays adjacent to each other in the vertical direction when two or more trays 21 are provided, but the present invention is limited to this form. The nozzle 20 may be provided only at a position above the tray 21.
 ファインバブル発生装置12は、互いに直列に配列された第1ファインバブル発生装置12a及び第2ファインバブル発生装置12bを含んでいる。第1ファインバブル発生装置12a及び第2ファインバブル発生装置12bは、ポンプ15よりも下流側で吸収液循環ライン14に設けられ、第2ファインバブル発生装置12bは第1ファインバブル発生装置12aよりも下流側に設けられている。第1ファインバブル発生装置12a及び第2ファインバブル発生装置12bの構成はいずれも特に限定するものではなく、二酸化炭素供給ライン118を介して供給された二酸化炭素と水(又は吸収液中の水を含む)とから吸収液を製造することができるものであれば、どのような装置であってもよいが、100マイクロメートル以下の二酸化炭素の気泡を発生するファインバブル発生装置であることが好ましい。このようなファインバブル発生装置として、エジェクタ方式、キャビテーション方式、旋回流方式、加圧溶解方式等の装置を使用可能である。 The fine bubble generator 12 includes a first fine bubble generator 12a and a second fine bubble generator 12b arranged in series with each other. The first fine bubble generator 12a and the second fine bubble generator 12b are provided on the absorption liquid circulation line 14 on the downstream side of the pump 15, and the second fine bubble generator 12b is more than the first fine bubble generator 12a. It is provided on the downstream side. The configuration of the first fine bubble generator 12a and the second fine bubble generator 12b is not particularly limited, and carbon dioxide and water (or water in the absorbing liquid) supplied via the carbon dioxide supply line 118 are not particularly limited. Any device can be used as long as it can produce an absorbent liquid from (including), but a fine bubble generator that generates carbon dioxide bubbles of 100 micrometers or less is preferable. As such a fine bubble generator, an ejector method, a cavitation method, a swirling flow method, a pressure melting method, or the like can be used.
 ファインバブル発生装置12に関してさらに好ましい構成は、第1ファインバブル発生装置12aとして1~100マイクロメートルの二酸化炭素の気泡を発生するファインバブル発生装置を用い、第2ファインバブル発生装置12bとして50~数百(例えば500)ナノメートルの二酸化炭素の気泡を発生するファインバブル発生装置を用いる構成である。第1ファインバブル発生装置12a及び第2ファインバブル発生装置12bのそれぞれにおいて、上記範囲内の二酸化炭素の気泡を発生させるために、第1ファインバブル発生装置12aとしてエジェクタ方式の装置を採用し、第2ファインバブル発生装置12bとして加圧溶解方式の装置を採用することができる。尚、二酸化炭素の気泡のサイズの範囲に関して、発生する多数の気泡の中にその範囲から外れる気泡が部分的に含まれていたとしても、気泡のサイズの平均値がその範囲内であれば、気泡を発生させた装置は、その範囲内のサイズの気泡を発生させているとみなすことにする。 A more preferable configuration for the fine bubble generator 12 is to use a fine bubble generator that generates carbon dioxide bubbles of 1 to 100 micrometers as the first fine bubble generator 12a and 50 to several as the second fine bubble generator 12b. It is configured to use a fine bubble generator that generates 100 (for example, 500) nanometers of carbon dioxide bubbles. In each of the first fine bubble generator 12a and the second fine bubble generator 12b, an ejector type device is adopted as the first fine bubble generator 12a in order to generate carbon dioxide bubbles within the above range. 2 As the fine bubble generator 12b, a pressure melting type device can be adopted. Regarding the range of carbon dioxide bubble size, even if a large number of generated bubbles partially contain bubbles outside the range, if the average value of the bubble size is within that range. The device that generated the bubbles is considered to be generating bubbles of a size within that range.
<本開示の実施形態1に係る湿式アンモニア洗浄装置の動作>
 次に、本開示の実施形態1に係る湿式アンモニア洗浄装置10の動作について説明する。配管17を流通する塩基性ガスは、アンモニアスクラバ11の筐体13内(内部空間13a)に流入する。内部空間13aにおいて、塩基性ガスは上方向に流れる際に、ポンプ15によって吸収液循環ライン14を流通してノズル20から噴射される吸収液と気液接触することにより、塩基性ガスに含まれるアンモニアが吸収液に吸収されて、塩基性ガスからアンモニアが除去される。アンモニアが除去された塩基性ガスは、排気ライン18を介して内部空間13aから流出して排気される。内部空間13aに滞留した吸収液において、吸収されたアンモニアは、アンモニア分子又はアンモニウムイオンの少なくとも一方の形態として液中に存在する。
<Operation of the wet ammonia cleaning device according to the first embodiment of the present disclosure>
Next, the operation of the wet ammonia cleaning device 10 according to the first embodiment of the present disclosure will be described. The basic gas flowing through the pipe 17 flows into the housing 13 (internal space 13a) of the ammonia scrubber 11. In the internal space 13a, when the basic gas flows upward, it is contained in the basic gas by flowing through the absorption liquid circulation line 14 by the pump 15 and making gas-liquid contact with the absorption liquid injected from the nozzle 20. Ammonia is absorbed by the absorption liquid and the ammonia is removed from the basic gas. The basic gas from which ammonia has been removed flows out of the internal space 13a via the exhaust line 18 and is exhausted. In the absorption liquid retained in the internal space 13a, the absorbed ammonia is present in the liquid in the form of at least one of ammonia molecules and ammonium ions.
 吸収液は、ファインバブル発生装置12で製造される。具体的には、内部空間13aに滞留する吸収液の一部がポンプ15によって内部空間13aから抜き出されて吸収液循環ライン14を流通し、第1ファインバブル発生装置12aにおいて吸収液中の水に二酸化炭素が吹き込まれて第1吸収液が製造され、続いて第2ファインバブル発生装置12bにおいて第1吸収液に二酸化炭素が吹き込まれて吸収液が製造される。ファインバブル発生装置12は2つの装置、すなわち第1ファインバブル発生装置12a及び第2ファインバブル発生装置12bを備えている。このため、これらのそれぞれにおいて二酸化炭素を吸収させることにより、1つのファインバブル発生装置で二酸化炭素を吸収させる場合に比べて吸収液の二酸化炭素濃度を高めることができる。 The absorbent liquid is manufactured by the fine bubble generator 12. Specifically, a part of the absorbing liquid staying in the internal space 13a is extracted from the internal space 13a by the pump 15 and circulated through the absorbing liquid circulation line 14, and the water in the absorbing liquid in the first fine bubble generator 12a. The first absorption liquid is produced by blowing carbon dioxide into the first absorption liquid, and then carbon dioxide is blown into the first absorption liquid in the second fine bubble generator 12b to produce the absorption liquid. The fine bubble generator 12 includes two devices, that is, a first fine bubble generator 12a and a second fine bubble generator 12b. Therefore, by absorbing carbon dioxide in each of these, the carbon dioxide concentration of the absorbing liquid can be increased as compared with the case where carbon dioxide is absorbed by one fine bubble generator.
 第1ファインバブル発生装置12aをエジェクタ方式の装置とし、第2ファインバブル発生装置12bを加圧溶解方式の装置とした形態では、第1ファインバブル発生装置12aで二酸化炭素が水中に溶解し、第2ファインバブル発生装置12bで二酸化炭素が微細な気泡(ファインバブル)として第1吸収液中に供給される。図2に示されるように、内部空間13a内で、吸収液と、その平衡二酸化炭素分圧よりも二酸化炭素分圧が低い塩基性ガスとが気液接触することにより、吸収液中の二酸化炭素が塩基性ガス側へ放散するが、この放散した二酸化炭素と吸収液中で解離した二酸化炭素とに相当する分をファインバブル200が補う。これにより、吸収液の二酸化炭素の濃度の低下を抑制できる。尚、ファインバブル200の径が小さいほど、吸収液中を浮上する速度が小さいため、ファインバブル200が液中に留まる滞留時間が長くなり、ファインバブル200が塩基性ガス側へ放散しにくくなる。また、ファインバブル200の径が小さいほど、ファインバブル200の内圧が大きくなるので、吸収液への溶解速度も向上する。 In the form in which the first fine bubble generator 12a is an ejector type device and the second fine bubble generator 12b is a pressure dissolution type device, carbon dioxide is dissolved in water by the first fine bubble generator 12a, and the first fine bubble generator 12a is used. 2 The fine bubble generator 12b supplies carbon dioxide to the first absorbing liquid as fine bubbles (fine bubbles). As shown in FIG. 2, in the internal space 13a, the absorbed liquid and the basic gas having a carbon dioxide partial pressure lower than the equilibrium carbon dioxide partial pressure are brought into gas-liquid contact, so that carbon dioxide in the absorbed liquid is contained. Dissipates to the basic gas side, and the fine bubble 200 compensates for the amount corresponding to the dissipated carbon dioxide and the carbon dioxide dissociated in the absorption liquid. As a result, it is possible to suppress a decrease in the concentration of carbon dioxide in the absorption liquid. Since the smaller the diameter of the fine bubble 200, the lower the speed at which the fine bubble 200 floats in the absorbing liquid, the residence time of the fine bubble 200 in the liquid becomes longer, and the fine bubble 200 is less likely to be released to the basic gas side. Further, as the diameter of the fine bubble 200 is smaller, the internal pressure of the fine bubble 200 is increased, so that the dissolution rate in the absorbing liquid is also improved.
 ファインバブル発生装置12に関する上述の構成のいずれからも、上述の構成を有しない場合に比べて、ノズル20から噴射される吸収液の二酸化炭素の濃度を高めることができる。これにより、吸収液によるアンモニアの吸収が促進されるので、塩基性ガスの処理効率を向上することができる。 From any of the above-mentioned configurations regarding the fine bubble generator 12, it is possible to increase the concentration of carbon dioxide in the absorption liquid ejected from the nozzle 20 as compared with the case where the above-mentioned configuration is not provided. As a result, the absorption of ammonia by the absorbing liquid is promoted, so that the processing efficiency of the basic gas can be improved.
 アンモニアスクラバ11における塩基性ガスからのアンモニアの除去が継続していくと、内部空間13aに滞留した吸収液中のアンモニア濃度が上昇していくので、アンモニア除去率が低下していき、やがてはアンモニアの除去ができなくなってしまう。そこで、吸収液循環ライン14を流通する吸収液の一部を、吸収液抜き出しライン22を介して抜き出す一方で、ノズル16からメイクアップ水を内部空間13aに噴射させる。これにより、内部空間13aに滞留した吸収液中のアンモニア濃度が低下するので、アンモニア除去率の低下を抑制できる。 As the removal of ammonia from the basic gas in the ammonia scrubber 11 continues, the concentration of ammonia in the absorption liquid staying in the internal space 13a increases, so the ammonia removal rate decreases, and eventually ammonia. Cannot be removed. Therefore, while a part of the absorption liquid flowing through the absorption liquid circulation line 14 is extracted through the absorption liquid extraction line 22, make-up water is injected from the nozzle 16 into the internal space 13a. As a result, the concentration of ammonia in the absorbing liquid staying in the internal space 13a decreases, so that the decrease in the ammonia removal rate can be suppressed.
<本開示の実施形態1に係る湿式アンモニア洗浄装置の変形例>
 実施形態1では、第1ファインバブル発生装置12a及び第2ファインバブル発生装置12bがいずれも吸収液循環ライン14に設けられていたが、この形態に限定するものではない。第1ファインバブル発生装置12a及び第2ファインバブル発生装置12bがいずれも吸収液循環ライン14に設けられずに、第1ファインバブル発生装置12a及び第2ファインバブル発生装置12bで製造された吸収液を吸収液循環ライン14に供給する構成としてもよいし、製造された吸収液を内部空間13aに供給する構成としてもよい。また、第2ファインバブル発生装置12bのみを吸収液循環ライン14に設け、第1ファインバブル発生装置12aで製造された第1吸収液を第2ファインバブル発生装置12bに供給するように構成することもできる。
<Modified example of the wet ammonia cleaning device according to the first embodiment of the present disclosure>
In the first embodiment, both the first fine bubble generator 12a and the second fine bubble generator 12b are provided on the absorbing liquid circulation line 14, but the embodiment is not limited to this. Absorbent liquid produced by the first fine bubble generator 12a and the second fine bubble generator 12b without the first fine bubble generator 12a and the second fine bubble generator 12b being provided in the absorption liquid circulation line 14. May be supplied to the absorption liquid circulation line 14, or the manufactured absorption liquid may be supplied to the internal space 13a. Further, only the second fine bubble generator 12b is provided in the absorption liquid circulation line 14, and the first absorption liquid produced by the first fine bubble generator 12a is configured to be supplied to the second fine bubble generator 12b. You can also.
 ただし、第1ファインバブル発生装置12a及び第2ファインバブル発生装置12bがいずれも吸収液循環ライン14に設けられる構成の方が、ファインバブル発生装置12で製造された吸収液を吸収液循環ライン14に供給する構成や内部空間13aに供給する場合に比べて、内部空間13aに供給される吸収液の二酸化炭素の濃度が高くなる。これは、ファインバブル発生装置12において吸収液の循環流量に対して供給できる二酸化炭素の量に制約があるため、できるだけ吸収液の流量が大きいラインにファインバブル発生装置12を設けた方が二酸化炭素の供給量が大きくなり、吸収液中の二酸化炭素の量も大きくなるからである。この結果、塩基性ガスの処理効率を向上することができる。 However, in the configuration in which the first fine bubble generator 12a and the second fine bubble generator 12b are both provided in the absorption liquid circulation line 14, the absorption liquid produced by the fine bubble generator 12 is absorbed in the absorption liquid circulation line 14. The concentration of carbon dioxide in the absorption liquid supplied to the internal space 13a is higher than that in the case of supplying to the internal space 13a or the configuration for supplying the internal space 13a. This is because there is a limit to the amount of carbon dioxide that can be supplied to the circulating flow rate of the absorbent liquid in the fine bubble generator 12, so it is better to provide the fine bubble generator 12 on the line where the flow rate of the absorbent liquid is as large as possible. This is because the supply amount of carbon dioxide increases and the amount of carbon dioxide in the absorption liquid also increases. As a result, the processing efficiency of the basic gas can be improved.
 実施形態1では、ファインバブル発生装置12が2つのファインバブル発生装置、すなわち第1ファインバブル発生装置12a及び第2ファインバブル発生装置12bを備えていたが、2つに限定するものではなく、3つ以上のファインバブル発生装置を備えてもよい。この場合でも、少なくとも2つのファインバブル発生装置が互いに直列に配列されることが好ましく、全てのファインバブル発生装置が互いに直列に配列されることがさらに好ましい。 In the first embodiment, the fine bubble generator 12 includes two fine bubble generators, that is, a first fine bubble generator 12a and a second fine bubble generator 12b, but the present invention is not limited to the two. It may be equipped with one or more fine bubble generators. Even in this case, it is preferable that at least two fine bubble generators are arranged in series with each other, and it is further preferable that all the fine bubble generators are arranged in series with each other.
(実施形態2)
 次に、実施形態2に係る湿式アンモニア洗浄装置について説明する。実施形態2に係る湿式アンモニア洗浄装置は、実施形態1に対して、吸収液循環ライン14を流通する吸収液からアンモニアを除去する膜分離装置を付加したものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
(Embodiment 2)
Next, the wet ammonia cleaning device according to the second embodiment will be described. The wet ammonia cleaning device according to the second embodiment is obtained by adding a membrane separation device for removing ammonia from the absorbent liquid flowing through the absorbent liquid circulation line 14 to the first embodiment. In the second embodiment, the same reference numerals as those of the configuration requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
<本開示の実施形態2に係る湿式アンモニア洗浄装置の構成>
 図3に示されるように、本開示の実施形態2に係る湿式アンモニア洗浄装置10において、吸収液循環ライン14には第1ファインバブル発生装置12a及び第2ファインバブル発生装置12bが設けられている。吸収液循環ライン14には、ポンプ15と第1ファインバブル発生装置12aとの間に、吸収液からアンモニアを除去する膜分離装置30が設けられている。膜分離装置30の構成は特に限定するものではなく、例えば逆浸透膜(RO膜)を備える膜分離装置を使用することができる。吸収液循環ライン14には、膜分離装置30と第1ファインバブル発生装置12aとの間に、メイクアップ水が貯留されたタンク31を設けてもよい。その他の構成は、吸収液抜き出しライン22(図1参照)が設けられていない点を除いて、実施形態1と同じである。
<Structure of the wet ammonia cleaning device according to the second embodiment of the present disclosure>
As shown in FIG. 3, in the wet ammonia cleaning device 10 according to the second embodiment of the present disclosure, the absorption liquid circulation line 14 is provided with the first fine bubble generator 12a and the second fine bubble generator 12b. .. The absorption liquid circulation line 14 is provided with a membrane separation device 30 for removing ammonia from the absorption liquid between the pump 15 and the first fine bubble generator 12a. The configuration of the membrane separation device 30 is not particularly limited, and for example, a membrane separation device provided with a reverse osmosis membrane (RO membrane) can be used. The absorbent liquid circulation line 14 may be provided with a tank 31 in which make-up water is stored between the membrane separation device 30 and the first fine bubble generator 12a. Other configurations are the same as those of the first embodiment except that the absorption liquid extraction line 22 (see FIG. 1) is not provided.
<本開示の実施形態2に係る湿式アンモニア洗浄装置の動作>
 次に、本開示の実施形態2に係る湿式アンモニア洗浄装置10の動作について説明する。実施形態2は、吸収液が吸収液循環ライン14を流通する間の動作が実施形態1と異なり、アンモニアスクラバ11において塩基性ガスからアンモニアが除去される動作は実施形態1と同じである。このため、以下では、実施形態1の動作とは異なる部分、すなわち吸収液が吸収液循環ライン14を流通する間の動作についてのみ説明する。
<Operation of the wet ammonia cleaning device according to the second embodiment of the present disclosure>
Next, the operation of the wet ammonia cleaning device 10 according to the second embodiment of the present disclosure will be described. In the second embodiment, the operation during the flow of the absorbing liquid through the absorbing liquid circulation line 14 is different from that of the first embodiment, and the operation of removing ammonia from the basic gas in the ammonia scrubber 11 is the same as that of the first embodiment. Therefore, in the following, only the part different from the operation of the first embodiment, that is, the operation while the absorbing liquid flows through the absorbing liquid circulation line 14 will be described.
 内部空間13aに滞留する吸収液の一部がポンプ15によって内部空間13aから抜き出されて吸収液循環ライン14を流通する。吸収液が膜分離装置30に流入すると、膜分離装置30に設けられた分離膜(例えばRO膜)を水のみが通過し、吸収液に溶解するアンモニア分子又はアンモニウムイオン、炭酸イオン等の少なくとも一部が分離膜を通過できないことにより、吸収液に溶解するアンモニア及び二酸化炭素の濃度が低下した状態で吸収液が膜分離装置30から流出する。分離膜を通過できなかったアンモニア分子又はアンモニウムイオン、炭酸イオン等の濃縮液は、例えば、図示しないストリッパーに供給され、ストリッパーにおいて二酸化炭素及びアンモニアを回収されて再利用することができる。尚、これらの分子又はイオンの濃度が高い場合には、濃縮液をそのまま肥料製造プラントの尿素製造工程で再利用することもできる。 A part of the absorbing liquid staying in the internal space 13a is extracted from the internal space 13a by the pump 15 and circulates in the absorbing liquid circulation line 14. When the absorption liquid flows into the membrane separation device 30, only water passes through the separation membrane (for example, RO membrane) provided in the membrane separation device 30, and at least one of ammonia molecules, ammonium ions, carbonate ions, etc. that dissolves in the absorption liquid. Since the part cannot pass through the separation membrane, the absorption liquid flows out from the membrane separation device 30 in a state where the concentrations of ammonia and carbon dioxide dissolved in the absorption liquid are lowered. Ammonia molecules or concentrates of ammonium ions, carbonate ions, etc. that could not pass through the separation membrane are supplied to, for example, a stripper (not shown), and carbon dioxide and ammonia can be recovered and reused in the stripper. If the concentration of these molecules or ions is high, the concentrate can be reused as it is in the urea production process of the fertilizer production plant.
 膜分離装置30から流出した吸収液はタンク31に流入した後、タンク31からファインバブル発生装置12に流入し、第1ファインバブル発生装置12aにおいて吸収液中の水に二酸化炭素が吹き込まれて第1吸収液が製造され、続いて第2ファインバブル発生装置12bにおいて第1吸収液に二酸化炭素が吹き込まれて吸収液が製造される。この後の動作は実施形態1と同じである。 The absorption liquid flowing out of the membrane separation device 30 flows into the tank 31, then flows into the fine bubble generator 12 from the tank 31, and carbon dioxide is blown into the water in the absorption liquid in the first fine bubble generator 12a. 1 Absorption liquid is produced, and then carbon dioxide is blown into the first absorption liquid in the second fine bubble generator 12b to produce the absorption liquid. The operation after this is the same as that of the first embodiment.
 実施形態2では、実施形態1に比べて、ファインバブル発生装置12に流入する吸収液のアンモニア及び二酸化炭素の濃度が低い状態となっている。このため、ファインバブル発生装置12における二酸化炭素の溶解が促進されるとともに、吸収液中の二酸化炭素/アンモニア比が大きくなる。一般に、吸収液中のこの比が大きいほど、吸収液と塩基性ガスとの気液接触による塩基性ガスからのアンモニアの除去が促進されるので、実施形態1に比べて塩基性ガスの処理効率を向上することができる。 In the second embodiment, the concentrations of ammonia and carbon dioxide in the absorbing liquid flowing into the fine bubble generator 12 are lower than those in the first embodiment. Therefore, the dissolution of carbon dioxide in the fine bubble generator 12 is promoted, and the carbon dioxide / ammonia ratio in the absorbing liquid becomes large. In general, the larger this ratio in the absorption liquid is, the more the removal of ammonia from the basic gas by the gas-liquid contact between the absorption liquid and the basic gas is promoted, so that the treatment efficiency of the basic gas is higher than that in the first embodiment. Can be improved.
(実施形態3)
 次に、実施形態3に係る湿式アンモニア洗浄装置について説明する。実施形態3に係る湿式アンモニア洗浄装置は、実施形態1又は2に対して、塩基性ガスがアンモニアスクラバ11に流入する前に塩基性ガスを冷却する冷却装置を付加したものである。以下では、実施形態1の構成に対して冷却装置を付加した構成で実施形態3を説明するが、実施形態2の構成に対して冷却装置を付加することにより実施形態3を構成してもよい。尚、実施形態3において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
(Embodiment 3)
Next, the wet ammonia cleaning device according to the third embodiment will be described. The wet ammonia cleaning device according to the third embodiment is obtained by adding a cooling device for cooling the basic gas to the first or second embodiment before the basic gas flows into the ammonia scrubber 11. Hereinafter, the third embodiment will be described with a configuration in which a cooling device is added to the configuration of the first embodiment, but the third embodiment may be configured by adding a cooling device to the configuration of the second embodiment. .. In the third embodiment, the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
<本開示の実施形態3に係る湿式アンモニア洗浄装置の構成>
 図4に示されるように、本開示の実施形態3に係る湿式アンモニア洗浄装置10において、配管17には冷却装置40、例えば冷却媒体と配管17を流通する塩基性ガスとが熱交換する熱交換器が設けられている。必須の構成ではないが、吸収液循環ライン14においてポンプ15と第1ファインバブル発生装置12aとの間に冷却装置41、例えば冷却媒体と吸収液循環ライン14を流通する吸収液とが熱交換する熱交換器を設けてもよい。冷却装置40,41のそれぞれを流通する冷却媒体は、任意の流体を使用することができ、例えば、湿式アンモニア洗浄装置10を備える肥料製造プラントの構成要素であるアンモニア製造ユニットで製造されたアンモニアを使用することができる。その他の構成は実施形態1と同じである。
<Structure of the wet ammonia cleaning device according to the third embodiment of the present disclosure>
As shown in FIG. 4, in the wet ammonia cleaning device 10 according to the third embodiment of the present disclosure, the pipe 17 has a cooling device 40, for example, heat exchange between a cooling medium and a basic gas flowing through the pipe 17. A vessel is provided. Although it is not an essential configuration, in the absorption liquid circulation line 14, the cooling device 41, for example, the cooling medium and the absorption liquid flowing through the absorption liquid circulation line 14 exchange heat between the pump 15 and the first fine bubble generator 12a. A heat exchanger may be provided. Any fluid can be used as the cooling medium flowing through each of the cooling devices 40 and 41, for example, ammonia produced by an ammonia production unit which is a component of a fertilizer production plant equipped with a wet ammonia cleaning device 10. Can be used. Other configurations are the same as those in the first embodiment.
<本開示の実施形態3に係る湿式アンモニア洗浄装置の動作>
 次に、本開示の実施形態3に係る湿式アンモニア洗浄装置10の動作について説明する。実施形態3では、塩基性ガスがアンモニアスクラバ11に供給される前に、塩基性ガスは冷却装置40で冷却される。アンモニアスクラバ11において塩基性ガスからアンモニアが除去される動作は実施形態1と同じである。このように塩基性ガスを予め冷却しておくことにより、アンモニアスクラバ11内で吸収液と塩基性ガスとが気液接触する際の吸収液の温度の上昇を抑制することができるので、吸収液からの二酸化炭素の放散が抑制され、塩基性ガスの処理効率を向上することができる。
<Operation of the wet ammonia cleaning device according to the third embodiment of the present disclosure>
Next, the operation of the wet ammonia cleaning device 10 according to the third embodiment of the present disclosure will be described. In the third embodiment, the basic gas is cooled by the cooling device 40 before the basic gas is supplied to the ammonia scrubber 11. The operation of removing ammonia from the basic gas in the ammonia scrubber 11 is the same as that of the first embodiment. By pre-cooling the basic gas in this way, it is possible to suppress an increase in the temperature of the absorbed liquid when the absorbed liquid and the basic gas come into gas-liquid contact in the ammonia scrubber 11, so that the absorbed liquid can be suppressed. The emission of carbon dioxide from the gas can be suppressed, and the processing efficiency of the basic gas can be improved.
 吸収液循環ライン14に冷却装置41を設ける場合には、吸収液がファインバブル発生装置12に流入する前に冷却装置41において冷却される。一般に、二酸化炭素の溶解度は水の温度が低いほど高まるので、ファインバブル発生装置12に流入する前に吸収液を冷却しない場合に比べて、吸収液の二酸化炭素の濃度を高めることができる。実施形態3では、アンモニアスクラバ11に流入する塩基性ガスも冷却されているので、実施形態1に比べて、アンモニアスクラバ11における塩基性ガスと吸収液との気液接触による吸収液の温度の上昇が抑制される。このため、二酸化炭素の濃度が高い吸収液が塩基性ガスと気液接触するようになるので、実施形態1に比べて塩基性ガスの処理効率を向上することができる。 When the cooling device 41 is provided in the absorbing liquid circulation line 14, the absorbing liquid is cooled in the cooling device 41 before flowing into the fine bubble generator 12. In general, the solubility of carbon dioxide increases as the temperature of water decreases, so that the concentration of carbon dioxide in the absorbing liquid can be increased as compared with the case where the absorbing liquid is not cooled before flowing into the fine bubble generator 12. In the third embodiment, since the basic gas flowing into the ammonia scrubber 11 is also cooled, the temperature of the absorbed liquid in the ammonia scrubber 11 rises due to the gas-liquid contact between the basic gas and the absorbed liquid in the ammonia scrubber 11 as compared with the first embodiment. Is suppressed. Therefore, since the absorbing liquid having a high concentration of carbon dioxide comes into gas-liquid contact with the basic gas, the processing efficiency of the basic gas can be improved as compared with the first embodiment.
(実施形態4)
 次に、本開示の実施形態4について説明する。実施形態4は、実施形態1~3のいずれかの湿式アンモニア洗浄装置を肥料製造プラントに設けたものである。以下では、実施形態1の湿式アンモニア洗浄装置10を肥料製造プラントに設けた構成で実施形態4を説明するが、実施形態2又は3の湿式アンモニア洗浄装置10を肥料製造プラントに設けた構成で実施形態4を構成してもよい。尚、実施形態4において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
(Embodiment 4)
Next, the fourth embodiment of the present disclosure will be described. In the fourth embodiment, the wet ammonia cleaning device according to any one of the first to third embodiments is provided in the fertilizer production plant. Hereinafter, the fourth embodiment will be described with the configuration in which the wet ammonia cleaning device 10 of the first embodiment is provided in the fertilizer production plant, but the wet ammonia cleaning device 10 of the second or third embodiment is provided in the fertilizer production plant. Form 4 may be configured. In the fourth embodiment, the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
<本開示の実施形態4に係る湿式アンモニア洗浄装置を備えた肥料製造プラントの構成>
 図5に示されるように、肥料製造プラント100は、メタンを含む天然ガス等の原料ガスを利用してアンモニアを製造するアンモニア製造ユニット5と、アンモニアと二酸化炭素とを反応させて尿素溶液を製造する尿素製造ユニット70と、尿素溶液から粒状の固体の尿素を製造する尿素造粒ユニット60と、尿素造粒ユニット60から発生される塩基性ガスを処理する湿式アンモニア洗浄装置10とを備えている。肥料製造プラント100は、原料ガスを改質する改質装置1と、改質装置1から供給されたガス中の一酸化炭素及び水蒸気を変性させる変性器2と、変性器2から流出したガス中の二酸化炭素を回収する二酸化炭素回収器3と、二酸化炭素回収器3から流出したガス中の二酸化炭素及び一酸化炭素をそれぞれメタンに変換するメタン化装置4とをさらに備えてもよい。この場合、メタン化装置4とアンモニア製造ユニット5とが接続されている。
<Structure of a fertilizer production plant provided with the wet ammonia cleaning device according to the fourth embodiment of the present disclosure>
As shown in FIG. 5, the fertilizer production plant 100 produces a urea solution by reacting ammonia and carbon dioxide with an ammonia production unit 5 that produces ammonia using a raw material gas such as a natural gas containing methane. It is provided with a urea production unit 70 for producing urea, a urea granulation unit 60 for producing granular solid urea from a urea solution, and a wet ammonia cleaning device 10 for treating basic gas generated from the urea granulation unit 60. .. The fertilizer production plant 100 includes a reformer 1 that reforms the raw material gas, a modifier 2 that modifies carbon monoxide and steam in the gas supplied from the reformer 1, and a gas flowing out from the reformer 2. A carbon dioxide recovery device 3 for recovering carbon dioxide and a steaming device 4 for converting carbon dioxide and carbon monoxide in the gas flowing out from the carbon dioxide recovery device 3 into methane, respectively, may be further provided. In this case, the methanizer 4 and the ammonia production unit 5 are connected.
 尿素製造ユニット70は、圧縮機71及び尿素製造装置72を備えている。圧縮機71と尿素製造装置72とは配管121を介して接続されている。二酸化炭素回収器3と圧縮機71とは配管122を介して接続されている。アンモニア製造ユニット5で製造されたアンモニアが配管121に供給されるようにアンモニア供給ライン123が設けられ、アンモニア供給ライン123には、アンモニアを昇圧する圧縮機76が設けられている。配管121においてアンモニア供給ライン123が合流する位置よりも上流側から二酸化炭素供給ライン118が分岐し、二酸化炭素供給ライン118は、第1ファインバブル発生装置12a及び第2ファインバブル発生装置12b(図1参照)のそれぞれに接続している。 The urea production unit 70 includes a compressor 71 and a urea production apparatus 72. The compressor 71 and the urea production apparatus 72 are connected to each other via a pipe 121. The carbon dioxide recovery device 3 and the compressor 71 are connected to each other via a pipe 122. The ammonia supply line 123 is provided so that the ammonia produced by the ammonia production unit 5 is supplied to the pipe 121, and the ammonia supply line 123 is provided with a compressor 76 for boosting the ammonia. The carbon dioxide supply line 118 branches from the upstream side of the position where the ammonia supply line 123 joins in the pipe 121, and the carbon dioxide supply line 118 is the first fine bubble generator 12a and the second fine bubble generator 12b (FIG. 1). See) connected to each.
 湿式アンモニア洗浄装置10は、尿素造粒ユニット60から発生した塩基性ガスから尿素ダスト等の固体成分を除去するダストスクラバ51と、ダストスクラバ51において固体成分が除去された塩基性ガスからアンモニアを除去するアンモニアスクラバ11とを備えている。尿素造粒ユニット60とダストスクラバ51とは塩基性ガス流通ライン111を介して接続されている。ダストスクラバ51とアンモニアスクラバ11とは配管17を介して互いに接続されている。 The wet ammonia cleaning device 10 removes ammonia from the dust scrubber 51 that removes solid components such as urea dust from the basic gas generated from the urea granulation unit 60 and the basic gas from which the solid components have been removed from the dust scrubber 51. It is equipped with an ammonia scrubber 11. The urea granulation unit 60 and the dust scrubber 51 are connected via a basic gas flow line 111. The dust scrubber 51 and the ammonia scrubber 11 are connected to each other via a pipe 17.
 アンモニアスクラバ11に設けられるノズル16(図1参照)に一端が接続されるメイクアップ水給水管19の他端が、圧縮機71、又は、改質装置1と変性器2とを接続する配管6の少なくとも一方に接続されている。メイクアップ水給水管19が圧縮機71に接続される構成では、圧縮機71で発生するドレンがメイクアップ水給水管19を介して圧縮機71から排水されるようになっており、メイクアップ水給水管19が配管6に接続される構成では、改質装置1から流出するガスに含まれるコンデンセートが配管6から排水されるようになっている。 The other end of the make-up water supply pipe 19 to which one end is connected to the nozzle 16 (see FIG. 1) provided in the ammonia scrubber 11 is the compressor 71 or the pipe 6 connecting the reformer 1 and the modifier 2. It is connected to at least one of them. In the configuration in which the make-up water water supply pipe 19 is connected to the compressor 71, the drain generated in the compressor 71 is drained from the compressor 71 via the make-up water water supply pipe 19 so that the make-up water can be drained. In the configuration in which the water supply pipe 19 is connected to the pipe 6, the condensate contained in the gas flowing out from the reforming device 1 is drained from the pipe 6.
<本開示の実施形態4に係る湿式アンモニア洗浄装置を備えた肥料製造プラントの動作>
 次に、肥料製造プラント100の動作について説明する。原料ガスは、改質装置1において空気及び水蒸気によって改質されて、少なくとも水素及び二酸化炭素を含むガスとなる。改質装置1では、空気の取り込みも行われるため、改質装置1から排出されて後段の変性器2に供給されるガスには、空気に由来する成分も含まれる。具体的には、改質装置1から排出されるガスには、窒素等も含まれる。また、このガスには、一酸化炭素も含まれており、一酸化炭素は後段の変性器2において水との化学反応により、二酸化炭素及び水素に変換される。
<Operation of a fertilizer production plant equipped with a wet ammonia cleaning device according to the fourth embodiment of the present disclosure>
Next, the operation of the fertilizer production plant 100 will be described. The raw material gas is reformed by air and steam in the reformer 1 to become a gas containing at least hydrogen and carbon dioxide. Since the reformer 1 also takes in air, the gas discharged from the reformer 1 and supplied to the modifier 2 in the subsequent stage also includes components derived from air. Specifically, the gas discharged from the reformer 1 also includes nitrogen and the like. This gas also contains carbon monoxide, which is converted into carbon dioxide and hydrogen by a chemical reaction with water in the modifier 2 in the subsequent stage.
 変性器2の下流の二酸化炭素回収器3では、ガス中の二酸化炭素を回収することで、アンモニア製造ユニット5への二酸化炭素の持ち込みを抑制し、アンモニア生成触媒への影響を抑制することができる。二酸化炭素回収器3における二酸化炭素の回収は、例えば、アルカリ水溶液をガスに接触させることで、行うことができる。なお、回収された二酸化炭素は、アルカリ水溶液の加熱等によりアルカリ水溶液から分離された後、尿素製造ユニット70及び湿式アンモニア洗浄装置10のファインバブル発生装置12(図1参照)に供給される。 By recovering carbon dioxide in the gas, the carbon dioxide recovery device 3 downstream of the denaturant 2 can suppress the introduction of carbon dioxide into the ammonia production unit 5 and suppress the influence on the ammonia production catalyst. .. The recovery of carbon dioxide in the carbon dioxide recovery device 3 can be performed, for example, by bringing an alkaline aqueous solution into contact with the gas. The recovered carbon dioxide is separated from the alkaline aqueous solution by heating the alkaline aqueous solution or the like, and then supplied to the fine bubble generator 12 (see FIG. 1) of the urea production unit 70 and the wet ammonia cleaning device 10.
 二酸化炭素回収器3の下流のメタン化装置4では、二酸化炭素回収器3で回収しきれなかった二酸化炭素と、変性器2で二酸化炭素に変換されずに二酸化炭素回収器3で回収されなかった一酸化炭素とがそれぞれメタンに変換される。メタン化装置4において、一酸化炭素、二酸化炭素等の酸化炭素が除去されることで、アンモニア製造ユニット5への酸化炭素の持ち込みが抑制される。これにより、酸化炭素に起因するアンモニア生成触媒への影響を抑制することができる。 In the methanizer 4 downstream of the carbon dioxide recovery device 3, the carbon dioxide that could not be recovered by the carbon dioxide recovery device 3 and the carbon dioxide that was not converted into carbon dioxide by the denaturator 2 and were not recovered by the carbon dioxide recovery device 3. Carbon monoxide and carbon monoxide are each converted to methane. By removing carbon monoxide, carbon dioxide, and other carbon oxides in the methanization apparatus 4, the introduction of carbon oxide into the ammonia production unit 5 is suppressed. This makes it possible to suppress the influence of carbon oxide on the ammonia production catalyst.
 メタン化装置4から流出しアンモニア製造ユニット5に流入するガスは、水素及び窒素を含み、不純物としてメタンを含んでいる。アンモニア製造ユニット5では、任意のアンモニア生成触媒を用いることにより、以下の化学式(1)で示される化学反応が生じて、アンモニアが生成する。
  N+3H→2NH ・・・(1)
The gas flowing out of the methanizer 4 and flowing into the ammonia production unit 5 contains hydrogen and nitrogen, and contains methane as an impurity. In the ammonia production unit 5, by using an arbitrary ammonia production catalyst, a chemical reaction represented by the following chemical formula (1) occurs, and ammonia is produced.
N 2 + 3H 2 → 2NH 3 ... (1)
 生成されたアンモニアは、圧縮機76によってアンモニア供給ライン123及び配管121を順次流通して尿素製造ユニット70の尿素製造装置72に流入する。また、二酸化炭素回収器3で回収された二酸化炭素は、二酸化炭素回収器3から流出して配管122を流通し、圧縮機71で昇圧されて、配管121を介して尿素製造装置72に流入する。尿素製造装置72では、二酸化炭素とアンモニアとから、以下の化学式(2)で示される化学反応によって尿素(尿素溶液)が製造される。
  2NH+CO→(NHCO+HO ・・・(2)
The generated ammonia sequentially flows through the ammonia supply line 123 and the pipe 121 by the compressor 76 and flows into the urea production apparatus 72 of the urea production unit 70. Further, the carbon dioxide recovered by the carbon dioxide recovery device 3 flows out from the carbon dioxide recovery device 3, flows through the pipe 122, is boosted by the compressor 71, and flows into the urea production apparatus 72 through the pipe 121. .. In the urea production apparatus 72, urea (urea solution) is produced from carbon dioxide and ammonia by a chemical reaction represented by the following chemical formula (2).
2NH 3 + CO 2 → (NH 2 ) 2 CO + H 2 O ・ ・ ・ (2)
 尿素製造ユニット70で製造された尿素溶液は、尿素造粒ユニット60に流入する。尿素造粒ユニット60では、尿素製造ユニット70から供給された尿素の造粒が行われる。尿素の造粒により得られた粒状の尿素は、肥料として出荷され、使用される。 The urea solution produced by the urea production unit 70 flows into the urea granulation unit 60. In the urea granulation unit 60, the urea supplied from the urea production unit 70 is granulated. Granular urea obtained by granulation of urea is shipped and used as fertilizer.
 尿素造粒ユニット60では、尿素の造粒中に、固体尿素の粉体等である尿素ダスト及びアンモニアを含む塩基性ガスが発生する。塩基性ガスは、塩基性ガス流通ライン111を流通して湿式アンモニア洗浄装置10に流入する。湿式アンモニア洗浄装置10では、ダストスクラバ51において洗浄水と塩基性ガスとが気液接触することにより、塩基性ガスから尿素ダストが除去される。尿素ダストが除去された塩基性ガスは配管17を介してアンモニアスクラバ11に流入する。アンモニアスクラバ11では、実施形態1で説明した動作と同じ動作により、塩基性ガスからアンモニアが除去される。アンモニアが除去された塩基性ガスは、排気ライン18を介して排気される。 In the urea granulation unit 60, a basic gas containing urea dust, which is a powder of solid urea, and ammonia is generated during the granulation of urea. The basic gas flows through the basic gas flow line 111 and flows into the wet ammonia cleaning device 10. In the wet ammonia cleaning device 10, urea dust is removed from the basic gas by the gas-liquid contact between the cleaning water and the basic gas in the dust scrubber 51. The basic gas from which the urea dust has been removed flows into the ammonia scrubber 11 via the pipe 17. In the ammonia scrubber 11, ammonia is removed from the basic gas by the same operation as that described in the first embodiment. The basic gas from which ammonia has been removed is exhausted through the exhaust line 18.
 実施形態4では、圧縮機71で発生するドレン又は改質装置1から流出するガスに含まれるコンデンセートの少なくとも一方が、メイクアップ水給水管19を介してメイクアップ水としてアンモニアスクラバ11に供給される。上記ドレン及びコンデンセートは、二酸化炭素が溶解している炭酸水であるので、メイクアップ水として炭酸水をアンモニアスクラバ11に供給することになる。これにより、吸収液としての炭酸水だけではなく、メイクアップ水としての炭酸水もアンモニアを吸収できるので、メイクアップ水として二酸化炭素を含まない水を供給する場合に比べて、塩基性ガスの処理効率を向上することができる。 In the fourth embodiment, at least one of the condensates contained in the drain generated in the compressor 71 or the gas flowing out from the reformer 1 is supplied to the ammonia scrubber 11 as make-up water via the make-up water supply pipe 19. .. Since the drain and condensate are carbonated water in which carbon dioxide is dissolved, carbonated water is supplied to the ammonia scrubber 11 as make-up water. As a result, not only carbonated water as an absorption liquid but also carbonated water as make-up water can absorb ammonia, so that treatment of basic gas is performed as compared with the case of supplying water containing no carbon dioxide as make-up water. Efficiency can be improved.
<本開示の実施形態4に係る湿式アンモニア洗浄装置を備えた肥料製造プラントの変形例>
 実施形態4では、アンモニアスクラバ11に供給されるメイクアップ水として炭酸水を、圧縮機71で発生するドレン又は改質装置1から流出するガスに含まれるコンデンセートとしていたが、この形態に限定するものではない。メイクアップ水としての炭酸水を製造する装置を肥料製造プラント100に設けてもよい。このような装置は、二酸化炭素供給ライン118を流通する二酸化炭素の一部を抜き出して水に溶解させる装置とすることができ、この装置の構成としては、ラシヒリング等の充填物を充填した充填式の吸収塔や、プレート式の吸収塔や、プレート式の吸収塔においてプレートが冷却可能に構成された吸収塔等を採用することができる。
<Modification example of a fertilizer production plant equipped with a wet ammonia cleaning device according to the fourth embodiment of the present disclosure>
In the fourth embodiment, carbonated water is used as the make-up water supplied to the ammonia scrubber 11 as the condensate contained in the drain generated in the compressor 71 or the gas flowing out from the reforming device 1, but the present invention is limited to this embodiment. is not it. An apparatus for producing carbonated water as make-up water may be provided in the fertilizer production plant 100. Such a device can be a device for extracting a part of carbon dioxide flowing through the carbon dioxide supply line 118 and dissolving it in water, and the configuration of this device is a filling type filled with a filler such as Raschig ring. It is possible to adopt an absorption tower, a plate-type absorption tower, an absorption tower in which the plate can be cooled in the plate-type absorption tower, and the like.
 実施形態4では、肥料製造プラント100の任意の箇所で生成又は製造された炭酸水をメイクアップ水として利用しているが、この形態に代えて又はこの形態と共に、炭酸水を第1ファインバブル発生装置12a及び第2ファインバブル発生装置12bの少なくとも一方に供給してもよい。この場合、メイクアップ水給水管19から分岐した配管が炭酸水を第1ファインバブル発生装置12a及び第2ファインバブル発生装置12bの少なくとも一方に接続された構成となる。 In the fourth embodiment, carbonated water generated or produced at an arbitrary location in the fertilizer production plant 100 is used as make-up water, but instead of or in combination with this form, carbonated water is generated as a first fine bubble. It may be supplied to at least one of the device 12a and the second fine bubble generator 12b. In this case, the pipe branched from the make-up water supply pipe 19 has a configuration in which carbonated water is connected to at least one of the first fine bubble generator 12a and the second fine bubble generator 12b.
 実施形態4では、湿式アンモニア洗浄装置10が2つのファインバブル発生装置を備え、さらに3つ以上のファインバブル発生装置を備えることもできるとしていたが、この形態に限定するものではない。十分な二酸化炭素濃度の炭酸水を製造できるファインバブル発生装置であれば、湿式アンモニア洗浄装置10が、吸収液循環ライン14に設けられる1つのファインバブル発生装置を備えた構成であってもよい。 In the fourth embodiment, the wet ammonia cleaning device 10 is provided with two fine bubble generators and may be further provided with three or more fine bubble generators, but the present invention is not limited to this embodiment. As long as it is a fine bubble generator capable of producing carbonated water having a sufficient carbon dioxide concentration, the wet ammonia cleaning device 10 may be configured to include one fine bubble generator provided in the absorption liquid circulation line 14.
 上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments are grasped as follows, for example.
[1]一の態様に係る湿式アンモニア洗浄装置は、
 アンモニアを含む塩基性ガスを処理する湿式アンモニア洗浄装置(10)であって、
 二酸化炭素を含む吸収液と塩基性ガスとを気液接触させるアンモニアスクラバ(11)と、
 二酸化炭素及び水から前記吸収液を製造するファインバブル発生装置(12)と
を備え、
 前記ファインバブル発生装置(12)は少なくとも、
 二酸化炭素及び水から第1吸収液を製造する第1ファインバブル発生装置(12a)と、
 二酸化炭素及び前記第1吸収液から前記吸収液を製造する第2ファインバブル発生装置(12b)と
を含む。
[1] The wet ammonia cleaning device according to one aspect is
A wet ammonia cleaning device (10) that treats a basic gas containing ammonia.
Ammonia scrubber (11) that brings carbon dioxide-containing absorption liquid into gas-liquid contact with basic gas,
A fine bubble generator (12) for producing the absorbent liquid from carbon dioxide and water is provided.
The fine bubble generator (12) is at least
A first fine bubble generator (12a) that produces a first absorbent liquid from carbon dioxide and water, and
It includes carbon dioxide and a second fine bubble generator (12b) for producing the absorption liquid from the first absorption liquid.
 本開示の湿式アンモニア洗浄装置によれば、少なくとも第1ファインバブル発生装置及び第2ファインバブル発生装置のそれぞれにおいて二酸化炭素を吸収させることにより、1つのファインバブル発生装置で二酸化炭素を吸収させる場合に比べて吸収液の二酸化炭素濃度を高めることができるので、塩基性ガスの処理効率を向上することができる。 According to the wet ammonia cleaning device of the present disclosure, when carbon dioxide is absorbed by one fine bubble generator by absorbing carbon dioxide in at least each of the first fine bubble generator and the second fine bubble generator. As compared with this, the carbon dioxide concentration of the absorbing liquid can be increased, so that the processing efficiency of the basic gas can be improved.
[2]別の態様に係る湿式アンモニア洗浄装置は、[1]の湿式アンモニア洗浄装置であって、
 前記ファインバブル発生装置(12)は、100マイクロメートル以下の二酸化炭素の気泡を発生する。
[2] The wet ammonia cleaning device according to another aspect is the wet ammonia cleaning device according to [1].
The fine bubble generator (12) generates carbon dioxide bubbles of 100 micrometers or less.
 このような構成によれば、100マイクロメートル以下の二酸化炭素の気泡が水及び第1吸収液に供給されるので、二酸化炭素の溶解を促進することができる。 According to such a configuration, carbon dioxide bubbles of 100 micrometers or less are supplied to the water and the first absorbing liquid, so that the dissolution of carbon dioxide can be promoted.
[3]さらに別の態様に係る湿式アンモニア洗浄装置は、[2]の湿式アンモニア洗浄装置であって、
 前記第1ファインバブル発生装置(12a)はエジェクタ方式のファインバブル発生装置であり、前記第2ファインバブル発生装置(12b)は加圧溶解方式のファインバブル発生装置である。
[3] The wet ammonia cleaning device according to still another aspect is the wet ammonia cleaning device of [2].
The first fine bubble generator (12a) is an ejector type fine bubble generator, and the second fine bubble generator (12b) is a pressure melting type fine bubble generator.
 このような構成によれば、第1ファインバブル発生装置で二酸化炭素が水中に溶解し、第2ファインバブル発生装置で二酸化炭素が微細な気泡(ファインバブル)として第1吸収液中に供給される。アンモニアスクラバ内で、吸収液と、その平衡二酸化炭素分圧よりも二酸化炭素分圧が低い塩基性ガスとが気液接触することにより、吸収液中の二酸化炭素が塩基性ガス側へ放散するが、この放散した二酸化炭素と吸収液中で解離した二酸化炭素とに相当する分をファインバブルが補う。これにより、吸収液の二酸化炭素の濃度の低下を抑制できるので、塩基性ガスの処理効率を向上することができる。 According to such a configuration, carbon dioxide is dissolved in water by the first fine bubble generator, and carbon dioxide is supplied to the first absorbing liquid as fine bubbles (fine bubbles) by the second fine bubble generator. .. In the ammonia scrubber, the absorbed liquid and the basic gas having a lower carbon dioxide partial pressure than the equilibrium carbon dioxide partial pressure come into gas-liquid contact, so that the carbon dioxide in the absorbed liquid is released to the basic gas side. The fine bubble supplements the amount corresponding to the emitted carbon dioxide and the carbon dioxide dissociated in the absorption liquid. As a result, it is possible to suppress a decrease in the concentration of carbon dioxide in the absorption liquid, so that the treatment efficiency of the basic gas can be improved.
[4]さらに別の態様に係る湿式アンモニア洗浄装置は、[1]~[3]のいずれかの湿式アンモニア洗浄装置であって、
 前記アンモニアスクラバ(11)は、内部に貯留される前記吸収液を抜き出して前記アンモニアスクラバ(11)内の気相中に戻すための吸収液循環ライン(14)を備え、
 前記ファインバブル発生装置(12)は前記吸収液循環ライン(14)に設けられている。
[4] The wet ammonia cleaning device according to still another aspect is the wet ammonia cleaning device according to any one of [1] to [3].
The ammonia scrubber (11) is provided with an absorbent liquid circulation line (14) for extracting the absorbent liquid stored therein and returning it to the gas phase in the ammonia scrubber (11).
The fine bubble generator (12) is provided in the absorbent liquid circulation line (14).
 このような構成によれば、ファインバブル発生装置で製造された吸収液を吸収液循環ラインに供給する場合やアンモニアスクラバの内部に貯留される吸収液に供給する場合に比べて、アンモニアスクラバの気相中に供給される吸収液の二酸化炭素の濃度が高くなるので、塩基性ガスの処理効率を向上することができる。 According to such a configuration, the gas of the ammonia scrubber is compared with the case of supplying the absorbent liquid produced by the fine bubble generator to the absorbent liquid circulation line or the case of supplying the absorbent liquid stored inside the ammonia scrubber. Since the concentration of carbon dioxide in the absorption liquid supplied in the phase is increased, the treatment efficiency of the basic gas can be improved.
[5]さらに別の態様に係る湿式アンモニア洗浄装置は、[4]の湿式アンモニア洗浄装置であって、
 前記吸収液循環ライン(14)を流通する前記吸収液からアンモニアを除去する膜分離装置(30)をさらに備え、
 前記膜分離装置は、前記吸収液の流通方向において前記ファインバブル発生装置よりも上流側に位置するように前記吸収液循環ラインに設けられている。
[5] The wet ammonia cleaning device according to still another aspect is the wet ammonia cleaning device according to [4].
A membrane separation device (30) for removing ammonia from the absorbent liquid flowing through the absorbent liquid circulation line (14) is further provided.
The membrane separation device is provided in the absorption liquid circulation line so as to be located upstream of the fine bubble generator in the flow direction of the absorption liquid.
 このような構成によれば、吸収液からアンモニアを除去することにより、吸収液中の二酸化炭素/アンモニア比が大きくなるので、塩基性ガスの処理効率を向上することができる。 According to such a configuration, by removing ammonia from the absorption liquid, the carbon dioxide / ammonia ratio in the absorption liquid becomes large, so that the treatment efficiency of the basic gas can be improved.
[6]さらに別の態様に係る湿式アンモニア洗浄装置は、[1]~[5]のいずれかの湿式アンモニア洗浄装置であって、
 前記塩基性ガスが前記アンモニアスクラバ(11)に流入する前に前記塩基性ガスを冷却する冷却装置(40)をさらに備える。
[6] The wet ammonia cleaning device according to still another aspect is the wet ammonia cleaning device according to any one of [1] to [5].
A cooling device (40) for cooling the basic gas before the basic gas flows into the ammonia scrubber (11) is further provided.
 このような構成によれば、塩基性ガスを予め冷却しておくことにより、アンモニアスクラバ内で吸収液と塩基性ガスとが気液接触する際の吸収液の温度の上昇を抑制することができるので、吸収液からの二酸化炭素の放散が抑制され、塩基性ガスの処理効率を向上することができる。 According to such a configuration, by pre-cooling the basic gas, it is possible to suppress an increase in the temperature of the absorbing liquid when the absorbing liquid and the basic gas come into gas-liquid contact in the ammonia scrubber. Therefore, the emission of carbon dioxide from the absorbing liquid is suppressed, and the processing efficiency of the basic gas can be improved.
[7]一の態様に係る肥料製造プラントは、
 メタンを含む原料ガスから肥料を製造するための肥料製造プラント(100)であって、
 前記原料ガスからアンモニアを製造するアンモニア製造ユニット(5)と、
 前記アンモニアと二酸化炭素とを反応させて尿素溶液を製造する尿素製造ユニット(70)と、
 前記尿素溶液から粒状の固体の尿素を製造する尿素造粒ユニット(60)と、
 前記尿素造粒ユニット(60)から発生される前記塩基性ガスを処理する、[1]~[6]のいずれかの湿式アンモニア洗浄装置(10)と
を備え、
 前記肥料製造プラント(100)内で生成する炭酸水が前記アンモニアスクラバ(11)内の気相中又は前記ファインバブル発生装置(12)に供給されるように構成されている。
[7] The fertilizer production plant according to one aspect is
A fertilizer production plant (100) for producing fertilizer from a raw material gas containing methane.
An ammonia production unit (5) that produces ammonia from the raw material gas, and
A urea production unit (70) that produces a urea solution by reacting ammonia with carbon dioxide, and the like.
A urea granulation unit (60) for producing granular solid urea from the urea solution, and a urea granulation unit (60).
The wet ammonia cleaning device (10) according to any one of [1] to [6] for treating the basic gas generated from the urea granulation unit (60) is provided.
The carbonated water generated in the fertilizer production plant (100) is configured to be supplied in the gas phase in the ammonia scrubber (11) or to the fine bubble generator (12).
 本開示の肥料製造プラントによれば、アンモニアスクラバに供給されるメイクアップ水として炭酸水をアンモニアスクラバに供給することにより、吸収液としての炭酸水だけではなく、メイクアップ水としての炭酸水もアンモニアを吸収できるので、メイクアップ水として二酸化炭素を含まない水を供給する場合に比べて、塩基性ガスの処理効率を向上することができる。 According to the fertilizer production plant of the present disclosure, by supplying carbonated water to the ammonia scrubber as make-up water supplied to the ammonia scrubber, not only the carbonated water as the absorption liquid but also the carbonated water as the make-up water is ammonia. Can be absorbed, so that the treatment efficiency of basic gas can be improved as compared with the case of supplying water containing no carbon dioxide as make-up water.
[8]別の態様に係る肥料製造プラントは、[7]の肥料製造プラントであって、
 前記尿素製造ユニット(70)は、
 前記尿素溶液を製造する尿素製造装置(72)と、
 前記尿素製造装置(72)に二酸化炭素を供給する圧縮機(71)と
を備え、
 前記炭酸水は、前記圧縮機(71)で発生するドレンである。
[8] The fertilizer production plant according to another aspect is the fertilizer production plant of [7].
The urea production unit (70) is
The urea production apparatus (72) for producing the urea solution, and
The urea production apparatus (72) is provided with a compressor (71) for supplying carbon dioxide.
The carbonated water is a drain generated by the compressor (71).
 このような構成によれば、上記[7]と同じ理由で、塩基性ガスの処理効率を向上することができる。 According to such a configuration, the processing efficiency of the basic gas can be improved for the same reason as in the above [7].
[9]さらに別の態様に係る肥料製造プラントは、[7]または[8]の肥料製造プラントであって、
 前記原料ガスがアンモニア製造ユニット(5)に流入する前に前記原料ガスを空気及び水蒸気で改質する改質装置(1)をさらに備え、
 前記炭酸水は、前記改質装置(1)から流出するガスに含まれるコンデンセートである。
[9] The fertilizer production plant according to still another aspect is the fertilizer production plant of [7] or [8].
A reformer (1) for reforming the raw material gas with air and steam before the raw material gas flows into the ammonia production unit (5) is further provided.
The carbonated water is a condensate contained in the gas flowing out from the reformer (1).
 このような構成によれば、上記[7]と同じ理由で、塩基性ガスの処理効率を向上することができる。 According to such a configuration, the processing efficiency of the basic gas can be improved for the same reason as in the above [7].
1 改質装置
5 アンモニア製造ユニット
10 湿式アンモニア洗浄装置
11 アンモニアスクラバ
12 ファインバブル発生装置
12a 第1ファインバブル発生装置
12b 第2ファインバブル発生装置
14 吸収液循環ライン
30 膜分離装置
40 冷却装置
60 尿素造粒ユニット
70 尿素製造ユニット
71 圧縮機
72 尿素製造装置
100 肥料製造プラント
1 Reformer 5 Ammonia production unit 10 Wet ammonia cleaning device 11 Ammonia scrubber 12 Fine bubble generator 12a 1st fine bubble generator 12b 2nd fine bubble generator 14 Absorbent liquid circulation line 30 Membrane separation device 40 Cooling device 60 Urea production Grain unit 70 Urea production unit 71 Compressor 72 Urea production equipment 100 Fertilizer production plant

Claims (9)

  1.  アンモニアを含む塩基性ガスを処理する湿式アンモニア洗浄装置であって、
     二酸化炭素を含む吸収液と前記塩基性ガスとを気液接触させるアンモニアスクラバと、
     二酸化炭素及び水から前記吸収液を製造するファインバブル発生装置と
    を備え、
     前記ファインバブル発生装置は少なくとも、
     二酸化炭素及び水から第1吸収液を製造する第1ファインバブル発生装置と、
     二酸化炭素及び前記第1吸収液から前記吸収液を製造する第2ファインバブル発生装置と
    を含む湿式アンモニア洗浄装置。
    A wet ammonia cleaning device that processes basic gas containing ammonia.
    Ammonia scrubber that brings the absorption liquid containing carbon dioxide into gas-liquid contact with the basic gas,
    It is equipped with a fine bubble generator that produces the absorbent liquid from carbon dioxide and water.
    The fine bubble generator is at least
    A first fine bubble generator that produces a first absorbent from carbon dioxide and water,
    A wet ammonia cleaning device including carbon dioxide and a second fine bubble generator for producing the absorption liquid from the first absorption liquid.
  2.  前記ファインバブル発生装置は、100マイクロメートル以下の二酸化炭素の気泡を発生する、請求項1に記載の湿式アンモニア洗浄装置。 The wet ammonia cleaning device according to claim 1, wherein the fine bubble generator generates carbon dioxide bubbles of 100 micrometers or less.
  3.  前記第1ファインバブル発生装置はエジェクタ方式のファインバブル発生装置であり、前記第2ファインバブル発生装置は加圧溶解方式のファインバブル発生装置である、請求項2に記載の湿式アンモニア洗浄装置。 The wet ammonia cleaning device according to claim 2, wherein the first fine bubble generator is an ejector type fine bubble generator, and the second fine bubble generator is a pressure dissolution type fine bubble generator.
  4.  前記アンモニアスクラバは、内部に貯留される前記吸収液を抜き出して前記アンモニアスクラバ内の気相中に戻すための吸収液循環ラインを備え、
     前記ファインバブル発生装置は前記吸収液循環ラインに設けられている、請求項1~3のいずれか一項に記載の湿式アンモニア洗浄装置。
    The ammonia scrubber is provided with an absorption liquid circulation line for extracting the absorption liquid stored therein and returning it to the gas phase in the ammonia scrubber.
    The wet ammonia cleaning device according to any one of claims 1 to 3, wherein the fine bubble generator is provided in the absorption liquid circulation line.
  5.  前記吸収液循環ラインを流通する前記吸収液からアンモニアを除去する膜分離装置をさらに備え、
     前記膜分離装置は、前記吸収液の流通方向において前記ファインバブル発生よりも上流側に位置するように前記吸収液循環ラインに設けられている、請求項4に記載の湿式アンモニア洗浄装置。
    Further provided with a membrane separation device for removing ammonia from the absorbent liquid flowing through the absorbent liquid circulation line.
    The wet ammonia cleaning device according to claim 4, wherein the membrane separation device is provided in the absorption liquid circulation line so as to be located upstream of the fine bubble generation in the flow direction of the absorption liquid.
  6.  前記塩基性ガスが前記アンモニアスクラバに流入する前に前記塩基性ガスを冷却する冷却装置をさらに備える、請求項1~5のいずれか一項に記載の湿式アンモニア洗浄装置。 The wet ammonia cleaning device according to any one of claims 1 to 5, further comprising a cooling device for cooling the basic gas before the basic gas flows into the ammonia scrubber.
  7.  メタンを含む原料ガスから肥料を製造するための肥料製造プラントであって、
     前記原料ガスからアンモニアを製造するアンモニア製造ユニットと、
     前記アンモニアと二酸化炭素とを反応させて尿素溶液を製造する尿素製造ユニットと、
     前記尿素溶液から粒状の固体の尿素を製造する尿素造粒ユニットと、
     前記尿素造粒ユニットから発生される前記塩基性ガスを処理する、請求項1~6のいずれか一項に記載の湿式アンモニア洗浄装置と
    を備え、
     前記肥料製造プラント内で生成する炭酸水が前記アンモニアスクラバ内の気相中又は前記ファインバブル発生装置に供給されるように構成されている肥料製造プラント。
    A fertilizer production plant for producing fertilizer from raw material gas containing methane.
    An ammonia production unit that produces ammonia from the raw material gas,
    A urea production unit that produces a urea solution by reacting ammonia with carbon dioxide,
    A urea granulation unit that produces granular solid urea from the urea solution,
    The wet ammonia cleaning device according to any one of claims 1 to 6 for treating the basic gas generated from the urea granulation unit.
    A fertilizer production plant configured such that carbonated water produced in the fertilizer production plant is supplied to the gas phase in the ammonia scrubber or the fine bubble generator.
  8.  前記尿素製造ユニットは、
     前記尿素溶液を製造する尿素製造装置と、
     前記尿素製造装置に二酸化炭素を供給する圧縮機と
    を備え、
     前記炭酸水は、前記圧縮機で発生するドレンである、請求項7に記載の肥料製造プラント。
    The urea production unit is
    A urea production device that produces the urea solution, and
    It is equipped with a compressor that supplies carbon dioxide to the urea production device.
    The fertilizer production plant according to claim 7, wherein the carbonated water is a drain generated by the compressor.
  9.  前記原料ガスがアンモニア製造ユニットに流入する前に前記原料ガスを空気及び水蒸気で改質する改質装置をさらに備え、
     前記炭酸水は、前記改質装置から流出するガスに含まれるコンデンセートである、請求項7または8に記載の肥料製造プラント。
    Further equipped with a reformer for reforming the raw material gas with air and steam before the raw material gas flows into the ammonia production unit.
    The fertilizer production plant according to claim 7 or 8, wherein the carbonated water is a condensate contained in the gas flowing out from the reformer.
PCT/JP2020/033783 2020-09-07 2020-09-07 Wet-type ammonia cleaning apparatus and fertilizer production plant provided with said wet-type ammonia cleaning apparatus WO2022049769A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/033783 WO2022049769A1 (en) 2020-09-07 2020-09-07 Wet-type ammonia cleaning apparatus and fertilizer production plant provided with said wet-type ammonia cleaning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/033783 WO2022049769A1 (en) 2020-09-07 2020-09-07 Wet-type ammonia cleaning apparatus and fertilizer production plant provided with said wet-type ammonia cleaning apparatus

Publications (1)

Publication Number Publication Date
WO2022049769A1 true WO2022049769A1 (en) 2022-03-10

Family

ID=80490867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033783 WO2022049769A1 (en) 2020-09-07 2020-09-07 Wet-type ammonia cleaning apparatus and fertilizer production plant provided with said wet-type ammonia cleaning apparatus

Country Status (1)

Country Link
WO (1) WO2022049769A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168322A (en) * 1987-12-22 1989-07-03 Nippon Sangyo Gijutsu Kk Multistage fine bubble generator
WO2009016998A1 (en) * 2007-07-31 2009-02-05 Meiji University Food processing method and food processing apparatus
JP2009101269A (en) * 2007-10-22 2009-05-14 Sharp Corp Odor treatment method and system, and rearing system
WO2019234816A1 (en) * 2018-06-05 2019-12-12 三菱重工エンジニアリング株式会社 Fertilizer production plant and fertilizer production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168322A (en) * 1987-12-22 1989-07-03 Nippon Sangyo Gijutsu Kk Multistage fine bubble generator
WO2009016998A1 (en) * 2007-07-31 2009-02-05 Meiji University Food processing method and food processing apparatus
JP2009101269A (en) * 2007-10-22 2009-05-14 Sharp Corp Odor treatment method and system, and rearing system
WO2019234816A1 (en) * 2018-06-05 2019-12-12 三菱重工エンジニアリング株式会社 Fertilizer production plant and fertilizer production method

Similar Documents

Publication Publication Date Title
KR102240682B1 (en) Exhaust gas treatment apparatus and ship having the same
JP5412171B2 (en) Method and apparatus for separating acidic gas from synthesis gas
US8845797B2 (en) Carbon dioxide recovery system
KR20110085983A (en) Reabsorber for ammonia stripper offgas
CN103977683A (en) Method and device for reducing regeneration energy consumption of decarburization absorption liquid
US10501407B2 (en) Urea manufacturing method and urea manufacturing apparatus
CN107743416B (en) Acid gas collecting system and acid gas collecting method using the same
JP2005502704A (en) Heat recovery procedure
CN101166714B (en) Apparatus for urea synthesis
WO2013108191A1 (en) A method of forming urea by integration of an ammonia production process in a urea production process and a system therefor
WO2023222101A1 (en) Method and device for producing ammonium bicarbonate using ammonia-based decarburization system
KR102050370B1 (en) Method and apparatus for desulfurization of gas streams
CN106166435A (en) Carbon dioxide recovering apparatus and process for carbon dioxide recovery
US4968488A (en) Integrated system for pollution abatement and energy derivation from steam
JP5989916B2 (en) Improving the rate of CO2 absorption in aqueous potassium carbonate with ammonia-based catalysts
WO2022049769A1 (en) Wet-type ammonia cleaning apparatus and fertilizer production plant provided with said wet-type ammonia cleaning apparatus
WO2020174559A1 (en) Off gas processing device and fertilizer production plant provided with this off gas processing device
RU2804369C1 (en) Device for wet cleaning of exhaust gas from ammonia and installation for fertilizer production containing such device
JP4724418B2 (en) System unit for removing carbon dioxide from methanol
CA3061855A1 (en) Method and process for efficient regeneration of co2 rich solvents
US8512445B2 (en) Carbonate absorption system and process for carbon dioxide separation
WO2019234816A1 (en) Fertilizer production plant and fertilizer production method
CN214192592U (en) Recovery processing device for ammonia in synthetic ammonia purge gas
JP2001129305A (en) Deoxidation and decarbonation apparatus
JP7252365B2 (en) Urea production method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP