JPH01168222A - Transportation of living fish - Google Patents

Transportation of living fish

Info

Publication number
JPH01168222A
JPH01168222A JP32779187A JP32779187A JPH01168222A JP H01168222 A JPH01168222 A JP H01168222A JP 32779187 A JP32779187 A JP 32779187A JP 32779187 A JP32779187 A JP 32779187A JP H01168222 A JPH01168222 A JP H01168222A
Authority
JP
Japan
Prior art keywords
water
fish
container
seawater
seafood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32779187A
Other languages
Japanese (ja)
Other versions
JPH0333293B2 (en
Inventor
Masaaki Sugimoto
杉本 昌明
Toshiki Nakajima
敏樹 中島
Hisashi Kobayashi
久 小林
Toshiaki Honma
本間 俊秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIYOUSEKI ENG KK
Nissui Corp
Original Assignee
SHIYOUSEKI ENG KK
Nippon Suisan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIYOUSEKI ENG KK, Nippon Suisan Kaisha Ltd filed Critical SHIYOUSEKI ENG KK
Priority to JP32779187A priority Critical patent/JPH01168222A/en
Publication of JPH01168222A publication Critical patent/JPH01168222A/en
Publication of JPH0333293B2 publication Critical patent/JPH0333293B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

PURPOSE:To enhance the containment density for living fish to be transported even in the transportation over a long distance, by circulating, in a specified state, water or seawater increased in the amount of dissolved oxygen at low temperatures in a container for the seafoods being kept alive. CONSTITUTION:During the transportation of living fish, water or seawater is charged through a port 2 at the end of the container 1 and discharged through an exit 10 at the other end, being circulated via cleaning device 11, cooling section 12, oxygen blow chamber 14, static mixer 15 and air separator 16. Said water or seawater, during passing through a current plate 3, flows in the form of laminar flow, approximately parallel with the axis line of the container 1, the living fish proceeding in this flow direction.

Description

【発明の詳細な説明】 ・、発明の目的し・ 産業上の利用分野 本発明は活魚輸送方法に係り、詳しくは、魚介類の養殖
場間や養殖場と市場との間において魚介類を活魚状態C
輸送する際に、輸送すべき魚介類を最大限の密度で、し
かも、相当の長距離輸送Cあっ−Cも査障がない活魚輸
送り法に係るつ なお、以下において水とは魚介類の生急に適するものは
全て含まれ、河川等の自然水、天然海水のほか、水通水
、人工海水等が含まれる。
[Detailed description of the invention] - Object of the invention - Industrial field of application The present invention relates to a method for transporting live fish, and more specifically, the present invention relates to a method for transporting live fish and shellfish between fish farms and between fish farms and markets. Condition C
When transporting fish and shellfish, the fish and shellfish to be transported are transported at maximum density, and even over long distances. It includes anything suitable for immediate use, including natural water from rivers, natural seawater, water supply, artificial seawater, etc.

従来の技術 最近、魚介類を活魚状態で長期−保1= 、+る方法の
ほかに、魚介類を活魚状態で輸送する方法ガ注目を集め
ている。この理由は魚介類が活魚状態Cあれば、魚介類
の味や風味が十分いかされ、商品両値が高められるから
である。
BACKGROUND OF THE INVENTION Recently, in addition to methods for preserving seafood in a live state for a long period of time, methods for transporting seafood in a live state have been attracting attention. The reason for this is that if the seafood is in the live fish state C, the taste and flavor of the seafood will be fully utilized and both product values will be increased.

しかし、魚介類を活魚状態C保存する方法は後記の如く
種々の方法が提案されCいるが、輸送方法は、例えば、
特開昭59−227228号公報に記載程度にとどまっ
ている。すなわち、特開昭59−227228号公報に
記載される輸送り法は、魚介類の収納容器をI・ラック
等の運搬車にのせC1この収納容器中に空気吹込み装置
から空気を送り、魚介類を輸送する方法である。このf
i法では輸送後1〜2日しか生存できないのが実状であ
り、このため、例えばうなぎ等の一部の魚介類を除いて
、一般の魚介類を長時間にわたり高密度で活魚状態のま
まで輸送するのには適さないと云われ、一般には収容密
度を下げて輸送するのにとどまっている。
However, various methods have been proposed for preserving seafood in a live state, as described below, but transportation methods include, for example,
It is only described in Japanese Patent Application Laid-Open No. 59-227228. That is, the transportation method described in Japanese Patent Application Laid-Open No. 59-227228 is to place a storage container for seafood on a transport vehicle such as an I-rack, and blow air into the storage container from an air blowing device. It is a method of transporting goods. This f
The reality is that the i-method can survive for only 1 to 2 days after transportation, and for this reason, with the exception of some seafood such as eel, general seafood can be kept in a live state at high density for a long period of time. It is said that it is not suitable for transportation, and it is generally only transported at a reduced storage density.

これに対し、魚介類の活魚状態の保存方法は、例えば、
特公昭54−30959号公報や特開昭59−2272
29号公報に記載される如く、種々の方法が提案され一
部いるが、保存と輸送とでは本質的条件が異なり、口れ
ら保存方法をそのまま輸送方法に適用するのには無理が
ある。
On the other hand, methods for preserving live seafood include, for example,
Japanese Patent Publication No. 54-30959 and Japanese Patent Publication No. 59-2272
As described in Publication No. 29, various methods have been proposed, but the essential conditions for storage and transportation are different, and it is unreasonable to apply the method of preserving the oral cavity as it is to the method of transportation.

すなわち、特公昭54−30959号公報には、魚介類
を活魚状態で長期間、高能率で保存する方法が記載され
ている。この方法は、第2図に示す如く、水槽21が固
定され、この固定式の水槽21に対し水の調整槽22を
帖合し、調整槽22において水を冷却コイル23で冷却
すると同時に送気バイブ24がら空気を送り、Cれに併
せて、窒素化合物除去装置25によって窒素化合物の除
去、水溶性有機物除去装置2Gにおいて、有機物の除去
を化学的処理法により達成し、水槽21の水温を低く保
つと同時に、窒素化合物温度、有機物温度、炭酸根1度
を一定値以下、酸素濃度を一定値以トに保つ方法である
。この保存方法であると、魚介類の新陳代謝は水温が低
い故に、魚介類の活性がおさえられるため、標準代謝よ
り相当低くおさえられ、高密度で収容できる利点がある
That is, Japanese Patent Publication No. 54-30959 describes a method for preserving seafood in a live state for a long period of time with high efficiency. In this method, as shown in FIG. 2, a water tank 21 is fixed, a water adjustment tank 22 is connected to the fixed water tank 21, and the water is cooled in the adjustment tank 22 by a cooling coil 23 while air is supplied. Air is sent through the vibrator 24, and at the same time, nitrogen compounds are removed by the nitrogen compound removal device 25, and organic substances are removed by a chemical treatment method in the water-soluble organic substance removal device 2G, and the water temperature in the water tank 21 is lowered. At the same time, this method maintains the nitrogen compound temperature, organic matter temperature, and carbonate temperature below a certain value, and the oxygen concentration below a certain value. This preservation method has the advantage that the metabolism of fish and shellfish is considerably lower than standard metabolism because the water temperature is low, so the activity of fish and shellfish is suppressed, and it can be stored at high density.

しかしながら、この保存方法は水槽21が固定されて振
動をうけξいことを前提としている。
However, this preservation method presupposes that the water tank 21 is fixed and not subject to vibration.

このため、魚介類の輸送に適用すると、水槽が多かれ少
なかれ振動に左右されるため、そのまま適用することは
できない。更に詳しく説明・すると、活魚状態の輸送に
は、水槽中の魚介類には大かれ少むかれ撮動が与えられ
、この振動緩和のためには、水槽中である程度の流れが
必要である。一方、水槽中に高密度で魚介類を収納qる
のには、水温を低くすることによっC魚介類の活性を低
下させるのが好ましいが、極端に水温を低くして魚介類
の活性を大きく低下させると、水槽中に流れがあっ−C
Fi動をうける場合には、同時に遊泳力が低下するため
、かえって1!jl魚介類の死亡する割合が5−えて好
ましくない。
Therefore, when applied to the transportation of seafood, the aquarium is more or less affected by vibrations, so it cannot be applied as is. To explain in more detail, when transporting live fish, the fish and shellfish in the aquarium are subjected to more or less vibration, and a certain amount of flow is required in the aquarium in order to alleviate this vibration. On the other hand, in order to store seafood at a high density in an aquarium, it is preferable to reduce the activity of seafood by lowering the water temperature. If it is lowered too much, there will be a flow in the tank -C
If you are affected by Fi movement, your swimming ability will decrease at the same time, so you will get 1! jl The mortality rate of fish and shellfish is 5- extremely unfavorable.

圭だ、高密度収容にはある程度酸素温度を高める必要が
あり、第2図においては調整槽22−C冷却と同時に空
気を送っている。しかし、口のように空気を送っても、
R素が十分に溶存できず、水中の溶存酸素澗麿はかえっ
て低下する傾向にある。つまり、空気供給量を多くする
と、気泡の径が人きくなり、酸素の溶存状態が不十分と
イイリ、溶存Filf素濡(資)が高められない。魚介
類が低温に保持され、ある程度活性が失なわれ、しかち
、1%W素の溶存状態が不十分であると、魚介類のえら
等に気泡が付看して魚介類の酸素の@収能力が急激に低
下する。また、輸送中には振動や、流れのエネルギーを
うけ、魚介類はE記の如く酸素の吸収能力が低下してい
るため、魚介類を一定期間に限っても活魚状態に保つこ
とがきりめCむづかしい。更に、小径の気泡であっCも
、水中に気泡が存在すると、魚介類がこれをのみ込むと
、魚介類の内臓部等が膨張し死亡中ることが多い。
Kei, it is necessary to raise the oxygen temperature to some extent for high-density accommodation, and in Figure 2, air is sent at the same time as cooling the adjustment tank 22-C. However, even if you send air like a mouth,
The R element cannot be sufficiently dissolved, and the dissolved oxygen level in the water tends to decrease on the contrary. In other words, if the air supply amount is increased, the diameter of the bubbles becomes too large, and if the dissolved state of oxygen is insufficient, the wetness of dissolved filtration cannot be increased. If seafood is kept at a low temperature and its activity is lost to some extent, and the dissolved state of 1% W element is insufficient, air bubbles will be attached to the gills of the seafood and the oxygen in the seafood will be lost. Yield capacity decreases rapidly. Additionally, as seafood is exposed to vibrations and energy from currents during transportation, its ability to absorb oxygen decreases as shown in E, so it is important to keep seafood in a live state for a limited period of time. C.It's difficult. Furthermore, if bubbles exist in water, even if they are small-diameter bubbles, when fish and shellfish swallow them, the internal organs of the fish and shellfish often swell and die.

この点から、特開昭59−227229号公報に示す如
く、先に、空気を送って水と混合し、その後、この中か
ら気液分ya装置によっC気泡を除去する装置が提案さ
れている。この装置は魚介類の輸送にも適用できること
が示されているが、固定されている水槽を対象として開
発されたもので、活魚状態の輸送に適用してもF記のと
Cろと回様な問題が残る。また、空気と混合後に気  
   −泡を除去しても完全に気泡を除去しC水中の溶
存酸素品を高めることはきわめCむづかしい。
From this point of view, as shown in Japanese Unexamined Patent Publication No. 59-227229, a device has been proposed in which air is first sent and mixed with water, and then C bubbles are removed from the air using a gas-liquid separation device. There is. Although it has been shown that this device can be applied to transporting seafood, it was developed for fixed aquariums, and even if it is applied to transporting live fish, it will not work as described in F and C. A problem remains. Also, after mixing with air,
- Even if the bubbles are removed, it is extremely difficult to completely remove them and increase the amount of dissolved oxygen in the water.

そごで、活魚状態の輸送条件が魚介類飼育の条件とは木
質的に異なることに着目し、最近は、甲にL記の如く、
水槽中に空気を送っ−C魚介類を輸送Jる方法とは別個
イイ輸送方法が提案されている。この輸送方法は、水槽
中の海水や水に高流速(例えば50cm、5ec)の流
れを積極的に与え、この流れに逆って魚介類を一つの方
向に指向させておよがせ、このようにし゛C魚介類を活
魚状態で輸送する方法である。
Sogo focused on the fact that the transportation conditions for live fish are different from those for raising fish and shellfish, and recently, as shown in L in A,
A method of transporting seafood has been proposed that is different from the method of transporting seafood by blowing air into an aquarium. This transportation method actively applies a high-velocity flow (for example, 50cm, 5EC) to the seawater or water in the aquarium, and directs the fish and shellfish in one direction against this flow. This is a method of transporting seafood in a live state.

この方法は魚介類が高速水流にさかのぼるという習性を
利用し、しかも、この間に肉にしまりを与え、更に、高
速流によって輸送中の振動が緩和されるため、優れた輸
送法であると云える。しかし、魚介類の密度を高めると
、魚介類が互いに接触し合って損傷し、高流速のため、
これに逆らう魚介類の消費エネルギーが多くなり排出物
が増加し、環境水質を悪化させる。従って、この方法は
、炭酸ガスによつ−C水貿が酸性に移行し、実際には低
い密度で輸送する際に適用されるのみにとどまっている
This method takes advantage of the tendency of seafood to swim upstream in high-speed water currents, and it is an excellent method of transportation because it gives the meat firmness during this process, and furthermore, the high-speed flow alleviates vibrations during transportation. . However, increasing the density of fish and shellfish causes them to come into contact with each other and get damaged, and due to the high flow rate,
Contrary to this, fish and shellfish consume more energy, which increases waste and deteriorates environmental water quality. Therefore, this method is only applied when -C water transport becomes acidic due to carbon dioxide gas and is actually transported at a low density.

発明が解決しようとする問題点 本発明は[記欠点の解決を目的とし、具体的には、例え
ば、養殖場間で魚介類を輸送する場合の如く、活魚状態
で魚介類を長距離輸送する場合であっても、輸送すべき
魚介類の水槽中への収容密度を高めることができる輸送
方法を提案する。
Problems to be Solved by the Invention The present invention aims to solve the problems described above, specifically, for example, when transporting seafood in a live state over long distances, such as when transporting seafood between farms. The present invention proposes a transportation method that can increase the density of fish and shellfish to be transported in an aquarium even in the case of

〈発明の構成し・ 問題点を解決するための 手段ならびにその作用 すなわち、本発明方法は、海水または水が入れられた容
器中に活魚状馨の魚介類を収容して輸送する際に、口の
容器の一端の給水口から輸送すべき魚介類の@適生患温
度より低い温度で空気およびパまたはMffiが岐大限
に溶存させた海水または水を入れ、この海水または水を
前記容器の軸線と略々平行に前記容器の他端の排水口に
向けて乱流の発生を押えつつ一定速度で流動させ、この
海水または水の流動方向に、魚介類を指向させることを
特徴とする。
<Structure of the Invention/Means for Solving the Problems and Their Effects In other words, the method of the present invention provides a means for solving the problem and its operation. Fill the water supply port at one end of the container with seawater or water in which air and P or Mffi are dissolved to the maximum extent at a temperature lower than the suitable growth temperature of the seafood to be transported, and pour this seawater or water along the axis of the container. The method is characterized in that the seawater or water is caused to flow at a constant speed substantially parallel to the drain port at the other end of the container while suppressing the generation of turbulence, and the fish and shellfish are directed in the flow direction of the seawater or water.

そこC1これら手段たる構成ならびにその作用についで
更に具体的に説明すると、次の通りである。
The structure of these means and their functions will be explained in more detail as follows.

まず、本発明者等は小型店頭間の配送条件に比べると養
殖場間や養殖場と市場間の輸送の如く、魚介類を活魚状
態で^密度に長時間輸送する場合には、魚介類に苛せら
れる条件が相当苛酷になることに着目し、これに適する
条件を求めたところ、次の通りであった。
First, the present inventors found that compared to the delivery conditions between small stores, when seafood is transported in a live state for a long time in high density, such as between farms or between a farm and a market, We focused on the fact that the conditions under which we were tormented were quite severe, and when we searched for suitable conditions, we found the following.

(1)容器内に収納すべき魚介類の密度を高めるのには
、容器内の海水や水の流速を相当低くおさえるほか、水
濡を低くし−C魚介類の活性度を低下させること、 12)魚介類の活性度を抑えながらかつ遊泳力を有する
条件で流速がゆるやかで、魚介類の生息に必要な酸素が
容易に取得できるように、海水や水の中に空気および7
′またはPa索が十分に含まれ、しがも、完全に溶存し
ていること、 (3)空気や酸素は気泡として存在しないこと、そこで
、本発明者等はこのような条件を満足する魚介類を活魚
状態で輸送する方法につい“C研究し、この研究に基づ
いて本発明は成立したものである。
(1) In order to increase the density of the seafood to be stored in the container, in addition to keeping the flow rate of seawater and water in the container considerably low, it is also necessary to reduce the water wetness and reduce the activity of the seafood. 12) In order to suppress the activity of fish and shellfish while maintaining their swimming ability, the flow velocity is gentle, and the oxygen necessary for fish and shellfish to live can be easily obtained.
(3) Air and oxygen do not exist in the form of bubbles. Therefore, the present inventors have developed fish and shellfish that satisfy these conditions. The present invention was established based on the research carried out on methods for transporting fish in a live state.

すなわち、第1図は本発明方法を実施する際に用いる活
魚状態で魚介類の輸送装置の一例の配置図であって、符
号1は容器、2は水または海水の給水口、3は入口側の
整流板、4.5.6は仕切網、7.8は魚介類供給口、
9は出口側の整流板、10は水または海水の排水口、1
1は清浄化装置、12は冷却部、13はポンプ、14は
酸素吹込みチャンバー、15はスタテックミキサ、16
はエアーセパレータを示す。水槽等の容器1はi・ラッ
/、貨車等の運搬車にのけられて輸送され、容器1には
魚介類が活魚状態で入れられ、このようにして魚介類は
運搬車によつ−C例えば養殖場の間を輸送される。
That is, FIG. 1 is a layout diagram of an example of a device for transporting seafood in a live fish state used when carrying out the method of the present invention, in which reference numeral 1 is a container, 2 is a water or seawater inlet, and 3 is an inlet side. rectifying plate, 4.5.6 is a partition net, 7.8 is a seafood supply port,
9 is a current plate on the outlet side, 10 is a water or seawater drain port, 1
1 is a cleaning device, 12 is a cooling unit, 13 is a pump, 14 is an oxygen blowing chamber, 15 is a static mixer, 16
indicates an air separator. A container 1, such as an aquarium, is transported by being loaded onto a transport vehicle such as a freight car, and live seafood is placed in the container 1. In this way, the seafood is loaded onto the transport vehicle. C. For example, it is transported between fish farms.

口の輸送の間、容器1の一端の給水口2から水または海
水が入れられて、他端の排水口10から排水され、排水
は後記の如く清浄化、冷却、酸素溶存等の処理がされる
During transportation, water or seawater is put into the water supply port 2 at one end of the container 1, and drained from the drain port 10 at the other end, and the waste water is treated as described below, such as cleaning, cooling, and dissolving oxygen. Ru.

また、給水口2から入った水や海水は通常多孔板から成
る整流板3を通って容器1内に入り、しかし、整流板3
を通る間に水や海水は容器1の軸線またはその軸線と平
行な方向に整流されて、その1−Cゆっくりと例えば2
0cm、’sec以下程度の低速度で流動する。
In addition, water or seawater that enters from the water supply port 2 enters the container 1 through the current plate 3 made of a perforated plate, but the current plate 3
While passing through the container 1, the water or seawater is rectified in the axis of the container 1 or in a direction parallel to the axis, and slowly flows through the container 1-C, for example, 2.
It flows at a low speed of less than 0cm,'sec.

このように容器1中で水や海水を流動させ、しかも、口
の水や海水の温度を輸送すべき魚介類の般適生息温度よ
り低くかつその中には酸素を空気を最大限に溶存させて
いると、容器1中に高密度で魚介類を収容して相当長距
離であっても、活魚状態で魚介類を輸送できる。
In this way, the water or seawater is made to flow in the container 1, and the temperature of the mouth water or seawater is lower than the general habitat temperature of the seafood to be transported, and the maximum amount of oxygen and air is dissolved therein. If the container 1 is filled with fish and shellfish at a high density, the fish and shellfish can be transported in a live state even over a considerable distance.

すなわち、水や海水は容器の軸線と平行に流動し、tH
の流動によって輸送中の振動が緩和され、魚介類は流動
方向に指向し、容易に方向付けができるため、魚介類は
効率よく容器中に収¥’4Cぎるっこの流れはきわめて
低速で、水や海水はゆっくりと流動するため、魚介類は
ほとんど流れのエネルギーをうけず、魚介類は損耗され
ることがない。とくに、魚介類が低温状態で活性がや口
先なわれていても、流れのエネルギーによって魚介類が
損なわれることがない。また、流れが低速であつC水や
海水の流動性がやや損なわれても、水や海水中には十分
に酸素等が溶存しているため、魚介類には十分な酸素が
与えられるつまた、当初の循環水流は低速でも、魚の収
容密度がト屏するのに伴い、魚体間の流速は相対的に速
まり、例えば、収容率が収容槽の1.′2とイイれば、
相対流速は2倍となる。従って、本装置には収容率や魚
種に応じ−C1流動り向に整列して遊泳する最低速度を
調整Cきるよう循環水量が調節できる。また、容器1の
排水口10から排出される水FJ水の中には当然有機物
その他が含まれている。これは通常清浄化装@11によ
り除去されC清浄化され、清浄化後の水または海水が)
θ加部12に導入され、そこで、魚介類の最適生態温度
がら3 ・−10’C程度低い温度に冷却される。次い
で、ポンプ13により0口圧され、流速tf 1.81
111’SeC以トrs素吹込みチャンバー14に導か
れて空気および・′または酸素が入れられる。このよう
に有機物除去、冷却、酸素等の導入を個別的に行イイう
と、溶存酸素量がより高められる。
In other words, water or seawater flows parallel to the axis of the container, and tH
Vibration during transportation is alleviated by the flow of the water, and the fish and shellfish are oriented in the direction of flow and can be easily oriented, so the fish and shellfish are efficiently stored in the container. Because seawater and seawater flow slowly, fish and shellfish receive almost no energy from the flow, and are not wasted. In particular, even if the fish and shellfish have lost their activity at low temperatures, the energy of the flow will not damage them. In addition, even if the flow rate is slow and the fluidity of C water or seawater is slightly impaired, there is enough oxygen dissolved in water and seawater, so fish and shellfish can be provided with sufficient oxygen. Even if the initial circulating water flow is low, as the fish storage density increases, the flow speed between the fish bodies becomes relatively faster. If you say '2,
The relative flow velocity is doubled. Therefore, in this device, the amount of circulating water can be adjusted to adjust the minimum speed at which the fish swim in alignment in the -C1 flow direction depending on the storage rate and the fish species. Further, the water FJ discharged from the drain port 10 of the container 1 naturally contains organic matter and other substances. This is usually removed by a cleaning device @11 and cleaned, and the purified water or seawater is
It is introduced into the θ heating section 12, where it is cooled to a temperature approximately 3.-10'C lower than the optimum ecological temperature for fish and shellfish. Next, the pump 13 applies zero pressure, and the flow rate tf is 1.81.
111'SeC or more is introduced into the rs element blowing chamber 14, and air and oxygen are introduced thereinto. If organic matter removal, cooling, and introduction of oxygen, etc. are performed individually in this way, the amount of dissolved oxygen can be further increased.

なお、海水、水を魚介類の@適生息温度より3〜10゛
C低い;黒度に冷却する理由は、この3 )C以ト高い
温度のときはその生息に最適な温度またはそれに近くな
り、魚介類の新陳代謝が激しく、高密度輸送が困難であ
るからであり、10℃以ト低いと、魚介類の活性度が相
当失なわれ、輸送中の振動や容器1内の水流等により死
滅するおそれがある。
The reason why sea water is cooled to a temperature 3 to 10 degrees C lower than the optimum habitat temperature for fish and shellfish is that when the temperature is higher than 3 degrees C, the temperature is at or close to the optimal temperature for the habitat of fish and shellfish. This is because the metabolism of fish and shellfish is rapid, making high-density transportation difficult.If the temperature is lower than 10℃, the activity of the fish and shellfish will be considerably lost, and the fish and shellfish will die due to vibrations during transportation, water flow in the container 1, etc. There is a risk of

また、空気等を吹込み後、例えば、スタテックミキサ1
5に送って空気等の混合を静的に促進し、更に、エアー
セパレータ1Gに送って比重差によって気泡を分離し、
その流速が1.8m、’sec以トで容器1に連続的に
送る。
In addition, after blowing air etc., for example, static mixer 1
5 to statically promote mixing of air, etc., and further sent to air separator 1G to separate air bubbles based on the difference in specific gravity.
It is continuously sent to the container 1 at a flow rate of 1.8 m/sec or less.

また、F記の場合に、圧力を高めで空気や酸素の溶存を
促進し、溶存酸素量を高めることができる。すなわち、
圧力を高めると、空気等の溶存量が高められることは知
られ、例えば、0.3kg、、=i程度加圧するのみで
溶存Pi!素吊は8から10.5ppmpi’度に−ヒ
がり、更に、1.0kq7’crPij度加圧すると、
11ppmPi!度までトがるので、同時に呼吸により
排泄される炭酸ガスを収容槽外に速やかに排出してやれ
ば高粛度酸素水となるので、高密度収容が可能となる。
Furthermore, in the case of F, it is possible to increase the pressure to promote dissolution of air and oxygen and increase the amount of dissolved oxygen. That is,
It is known that increasing the pressure increases the amount of dissolved air, etc. For example, by increasing the pressure by approximately 0.3 kg, the amount of dissolved Pi! When the original suspension was lowered from 8 to 10.5 ppm pi' degree, and further pressurized by 1.0 kq7' cr Pij degree,
11ppmPi! At the same time, if the carbon dioxide gas excreted through breathing is quickly discharged out of the storage tank, it becomes highly oxygenated water, which enables high-density storage.

ただし、口の際、輸送到着時、8′/vIな圧力変化は
、魚介類の動きが激しくあばれ状態になるので、圧力は
せいぜL)1. okg 、’CI’以下程度の加圧に
とどめるのが好ましい。このためには減圧弁17を所定
の圧力に調節し−C加圧しながらがつ発生ずる気泡と共
に炭酸ガスを排出することができるう また、容器1の形状は通常耐圧構造をとるトから横壁円
筒状に構成するが、容器1はこれに制約されるものでは
なく、いずれの構造の容器Cあっても、川の流れるよう
な層状状態で例えば1〜1.5Cm+SeC稈度の線速
の流れが得られれば帛い。
However, a pressure change of 8'/vI at the time of mouth and arrival at transportation means that the fish and shellfish move violently and are in a state of confusion, so the pressure is at most L) 1. It is preferable to keep the pressurization to a level below 'CI'. For this purpose, the pressure reducing valve 17 is adjusted to a predetermined pressure so that the carbon dioxide gas can be discharged together with the bubbles generated while pressurizing. However, the container 1 is not limited to this, and regardless of the structure of the container C, the flow at a linear velocity of, for example, 1 to 1.5 cm + SeC culm in a layered state like a flowing river. If you can get it, go for it.

実  施  例 第1図のフ(」−シートで示す構造の装置を運搬車に積
載し、魚介類を活魚状態で24時間輸送を行なった。容
器1は耐圧構造C横型円筒状(直仔1100柵Φ×長さ
2000mm1の水槽を用い、この容器1内には給水口
2側付近に整流板3と排水口10側に整流板9を設ける
と共に、その整流板3、9との間に魚介類の仕切用網4
.5.6を設けた。
EXAMPLE A device having the structure shown by the sheet in Fig. 1 was loaded onto a transport vehicle, and seafood was transported in a live state for 24 hours.The container 1 had a pressure-resistant structure C horizontal cylindrical shape (Ziao 1100). A water tank with a fence Φ x length 2000 mm1 is used, and inside this container 1, a current plate 3 is installed near the water supply port 2 side and a current plate 9 is installed on the drain port 10 side, and fish and seafood are placed between the current plate 3 and the current plate 9. type of partition net 4
.. 5.6 was established.

なお、整流板は上半分20mmψ×500ケ、下半分+
3mm+Φ×750ケの通水小孔を設けたものを用いた
。更に、水の清浄化等の調整の各工程は前記したものを
用いて水槽1中から排出される排水を調整し、ポンプ1
6により容器1に定常状態で循環するようにした。この
ような水4filに水温10.5℃、溶存lll素串瀧
度C口0)7、pH6゜5の水を供給し、その中にニジ
マスaookgを入れ、水の線速1〜1.5cm、’5
ea(相対速度3.75〜5.6cm1’5eCIC水
が流れるようにして輸送したとごろ、安定した状態C輸
送することができ、また、その品質は良質な活魚状態の
ものであり、死亡のものはなかった。実際に、富士宮か
ら八王子まで平均時速60kmで運搬したところ、死亡
したのは僅かに2匹(1匹20011 +であった。
In addition, the upper half of the rectifier plate is 20 mm ψ x 500 pieces, and the lower half +
The one provided with 3 mm + Φ x 750 small water passage holes was used. Furthermore, in each adjustment process such as water purification, the waste water discharged from the tank 1 is adjusted using the above-mentioned equipment, and the pump 1
6 to ensure steady state circulation in container 1. Water with a temperature of 10.5°C, a dissolved substance of 0.7°C, and a pH of 6°5 was supplied to 4 filtration of such water, and a rainbow trout was placed in it, and the linear velocity of the water was 1 to 1.5 cm. ,'5
ea (relative velocity 3.75-5.6cm1'5eCIC When transported with flowing water, it can be transported in a stable state C, and the quality is that of high quality live fish, so there is no risk of death. In fact, when the animals were transported from Fujinomiya to Hachioji at an average speed of 60km/h, only two animals (one animal 20011+) died.

〈発明の効果ン 以ト詳しく説明した通り、本発明方法は、活魚状態で魚
介類を収容する容器内で低温で、しかも、溶存R素吊を
高めた水や海水を循環させるほか、口の水や海水を魚体
間隔の小さい小型魚には低速C1間隔の必要な大型魚に
はより高速で、しかし、容器軸線と略々平行に流し、こ
の流れ方向に角(1・類を指向させるものCある。
<Effects of the Invention> As explained in detail below, the method of the present invention not only circulates water or seawater with a high dissolved R content at a low temperature in a container containing live seafood, but also Water or seawater is flowed approximately parallel to the axis of the container, at a lower speed for small fish with a small body spacing, and at a higher speed for large fish that require a C1 spacing. There is C.

従つC1魚介類は収容1@直ちに流れに向って泳ぐよう
になり、収容時のストレスを緩和し、初期損耗を防Iヒ
できかつ水温が魚介類の最適生態温度より低い温度であ
るため、輸送時にも魚介類が躍ったり、暴れたりするこ
となく、安定状態とイイリ、更に、水中に溶存するM索
出が多いため、魚介類は容易に酸素を吸収(呼吸)Cき
、高密度Cあっても、安定して長時間にわたり活魚状態
で輸送Cきる。
Therefore, C1 fish and shellfish will immediately start swimming toward the current during storage, which will alleviate the stress during storage and prevent initial wear and tear, and the water temperature is lower than the optimal ecological temperature for the fish and shellfish. Fish and shellfish do not jump or move violently during transportation, and are kept in a stable state.Furthermore, because there is a large amount of dissolved M in the water, fish and shellfish easily absorb (breathe) oxygen and have a high density of C. Even if there is a fish, it can be transported stably and in a live state for a long period of time.

4、図面のl!I11!イイ説明 第1図は本発明り法を実施する装置の一例の配置図、第
2図は従来例の一つの配置図Cある。
4.L of the drawing! I11! Explanation: Fig. 1 is a layout diagram of an example of a device for carrying out the method of the present invention, and Fig. 2 is a layout diagram C of a conventional example.

符号1・・・・・・容器      2・・・・・・給
水口3・・・・・・整流板 4.5.6・・・・・・魚介類仕切網 7.8・・・・・・魚介類の投入口
Code 1... Container 2... Water supply port 3... Rectifier plate 4.5.6... Seafood partition net 7.8...・Seafood input port

Claims (1)

【特許請求の範囲】 海水または水が入れられた容器中に活魚状態の魚介類を
収容して輸送する際に、 この容器の一端の給水口から輸送すべき魚介類の最適生
息温度より低い温度で空気および、または酸素が最大限
に溶存させた海水または水を入れ、この海水または水を
前記容器の軸線と略々平行に前記容器の他端の排水口に
向けて乱流を生ぜぬ程度に流動させ、この海水または水
の流動方向に、魚介類を指向させることを特徴とする活
魚輸送方法。
[Claims] When living seafood is stored and transported in a container filled with seawater or water, the temperature is lower than the optimum habitat temperature of the seafood to be transported from the water supply port at one end of the container. Fill with seawater or water in which air and/or oxygen has been dissolved to the maximum extent possible, and direct this seawater or water approximately parallel to the axis of the container toward the drain port at the other end of the container to an extent that does not cause turbulence. A method for transporting live fish, which is characterized by causing the seafood to flow in the direction of seawater or water, and directing the seafood in the direction of the flow of seawater or water.
JP32779187A 1987-12-24 1987-12-24 Transportation of living fish Granted JPH01168222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32779187A JPH01168222A (en) 1987-12-24 1987-12-24 Transportation of living fish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32779187A JPH01168222A (en) 1987-12-24 1987-12-24 Transportation of living fish

Publications (2)

Publication Number Publication Date
JPH01168222A true JPH01168222A (en) 1989-07-03
JPH0333293B2 JPH0333293B2 (en) 1991-05-16

Family

ID=18203026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32779187A Granted JPH01168222A (en) 1987-12-24 1987-12-24 Transportation of living fish

Country Status (1)

Country Link
JP (1) JPH01168222A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141536A (en) * 1987-11-30 1989-06-02 Seinan Jidosha Kogyo Kk Method for transporting live fish and live fish transporting vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141536A (en) * 1987-11-30 1989-06-02 Seinan Jidosha Kogyo Kk Method for transporting live fish and live fish transporting vehicle

Also Published As

Publication number Publication date
JPH0333293B2 (en) 1991-05-16

Similar Documents

Publication Publication Date Title
US4559902A (en) Apparatus and method for holding and cultivating aquatic crustaceans
US4182267A (en) Apparatus for keeping aquatic animals alive over long period of time
US4202291A (en) Method for keeping aquatic animals alive over long period of time
JPS6283836A (en) Method and apparatus for transporting live fish
JP2022517954A (en) Aquaculture systems with improved feed transport and feed transport methods in aquaculture systems
Harboe et al. Design and operation of an incubator for yolk‐sac larvae of Atlantic halibut
EP4181670A1 (en) Method for raising fish in a recirculated aquaculture system
AU2001293487B2 (en) Aquaculture process and apparatus
JP2003023914A (en) Fishery organism cultivation system
US4919079A (en) Method for transporting live fish
AU2001293487A1 (en) Aquaculture process and apparatus
JPH01168222A (en) Transportation of living fish
US20060196440A1 (en) Hatchery system and method
Greve The “Meteor Planktonküvette”: a device for the maintenance of macrozooplankton aboard ships
JP2017099331A (en) Freshness maintaining device and freshness maintaining method
JP2000116274A (en) Water tank for transportation of living fish
JP2013063036A (en) Method for raising aquatic animals, and method for removing nitrate-nitrogen
Váradi Equipment for the production and processing of carp
CN112772534A (en) Keep-alive transportation method for large aquatic products
JP2002000119A (en) Method for culturing fish and shellfish
CA1070189A (en) Method and apparatus for keeping aquatic animals alive over long period of time
JPH08140523A (en) Preservation of live crustaceans and apparatus therefor
JPS5818049B2 (en) Live fish storage equipment
JPS6127014B2 (en)
CN207911806U (en) A kind of foster transport device of work of fishing aquatic products