JPH01167965A - Electric element - Google Patents

Electric element

Info

Publication number
JPH01167965A
JPH01167965A JP62326436A JP32643687A JPH01167965A JP H01167965 A JPH01167965 A JP H01167965A JP 62326436 A JP62326436 A JP 62326436A JP 32643687 A JP32643687 A JP 32643687A JP H01167965 A JPH01167965 A JP H01167965A
Authority
JP
Japan
Prior art keywords
electrolyte
polyolefin
separator
molecular weight
low molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62326436A
Other languages
Japanese (ja)
Inventor
Tatsuya Ito
達也 伊藤
Katsuhiro Tsuchiya
勝洋 土屋
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62326436A priority Critical patent/JPH01167965A/en
Publication of JPH01167965A publication Critical patent/JPH01167965A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent the tendency to come to a low molecular weight by using at least a pair of electrodes, an electrolyte, and a polyolefin type separator, to form an electric element, and including 0.001 to 5wt.% of oxidation preventive agent for polyolefin at least in the electrolyte. CONSTITUTION:In an electric element in which a polyolefin type separator is used for the separator of a cell, an electrolyte capacitor, an electric double- layer capacitor, and the like, 0.001 to 5wt.% of an oxidation preventive agent for polyolefin is included at least in the electrolyte. As a result, the separator is protected from the oxygen, the radical, and the like generated in the element, and the tendency to make a low molecular weight owing to the oxidation deteri oration is suppressed, the deterioration of mechanical strength is minimized, and the solution of the low molecular weight substance into the electrolyte is reduced even though the element is used for a long period high temperature service. In this case, as the polyolefin type resin, polyethylene, polypropylene, or the like is used, and as the electrolyte, non-proton type solvent is used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電池、電解コンデンサ、電気2重層コンデン
サ等に代表される電気素子の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the improvement of electrical elements such as batteries, electrolytic capacitors, electric double layer capacitors, and the like.

[従来の技術] 電池、電解コンデンサ、電気2重層コンデンサ等の電気
素子では、空孔の均一性に優れ、機械強度にも優れるポ
リオレフィン微孔膜の使用が進められている(特願昭5
1−18851号、特開昭61−13614号、実開昭
59−140429号等)。
[Prior art] Polyolefin microporous membranes, which have excellent pore uniformity and mechanical strength, are being used in electrical devices such as batteries, electrolytic capacitors, and electric double layer capacitors (Japanese Patent Application No. 1983).
1-18851, JP-A No. 61-13614, Utility Model Application No. 59-140429, etc.).

[発明が解決しようとする問題点] しかしながら、こうした微孔膜の使用において問題視さ
れていることとして、素子内に含まれる酸素、あるいは
過酸化物・ラジカルの発生のために、長時間での高温使
用により、該ポリオレフィン樹脂がしばしば酸化劣化を
生じ、低分子量化し機械的に脆くショート等を生じるこ
とがある。
[Problems to be Solved by the Invention] However, there is a problem with the use of such microporous membranes due to the generation of oxygen contained in the device or peroxides/radicals. When used at high temperatures, the polyolefin resin often undergoes oxidative deterioration, becomes lower in molecular weight, becomes mechanically brittle, and may cause short circuits.

本発明は該状況に鑑み、素子中での酸化劣化等による機
械強度の低下を防止し長期信頼性を付与せんとするもの
である。
In view of this situation, the present invention aims to prevent a decrease in mechanical strength due to oxidative deterioration in the element and provide long-term reliability.

[問題点を解決するための手段] 本発明は、少なくとも一対の電極と電解液とポリオレフ
ィン系セパレータとから成り、少なくとも該電解液中に
0.001〜5wt%のポリオレフィン用酸化防止剤を
含有することを特徴とする電気素子に関するものである
[Means for Solving the Problems] The present invention comprises at least one pair of electrodes, an electrolyte, and a polyolefin separator, and contains at least 0.001 to 5 wt% of an antioxidant for polyolefin in the electrolyte. The present invention relates to an electric element characterized by the following.

本発明において、電気素子とは電解コンデンサ、電気二
重層コンデンサ、リチウム電池、アルカリ電池等の様な
素子を指し、少なくとも一対の電極とこれを分離するセ
パレータ及び電解液をその構成要件とし、かつ、該セパ
レータとしてポリオレフィン系樹脂からなるセパレータ
を用いることを必要要件とする。ここで、ポリオレフィ
ン系樹脂とはポリエチレン、ポリプロピレン、ポリ4メ
チルペンテン1、ポリブテン等のαオレフィンのホモポ
リマー、コポリマー、あるいはこれらのブレンド物であ
り、この中でも耐溶剤性・機械特性に優れる高密度ポリ
エチレン、ポリプロピレンが本発明の対象として好まし
い。ここで、高密度ポリエチレンの重量平均分子量は2
X105以上、好ましくは3X105以上であると機械
強度が良好となるので好ましい。ポリプロピレンの場合
極限粘度が1.7〜3.3dl/g、好ましくは、2.
1〜3.3dl/Q、さらに好ましくは2.7〜3.2
dl/gであると、機械特性、対ピンホール性に優れ長
期信頼性が良好となる。またアイソタクチックインデッ
クスは、93%以上、好ましくは97%以上であると耐
薬品性に優れ電解液に対する安定性が増すので好ましい
In the present invention, an electric element refers to an element such as an electrolytic capacitor, an electric double layer capacitor, a lithium battery, an alkaline battery, etc., and its constituent elements include at least one pair of electrodes, a separator separating them, and an electrolyte, and It is a necessary requirement to use a separator made of polyolefin resin as the separator. Here, polyolefin resins are homopolymers, copolymers, or blends of α-olefins such as polyethylene, polypropylene, poly(4-methylpentene), and polybutene, and among these, high-density polyethylene has excellent solvent resistance and mechanical properties. , polypropylene are preferred as objects of the present invention. Here, the weight average molecular weight of high density polyethylene is 2
X105 or more, preferably 3X105 or more is preferable because mechanical strength will be good. In the case of polypropylene, the intrinsic viscosity is 1.7 to 3.3 dl/g, preferably 2.
1 to 3.3 dl/Q, more preferably 2.7 to 3.2
When it is dl/g, mechanical properties and pinhole resistance are excellent, and long-term reliability is good. Moreover, it is preferable that the isotactic index is 93% or more, preferably 97% or more, since this provides excellent chemical resistance and increases stability against electrolytes.

また本発明において、セパレータは不織布、微多孔膜状
、あるいはこれらを積層したもの等が上げられるが、こ
の中でも表面空孔径が0.01〜5μm、好ましくは0
.6〜4μmであるとショート率が小さくなるので好ま
しく、空孔率が30〜90%、好ましくは50〜75%
であると電解液含浸量が多く長期信頼性が増すので好ま
しい。
In addition, in the present invention, the separator may be a nonwoven fabric, a microporous membrane, or a laminate thereof, and among these, the surface pore size is 0.01 to 5 μm, preferably 0.
.. If it is 6 to 4 μm, the short ratio will be small, so it is preferable, and the porosity is 30 to 90%, preferably 50 to 75%.
This is preferable because the amount of electrolyte impregnated is large and long-term reliability is increased.

また、微孔形状は例えばポリオレフィンのラメラ構造に
起因する厚み方向に貫通している形状よりも相分離法に
起因する網目構造もしくは層状構造であると導電粒子の
トラップサイトが大きくなるためか漏れ電流が減少する
ので好ましい。
In addition, if the micropore shape is a network structure or a layered structure resulting from a phase separation method, rather than a shape penetrating in the thickness direction resulting from the lamellar structure of polyolefin, the trap site for conductive particles becomes larger, which may cause leakage current. is preferable because it reduces

本発明において、少なくとも該電解液中には、ポリオレ
フィン用酸化防止剤を0.001.〜5wt%含有する
ものであり、好ましくは、0,01〜2wt%である。
In the present invention, at least the electrolyte contains an antioxidant for polyolefins of 0.001. The content is 5 wt%, preferably 0.01 to 2 wt%.

該酸化防止剤の添加量が0.001wt%未満である場
合、長期高温使用時の劣化が著しく問題を生じる。一方
添加量がSwt%を越えると電気特性上に問題を生じる
ことが多い。
If the amount of the antioxidant added is less than 0.001 wt%, deterioration during long-term high temperature use will cause problems. On the other hand, if the amount added exceeds Swt%, problems often occur in electrical characteristics.

本発明でいう酸化防止剤とは、「酸化防止剤ハンドブッ
クJ (大成柱列)、「高分子添加剤・改質剤の評価と
市場J  (CMC社刊柱列に記載のポリオレフィン用
酸化防止剤を指し、2,6−ジーt−ブチル−pクレゾ
ール[BIT] 、2.6−ジーt−ブチル−pフェノ
ール、テトラキス[メチレン−3−(3,5−ジ−t−
ブチル−4−ヒドロキシフェノール)−プロピオネート
コメタン[Irgano×1010]等に例示されるフ
ェノール系酸化防止剤、N、N−ジフェニル−p−フェ
ニレンジアミンに例示されるアミン系酸化防止剤、ジラ
ウリルチオジプロピオネートに例示される有機硫黄系酸
化防止剤、トリフェニルフォスファイトに例示されるフ
ォスファイト系酸化防止剤等が挙げられるが、これらの
中でも、フェノール系酸化防止剤から選ばれたいずれか
のものあるいはこれらの組み合わせであると低分子量化
阻止効果が大きく好ましい。
The antioxidant as used in the present invention refers to antioxidants for polyolefins described in "Antioxidant Handbook J (Taisei Column)" and "Polymer Additives/Modifiers Evaluation and Market J (Published by CMC Co., Ltd. Column Column). 2,6-di-t-butyl-p-cresol [BIT], 2,6-di-t-butyl-p-phenol, tetrakis[methylene-3-(3,5-di-t-
Phenolic antioxidants such as butyl-4-hydroxyphenol)-propionate comethane [Irgano x 1010], amine antioxidants such as N,N-diphenyl-p-phenylenediamine, dilauryl Examples include organic sulfur-based antioxidants exemplified by thiodipropionate, phosphite-based antioxidants exemplified by triphenylphosphite, and among these, any one selected from phenolic antioxidants. or a combination thereof is preferable because it has a large effect of inhibiting molecular weight reduction.

本発明において電解液として使用する溶媒としては、ポ
リオレフィン用酸化防止剤を溶解できるものであれば良
く、この中でも、プロピレンカーボネート、γブチロラ
クトン、ジメチルフォルムアミド、テトラヒドロフラン
、2メチルテトラヒドロフラン、ジメトキシエタン、ア
セトニトリル、ジメチルスルフオキシド、ジオキソラン
、スルフオラン等の非プロトン系溶媒が酸化防止剤の溶
解度が高く、またポリオレフィンへの親和性に優れ好ま
しい。
The solvent used as the electrolytic solution in the present invention may be any solvent as long as it can dissolve the antioxidant for polyolefin, and among these, propylene carbonate, γ-butyrolactone, dimethylformamide, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, acetonitrile, Aprotic solvents such as dimethyl sulfoxide, dioxolane, and sulfolane are preferred because they have high solubility of antioxidants and excellent affinity for polyolefins.

さらに、溶質としては、アンモニウム塩、アミン系、フ
タル酸、種々の金属塩等の公知のものが使用できる。
Furthermore, known solutes such as ammonium salts, amine salts, phthalic acid, and various metal salts can be used.

また、必要に応じ電解液には、0.001〜5wt%の
範囲でポリオレフィン用の銅害防止剤(工業化学雑誌、
71巻、9号(1068)等)を添加しても良い。こう
すると特にポリオレフィン系セパレ〜りを使用した際に
銅ばかりが他の重金属類の接触酸化劣化を小さく抑えら
れるので好ましい。
In addition, if necessary, a copper damage inhibitor for polyolefin (Industrial Chemistry Magazine,
Vol. 71, No. 9 (1068), etc.) may be added. This is particularly preferable when a polyolefin-based separator is used, since the catalytic oxidation deterioration of copper and other heavy metals can be suppressed to a minimum.

上記酸化防止剤、銅害防止剤等は、電解液組成物として
添加しておく方法、あるいはポリオレフィンセパレータ
にコーティングしておく、さらには、ポリオレフィンに
溶融ブレンドしておく方法等があるが、添加量の制御性
あるいはその効果の有効性からあらかじめ電解液に添加
しておく方法あるいは、ポリオレフィンセパレータにコ
ーティングしておく方法が好ましい。
The above-mentioned antioxidants, copper damage inhibitors, etc. can be added as an electrolyte composition, coated on a polyolefin separator, or melt-blended with polyolefin. From the viewpoint of controllability or effectiveness of the effect, it is preferable to add it to the electrolytic solution in advance or to coat it on the polyolefin separator.

[発明の効果] 本発明では、電池、電解コンデンサ、電気二重層コンデ
ンサ等のセパレータとしてポリオレフィン系セパレータ
を用いた電気素子において、少なくとも電解液中にポリ
オレフィン用酸化防止剤を0.001〜5wt%含有せ
しめることにより、素子中で生じる酸素、ラジカル等か
らセパレータを保護し、長期高温使用においても酸化劣
化による低分子量化を抑え機械強度の低下を極力抑え、
かつ低分子量物の電解液への溶出を小さくでき、長期高
温使用においても信頼性が高く極めて優れた特性を発揮
できる。
[Effects of the Invention] According to the present invention, in an electric element using a polyolefin separator as a separator such as a battery, an electrolytic capacitor, an electric double layer capacitor, etc., at least 0.001 to 5 wt% of an antioxidant for polyolefin is contained in the electrolyte. This protects the separator from oxygen, radicals, etc. generated in the element, suppresses lower molecular weight due to oxidative deterioration even during long-term high-temperature use, and minimizes the decrease in mechanical strength.
Moreover, the elution of low molecular weight substances into the electrolytic solution can be reduced, and even during long-term high-temperature use, it is highly reliable and exhibits extremely excellent characteristics.

[特性の評価方法及び効果の評価方法1次にこの発明に
関する特性の測定方法及び効果の評価方法をまとめて示
す。
[Property Evaluation Method and Effect Evaluation Method 1 Next, the characteristics measurement method and effect evaluation method related to the present invention will be summarized.

(1)  表面空孔径(a) サンプル表面の走査型電子顕微鏡(SEM)観察により
孔径の長軸の平均値(aχ)及び短軸の平均値<av)
を測定し、次式に示す相乗平均を表面空孔径とする。
(1) Surface pore diameter (a) Average value of the long axis of the pore diameter (aχ) and average value of the short axis <av) by scanning electron microscopy (SEM) observation of the sample surface
is measured, and the geometric average shown in the following formula is taken as the surface pore diameter.

a=r−てa@7a7丁 (2)  空孔率(P) 試料(10xlOcm)流動パラフィンに24時間浸漬
し、表層の流動パラフィンを十分に拭き収った後の重量
(W2)を測定し、該試料の浸漬前の重!(’Ah)及
び流動パラフィンの密度(ρ〉より次式で求める。
a=r-tea@7a7ton (2) Porosity (P) Sample (10xlOcm) Immersed in liquid paraffin for 24 hours, and measured the weight (W2) after thoroughly wiping off the liquid paraffin on the surface layer. , the weight of the sample before immersion! ('Ah) and the density of liquid paraffin (ρ>) using the following formula.

P= (W2−Wl )/ (VXρ)ここで、■は試
料の見かけ体積(厚み、寸法より計算される値)である
P=(W2-Wl)/(VXρ) Here, ■ is the apparent volume of the sample (a value calculated from the thickness and dimensions).

(3)  機械強度 J I 5K6782に準拠し、破断強度を測定しkc
+/ 1.5 mmで表わす。
(3) Mechanical strength Measure the breaking strength in accordance with J I 5K6782.
+/ Expressed in 1.5 mm.

(4)  極限粘度([η]) ASTM  D  1601に準拠し、試料0.1gを
135℃のテトラリン100m1に完全溶解させ、この
溶液を粘度計で135℃の恒温槽中で測定して、比粘度
Sより次式に従って求める。
(4) Intrinsic viscosity ([η]) According to ASTM D 1601, 0.1 g of the sample was completely dissolved in 100 ml of tetralin at 135°C, and this solution was measured with a viscometer in a constant temperature bath at 135°C to determine the ratio. It is determined from the viscosity S according to the following formula.

[η]=S/NO,LX (1+0.22XS>)(5
)  アイソタクチックインデックス(II>試料を1
30℃で2時間真空乾燥する。これから重量W(■)の
試料を取り、ソックスレー抽出器に入れ、沸騰n−へブ
タンで12時間抽出する。
[η]=S/NO,LX (1+0.22XS>)(5
) Isotactic index (II > sample 1
Vacuum dry at 30°C for 2 hours. A sample of weight W (■) is taken from this, placed in a Soxhlet extractor, and extracted with boiling n-hebutane for 12 hours.

次に、この試料を取出し、アセトンで十分洗浄した後、
130℃6時間真空乾燥し、その後重量W゛ (■)を
測定し、次式で求める。
Next, take out this sample, wash it thoroughly with acetone, and then
After vacuum drying at 130°C for 6 hours, the weight W' (■) is measured and calculated using the following formula.

II(%)= (W’ /W)X100(6)  重量
平均分子量 GPCにて以下の条件で測定する。
II (%)=(W'/W)X100(6) Weight average molecular weight Measured by GPC under the following conditions.

1、装置ニゲル浸透クロマトグラフ、GPC−150C
(WATER3> 2、カラム: 5hodex  K F −90M3、
溶媒;0−ジクロルベンゼン(135°C)[実施例] 次にこの発明の実施例及び比較例を示し、この発明の効
果をより具体的に説明する。
1. Equipment Nigel permeation chromatograph, GPC-150C
(WATER3>2, column: 5hodex KF-90M3,
Solvent: 0-dichlorobenzene (135°C) [Example] Next, Examples and Comparative Examples of this invention will be shown to explain the effects of this invention more specifically.

(ポリオレフィン系セパレータの作成)ポリオレフィン
樹脂として、ポリプロピレンパウダー(極限粘度=3.
0dl/CI、II=97%)を用意し、ジシクロへキ
シルフタレート(DCHP)をPP100重量部に対し
150重量部を溶融ブレンドし、Tダイを用いシート状
に押出し冷却固化した。引き続き該シートに含まれるD
CHPの99%を1−1−1 トリクロルエタンで抽出
除去した後に乾燥を行なった。引き続き120℃にて3
.5倍長手方向に延伸しさらに横方向に135℃にて1
.4倍延伸し巻取った。この結果、膜厚は30μm、表
面孔径1.2μ、空孔率70%、長手方向の強度2.6
kg/15mmであった。
(Preparation of polyolefin separator) As the polyolefin resin, polypropylene powder (intrinsic viscosity = 3.
0 dl/CI, II=97%) was prepared, and 150 parts by weight of dicyclohexyl phthalate (DCHP) was melt-blended to 100 parts by weight of PP, extruded into a sheet using a T-die, and cooled and solidified. D still included in the sheet
After 99% of CHP was extracted and removed with 1-1-1 trichloroethane, drying was performed. Continue at 120℃ 3
.. Stretched 5 times in the longitudinal direction and further stretched 1 time in the transverse direction at 135°C.
.. It was stretched 4 times and wound up. As a result, the film thickness was 30 μm, the surface pore diameter was 1.2 μm, the porosity was 70%, and the longitudinal strength was 2.6
kg/15mm.

[実施例] 電解液として1.0MのLiBF4プロピレンカーボネ
ート溶液とジメトキシエタンとを1:1容量比で混合し
たものを用意したく電解液0)。
[Example] We prepared an electrolyte in which 1.0M LiBF4 propylene carbonate solution and dimethoxyethane were mixed at a volume ratio of 1:1 (electrolyte 0).

これに■rganox 1oio (テトラキス[メチ
レン−3−(3,5−ジー℃−ブチルー4−ヒドロキシ
フェノール)−プロピオネートコメタン>0.1wt%
添加した電解液(電解液1)、及びイルガノックス10
10を0゜1wt%とシュウ酸0.05wt%とを添加
した電解液(電解液2)とを用意した。
To this, ■rganox 1oio (tetrakis[methylene-3-(3,5-di℃-butyl-4-hydroxyphenol)-propionate comethane>0.1wt%
Added electrolyte (electrolyte 1) and Irganox 10
An electrolyte solution (electrolyte solution 2) to which 0.1 wt% of No. 10 and 0.05 wt% of oxalic acid were added was prepared.

以上の電解液を用い、リチウム金属/セパレータ×3枚
/弗化黒鉛からなるボタン型電池を構成した。(電解液
0を用いたもの→比較例1、以下電解液1→実施例1、
電解液2一実施例2)以上の電池に関し、60℃X20
00時間保存→−20℃×50時間の低温保存テストを
行ない、素子を分解してセパレータの機械強度、極限粘
度及び外観試験を行なった。
A button-type battery consisting of lithium metal/3 separators/graphite fluoride was constructed using the above electrolyte. (Those using electrolyte 0 → Comparative example 1, hereinafter electrolyte 1 → Example 1,
Electrolyte 2 - Example 2) Regarding the above battery, 60°C x 20
A low-temperature storage test of 00 hours storage → -20° C. x 50 hours was performed, and the device was disassembled and the mechanical strength, intrinsic viscosity, and appearance of the separator were tested.

以上の結果を表1にまとめて示すが、電解液に酸化防止
剤、あるいはさらに銅害防止剤を添加した実施例1及び
実施例2では、機械強度はほとんど変化していないが、
こうした添加剤を含有していない比較例1では、機械強
度が素子作成前の約半分近くまで低下し、また部分的に
亀裂を生じており、このまま使用するとショート等の危
険があることを示している。
The above results are summarized in Table 1. In Examples 1 and 2, in which an antioxidant or a copper damage inhibitor was added to the electrolyte, the mechanical strength hardly changed.
In Comparative Example 1, which does not contain such additives, the mechanical strength has decreased to about half of that before the device was fabricated, and cracks have appeared in some areas, indicating that there is a risk of short circuits, etc. if the device is used as is. There is.

表1Table 1

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも一対の電極と電解液とポリオレフィン
系セパレータとから成り、少なくとも該電解液中に0.
001〜5wt%のポリオレフィン用酸化防止剤を含有
することを特徴とする電気素子。
(1) Consisting of at least one pair of electrodes, an electrolyte, and a polyolefin separator, at least 0.
An electrical element characterized by containing 0.001 to 5 wt% of an antioxidant for polyolefin.
(2)電解液が、非プロトン系溶媒からなる特許請求の
範囲第(1)項の電気素子。
(2) The electric device according to claim (1), wherein the electrolyte comprises an aprotic solvent.
JP62326436A 1987-12-23 1987-12-23 Electric element Pending JPH01167965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62326436A JPH01167965A (en) 1987-12-23 1987-12-23 Electric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62326436A JPH01167965A (en) 1987-12-23 1987-12-23 Electric element

Publications (1)

Publication Number Publication Date
JPH01167965A true JPH01167965A (en) 1989-07-03

Family

ID=18187786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62326436A Pending JPH01167965A (en) 1987-12-23 1987-12-23 Electric element

Country Status (1)

Country Link
JP (1) JPH01167965A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108650A (en) * 2004-09-07 2006-04-20 Matsushita Electric Ind Co Ltd Electrolyte for electrolytic capacitor, and electrolytic capacitor using the same
JP2006114540A (en) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP2006120830A (en) * 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd Electrolytic capacitor
US7399555B2 (en) 2001-12-26 2008-07-15 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolytic secondary battery
US7859828B2 (en) 2004-09-07 2010-12-28 Panasonic Corporation Electrolytic solution for electrolytic capacitor, and electrolytic capacitor using the same
KR20190132578A (en) * 2016-09-26 2019-11-27 엘지전자 주식회사 Method for interference measurement in wireless communication system and apparatus for same
EP3855464A4 (en) * 2018-09-20 2022-04-27 Sun Electronic Industries Corp. Electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223256A (en) * 1982-06-18 1983-12-24 Fuji Elelctrochem Co Ltd Manufacture of battery
JPS59196583A (en) * 1983-04-22 1984-11-07 Showa Denko Kk Secondary battery
JPS62237680A (en) * 1986-04-03 1987-10-17 ヴアルタ・バツテリ−・アクチエンゲゼルシヤフト Non-hydrant organic electrolyte for battery with light metalcathode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223256A (en) * 1982-06-18 1983-12-24 Fuji Elelctrochem Co Ltd Manufacture of battery
JPS59196583A (en) * 1983-04-22 1984-11-07 Showa Denko Kk Secondary battery
JPS62237680A (en) * 1986-04-03 1987-10-17 ヴアルタ・バツテリ−・アクチエンゲゼルシヤフト Non-hydrant organic electrolyte for battery with light metalcathode

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399555B2 (en) 2001-12-26 2008-07-15 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolytic secondary battery
JP2006108650A (en) * 2004-09-07 2006-04-20 Matsushita Electric Ind Co Ltd Electrolyte for electrolytic capacitor, and electrolytic capacitor using the same
JP4536625B2 (en) * 2004-09-07 2010-09-01 パナソニック株式会社 Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
US7859828B2 (en) 2004-09-07 2010-12-28 Panasonic Corporation Electrolytic solution for electrolytic capacitor, and electrolytic capacitor using the same
JP2006114540A (en) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP2006120830A (en) * 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP4534712B2 (en) * 2004-10-21 2010-09-01 パナソニック株式会社 Electrolytic capacitor
KR20190132578A (en) * 2016-09-26 2019-11-27 엘지전자 주식회사 Method for interference measurement in wireless communication system and apparatus for same
EP3855464A4 (en) * 2018-09-20 2022-04-27 Sun Electronic Industries Corp. Electrolytic capacitor
US11380493B2 (en) 2018-09-20 2022-07-05 Sun Electronic Industries Corp. Electrolytic capacitor

Similar Documents

Publication Publication Date Title
Wang et al. Novel microporous poly (vinylidene fluoride) blend electrolytes for lithium‐ion batteries
JP6085456B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
EP2419957B1 (en) Polymer composite electrolyte, battery comprising polymer composite electrolyte and method for preparing the same
Kühnel et al. Comparison of the anodic behavior of aluminum current collectors in imide-based ionic liquids and consequences on the stability of high voltage supercapacitors
Luo et al. A robust flame retardant fluorinated polyimide nanofiber separator for high-temperature lithium–sulfur batteries
JP5226303B2 (en) Lithium battery polymer separator
KR950015168B1 (en) Carbon electrode
JP6538557B2 (en) Lithium ion battery having organic-inorganic hybrid solid electrolyte
CN103296238B (en) Including the barrier film containing the organic of polyimides and inorganic mixture coating
CA2968729A1 (en) Organic lithium battery
CN113474931A (en) Nonaqueous electrolyte for sodium ion secondary battery and sodium ion secondary battery
JP2625798B2 (en) Electrolyte separator
JPH01167965A (en) Electric element
EP3811446A1 (en) Polymer electrolyte comprising at least one organic solvent and at least one aromatic ionomer and uses thereof
JP5485741B2 (en) Manufacturing method of separator for electronic parts
KR19990039865A (en) Polymer gel electrolyte for secondary battery and manufacturing method thereof
JP2712300B2 (en) Polyolefin microporous film for electrolytic separator
JP2513786B2 (en) Polyolefin microporous film
JPH04126352A (en) Separator for battery, manufacture thereof and battery
JP2541262B2 (en) Polyolefin Microporous Membrane and Electrolyte Separator
JPH01186752A (en) Hydrophilic polyolefin microporous membrane and cell separator
KR20010093579A (en) Composition for Novel Polymer Electrolytes Based on the Porous Membrane and Manufactering Method Thereof
CN110783516A (en) Lithium ion battery diaphragm, lithium ion battery and preparation method thereof
JPH0796627B2 (en) Polyolefin microporous membrane
JP2674625B2 (en) Polyolefin microporous film