JPH01167686A - Magnetostriction measuring instrument - Google Patents

Magnetostriction measuring instrument

Info

Publication number
JPH01167686A
JPH01167686A JP32543587A JP32543587A JPH01167686A JP H01167686 A JPH01167686 A JP H01167686A JP 32543587 A JP32543587 A JP 32543587A JP 32543587 A JP32543587 A JP 32543587A JP H01167686 A JPH01167686 A JP H01167686A
Authority
JP
Japan
Prior art keywords
magnetic field
sample
magnetostriction
thin film
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32543587A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimada
寛 島田
Yoshiharu Naruse
成瀬 好春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NARUSE KAGAKU KIKAI KK
Original Assignee
NARUSE KAGAKU KIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NARUSE KAGAKU KIKAI KK filed Critical NARUSE KAGAKU KIKAI KK
Priority to JP32543587A priority Critical patent/JPH01167686A/en
Publication of JPH01167686A publication Critical patent/JPH01167686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To accurately measure the magnetostriction strain of a material by using laser light, giving periodic magnetic field variation to a sample, and measuring reflected light due to curvature by an optical position detecting element. CONSTITUTION:The sample 4 on which laser light from a laser light source 2 is projected is placed in the center and a couple of coils 5 for magnetic field production are provided. A couple of coils 6 for magnetic field production are provided above and below the sample 4. A current which varies alternately is supplied to the coils 5 and 6 by a coil power source 7 and a phase shifter 8. A magnetic field which varies with time is applied to the sample 4 made of a thin film and a substrate, the magnetism state in the thin film varies period ically, and 'curvature' due to magnetic strain also varies periodically. Conse quently, the resulting displacement of laser reflected light is measured by the optical position detecting element 3 as a voltage signal, which is amplified by an amplified 9 and recorded on a recorder 11 many times. Consequently, the magnetostriction of the sample 4 is accurately measured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁性材料の磁歪特性を測定するための装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an apparatus for measuring magnetostrictive properties of magnetic materials.

[従来の技術] トランス、モーター、VTR等に使われる磁性材料にお
いては、一般に磁歪の現象が見られる。
[Prior Art] In magnetic materials used in transformers, motors, VTRs, etc., the phenomenon of magnetostriction is generally observed.

磁歪は、材料内の磁化状態の変化に伴って伸び縮みする
現象である−が、この伸び縮みは極めて小さく、1al
の長さの材料ではlO→〜10−’amの長さの変化が
起こる。逆に、この現象は、外部から伸び縮みを与える
ような機械的なカが加わると、材料内部の磁化状態が変
化する現象となって現われる。
Magnetostriction is a phenomenon in which materials expand and contract as the magnetization state changes, but this expansion and contraction is extremely small, and 1al
For a material with a length of , a change in length of lO→~10-'am occurs. Conversely, this phenomenon appears as a phenomenon in which the magnetization state inside the material changes when a mechanical force that causes expansion and contraction is applied from the outside.

従って、種々の厳しい環境で使用される磁性材料につい
ては、磁歪の現象を詳しく測定しておく必要がある。
Therefore, it is necessary to measure the magnetostriction phenomenon in detail for magnetic materials used in various harsh environments.

これまで、磁歪の測定には、磁性材料に取付けた差動ト
ランス、歪みゲージ等が使われてきた。
Until now, magnetostriction has been measured using differential transformers, strain gauges, etc. attached to magnetic materials.

しかし、最近は、磁性材料は薄膜での応用、即ち数μ園
(1μ■=0.0001am)の厚みで使われることが
多く、しかもガラスや、セラミックスの板(厚さ数10
0μ■〜数mm)の上に密着している。このような場合
には、差動トランス、歪みゲージは、それ自身が薄膜よ
りも遥かに大きく、薄膜に接着すると薄膜の微小な伸び
縮みは殆ど無くなるため、これまでの方法では測定が不
可能となる。
However, recently, magnetic materials are often used in thin film applications, that is, in thicknesses of several micrometers (1 micrometer = 0.0001 am), and moreover, magnetic materials are often used in thin film applications, such as glass and ceramic plates (several tens of micrometers thick).
0μ■ to several mm). In such cases, differential transformers and strain gauges are much larger than the thin film, and when bonded to the thin film, the minute expansion and contraction of the thin film is almost eliminated, making measurement impossible using conventional methods. Become.

しかし、薄膜に磁歪の変化が起こると、薄膜が伸び縮み
するため、板に密着した状態では、全体として「そり」
が見られる。この「そり」を測定し、薄膜、板の弾性定
数から薄膜の伸び縮みを計算で求めることが出来る。
However, when a change in magnetostriction occurs in a thin film, the thin film expands and contracts, so when it is in close contact with a plate, the film as a whole will "warp".
can be seen. By measuring this "warpage", the expansion and contraction of the thin film can be calculated from the elastic constants of the thin film and plate.

従って、最も重要な技術は、この「そり」を高い精度で
測定することである。
Therefore, the most important technique is to measure this "curvature" with high precision.

本発明はこの「そり」を測定する装置に関する。The present invention relates to a device for measuring this "warpage".

「そり」を測定する方法として、第6図に示すような静
電容量変化を利用する装置が用いられている。即ち、板
(基板)laに密着した薄膜1bの表面のごく近く(数
100 p m程度)に平行して電極板1cを置き、こ
れと薄膜の間の電気容量が「そり」によって変化する量
を電気容量変化測定器1dによって測定する。
As a method for measuring "warpage", an apparatus that utilizes changes in capacitance as shown in FIG. 6 is used. In other words, an electrode plate 1c is placed very close (about several hundred pm) parallel to the surface of a thin film 1b that is in close contact with a plate (substrate) la, and the amount by which the capacitance between this and the thin film changes due to "warping" is calculated. is measured by capacitance change measuring device 1d.

[発明が解決しようとする問題点] 上記のような測定は電気的に行なわれるが、電気容量の
変化が極めて小さいため、薄膜−電極板の距離の調節誤
差、電気的な雑音、不安定性が大きな障害となり、非常
に精密で高価な電気機器が必要となる。その上、測定値
にバラツキが多く、また、測定精度も10−4〜10”
amに過ぎなかった。
[Problems to be Solved by the Invention] The above measurements are performed electrically, but since the change in capacitance is extremely small, errors in adjusting the distance between the thin film and the electrode plate, electrical noise, and instability occur. This is a major hurdle and requires very precise and expensive electrical equipment. Moreover, there are many variations in the measured values, and the measurement accuracy is 10-4 to 10".
It was just am.

[問題点を解決するための手段] 本発明は、第1図に示すように、板(基板)laに密着
した薄膜1b表面に例えば1■以内に絞ったレーザー光
をレーザー光源2より照射し、その反射光の「そり」に
よる変位を、小さく絞った光が照射されるとその位置に
比例した電圧を発生する光位置検出素子3により測定し
ようとするものである。即ち1本発明は、レーザー光を
用い、磁歪材料の磁歪変位を、その反射光の到達位置変
化を光位置検出素子を利用して検出し、さらに、その測
定中に伴って発生する雑音を消去するために、測定試料
を固定した状態で、これに加える磁界方向を切り換えて
(例えば2〜3七)多数回測定し。
[Means for Solving the Problems] As shown in FIG. 1, the present invention irradiates the surface of the thin film 1b that is in close contact with the plate (substrate) la from a laser light source 2 with laser light focused within 1 inch, for example. , the displacement due to the "warpage" of the reflected light is measured by an optical position detection element 3 that generates a voltage proportional to the position when irradiated with narrowly focused light. That is, 1 the present invention uses a laser beam to detect the magnetostrictive displacement of a magnetostrictive material by using an optical position detection element to detect the change in the position of the reflected light, and further eliminates noise generated during the measurement. In order to do this, measurements were carried out many times (for example, from 2 to 37 times) while the measurement sample was fixed and the direction of the magnetic field applied to it was changed.

また、位相検波法(ロックインアンプ)を利用して機械
的電気的雑音を遮断し、精密な測定を可能にしようとす
るものである。
It also attempts to block mechanical and electrical noise by using a phase detection method (lock-in amplifier) to enable precise measurements.

このように、本発明は、レーザー光、光位置検出素子を
装着して磁歪を光学的に測定する装置に関するもので、
この装置に依れば、これまでの電気容量法に比べて、光
の変化で測定するため、電気的な雑音、不安定性が無<
、m定精度も10−’am程度に向上でき、また、薄膜
位置の誤差も簡単な校正法により無くすることが出来る
As described above, the present invention relates to an apparatus for optically measuring magnetostriction by installing a laser beam and an optical position detection element.
Compared to conventional capacitance methods, this device uses changes in light to measure, so there is no electrical noise or instability.
, m-determining accuracy can be improved to about 10-'am, and errors in thin film position can also be eliminated by a simple calibration method.

[作用] 上述のように、本発明においては、レーザー光。[Effect] As mentioned above, in the present invention, laser light is used.

光位置検出素子を装着して磁歪を光学的に測定するので
、電気的な雑音、不安定性が無く、また、薄膜位置の誤
差も簡単な校正法により無くすることが出来る。
Since magnetostriction is optically measured by attaching an optical position detection element, there is no electrical noise or instability, and errors in thin film position can be eliminated by a simple calibration method.

[実施例] 本発明の実施例を図面に従って説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の基本構成を示す説明図、第2図は本発
明の具体的構成を示す構成図、第3図は第2図における
検出構成と検出波形との関係を示す説明図、第4図は本
発明の実施例を示す図で、(a)は平面図、(b)は正
面図、(c)は側面図、第5図は第4図に示す装置の制
御1表示機器の正面図。
FIG. 1 is an explanatory diagram showing the basic configuration of the present invention, FIG. 2 is a configuration diagram showing the specific configuration of the present invention, and FIG. 3 is an explanatory diagram showing the relationship between the detection configuration and detected waveform in FIG. Fig. 4 is a diagram showing an embodiment of the present invention, (a) is a plan view, (b) is a front view, (c) is a side view, and Fig. 5 is a control 1 display device of the device shown in Fig. 4. front view.

である。It is.

第1図に示すように、本発明は、板(基板)laに密着
した薄膜1b表面に例えば1■以内に絞ったレーザー光
をレーザー光源2より照射し、磁歪による矢印A方向の
変化に基く矢印B方向の「そり」による反射光の変位量
Qを、小さく絞った光が照射されるとその位置に比例し
た電圧を発生する光位置検出素子3により測定するもの
である。
As shown in FIG. 1, the present invention irradiates the surface of a thin film 1b that is in close contact with a plate (substrate) la with a laser beam focused within, for example, 1 square from a laser light source 2, and changes the direction of arrow A due to magnetostriction. The amount of displacement Q of the reflected light due to "warping" in the direction of arrow B is measured by the optical position detection element 3, which generates a voltage proportional to the position when a narrowly focused light is irradiated.

この装置の精度を上げるためには、7a膜と光位置検出
素子の距離を大きくすれば良いが、外部からの不均一な
温度変化のために、レーザー光源、薄膜、光位置検出素
子が熱膨張のために微妙に位置変化を起こし、「そり」
による変化と同等の信号となって現われる。このため、
温度変化の時間よりは遥かに短い時間で測定を行なう必
要がある。
In order to increase the accuracy of this device, it is possible to increase the distance between the 7a film and the optical position detecting element, but due to non-uniform temperature changes from the outside, the laser light source, thin film, and optical position detecting element expand thermally. cause a slight change in position due to the "sled"
It appears as a signal equivalent to the change due to For this reason,
It is necessary to perform measurements in a much shorter time than the time required for temperature change.

本発明では、この欠点を克服するため、薄膜の磁化状態
を高速で変化させる磁界を発生する装置が必要である。
In order to overcome this drawback, the present invention requires a device that generates a magnetic field that changes the magnetization state of the thin film at high speed.

その具体的構成は、第2図に示すように、レーザー光源
2よりのレーザー光を投影する試料4を中心において左
右に一対の磁場発生用コイル(または電磁石)5,5を
設け、同様に上下に一対の磁場発生用コイル6.6を設
け、この二対のコイルにコイル電源7、位相シフター8
により交互に変化する電流を流す、これによって、薄膜
と基板からなる試料(被測定材料)4には、時間的に変
化する磁場がかかり、薄膜内の磁化状態は周期的に変化
し、磁歪による「そり」も周期的な変化を起こす。これ
により生ずるレーザー反射光の変位を光位置検出素子3
で電圧信号として測定し、増幅器9で拡大してレコーダ
ー11に多数回記録する。
As shown in Fig. 2, its specific configuration is such that a pair of magnetic field generating coils (or electromagnets) 5, 5 are provided on the left and right sides of the sample 4 onto which the laser light from the laser light source 2 is projected, and similarly A pair of magnetic field generating coils 6.6 are provided in the , and a coil power source 7 and a phase shifter 8 are connected to these two pairs of coils.
As a result, a temporally varying magnetic field is applied to the sample (material to be measured) 4, which consists of a thin film and a substrate, and the magnetization state within the thin film changes periodically, resulting in magnetostriction. “Sled” also causes periodic changes. The displacement of the laser reflected light caused by this is detected by the optical position detection element 3.
The voltage signal is measured as a voltage signal by the amplifier 9, and is enlarged by the amplifier 9 and recorded on the recorder 11 many times.

時間的に変化する磁場の発生のためには、一対のみのコ
イルまたは電磁石を機械的に回転することによっても可
能である。このように、本発明においては、レーザー反
射光を利用し、また周期的に変化する磁場発生装置を設
けることにより、高精度磁歪測定装置を得ることが出来
る。
For the generation of a time-varying magnetic field, it is also possible to mechanically rotate only one pair of coils or electromagnets. As described above, in the present invention, a highly accurate magnetostriction measuring device can be obtained by using reflected laser light and providing a periodically changing magnetic field generating device.

更に精度を上げるカーとして4本発明においては、図に
示すように位相検波法(ロックインアンプ11)を利用
している。即ち、増幅器(プリアンプ)9とレコーダー
10との間に、特定の周波数の信号のみを増幅、通過さ
せ、他の雑音を全て遮断する機能を持つ増幅器であるロ
ックインアンプ11を挿入する。この特定の周波数を決
めるために同じ周波数の参照信号をロックインアンプ1
1に入れる必要があるが、この電気信号と周波数の同じ
参照信号は、コイル5,6に周期的磁場電流を供給する
コイル電源7に発生しているので、これをロックインア
ンプ11に入れると、必要な電気信号のみがロックイン
アンプ11を通過、拡大とともに整流され、直流信号と
なってレコーダー10に記録される。
In order to further improve accuracy, the present invention utilizes a phase detection method (lock-in amplifier 11) as shown in the figure. That is, a lock-in amplifier 11 is inserted between the amplifier (preamplifier) 9 and the recorder 10, which is an amplifier that has the function of amplifying and passing only signals of a specific frequency and blocking all other noise. Lock-in amplifier 1 uses a reference signal of the same frequency to determine this specific frequency.
1, but since a reference signal with the same frequency as this electric signal is generated in the coil power supply 7 that supplies periodic magnetic field current to the coils 5 and 6, if this is input into the lock-in amplifier 11, Only the necessary electrical signals pass through the lock-in amplifier 11, are expanded and rectified, and are recorded on the recorder 10 as DC signals.

なお、符号12は回路中に挿入されたオッシロスコープ
であり、第3図は信号波形の変化の様子を説明するため
のものであり、また、第4図は本発明による具体的装置
の一例を示すもので、図中符号13は校正用スピーカー
であり、第5図は測定計器配列の一例を示すもので、図
中、符号14は設定用X−Y −Tレコーダー、15は
オッシロスコープ、16は周波数カウンタ、17はファ
ンクションジェネレータ、18はオートフェーズロック
インアンプ、19.20はバイポーラ電源、21は収納
用キャビネット、である。
Note that reference numeral 12 is an oscilloscope inserted into the circuit, FIG. 3 is for explaining how the signal waveform changes, and FIG. 4 shows an example of a specific device according to the present invention. In the figure, reference numeral 13 is a speaker for calibration, and Fig. 5 shows an example of the arrangement of measuring instruments. 17 is a function generator, 18 is an auto phase lock-in amplifier, 19.20 is a bipolar power supply, and 21 is a storage cabinet.

[発明の効果] 前述したように、本発明においては、レーザー光を用い
、試料に対して周期的磁場変化を与え、これにより試料
に生ずるrそり」による反射光を光位置検出素子により
その変位を電気信号に変換して測定するようにしたので
、材料の磁歪測定を精度良く行なうことが出来、また、
ロックインアンプを装着することにより、他の機械的、
電気的雑音を全て遮断することができ、より微小な「そ
り」即ち磁歪を測定することが出来る。
[Effects of the Invention] As described above, in the present invention, a laser beam is used to apply a periodic magnetic field change to a sample, and the reflected light due to the warpage caused in the sample is detected by an optical position detection element. Since it is converted into an electrical signal and measured, magnetostriction measurements of materials can be performed with high accuracy.
By installing a lock-in amplifier, other mechanical,
All electrical noise can be blocked, and even smaller "warpage" or magnetostriction can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本構成を示す説明図、第2図は本発
明の具体的構成を示す構成図、第3図は第2図における
検出構成と検出波形との関係を示す説明図、第4図は本
発明の実施例を示す図で、(a)は平面図、(b)は正
面図、(c)は側面図、第5図は第4図に示す装置の制
御、表示機器の正面図、第6図は従来装置の基本構成を
示す説明図、である。 1a・・・・基板、    1b・・・・薄膜。 2・・・・レーザー光源、3・・・・光位置検出素子、
4・・・・試料(被測定材料)、5,6・・・・コイル
、7・・・・コイル電源、 8・・・・位相シフター、
9・・・・増幅器(プリアンプ)、 10・・・・レコーダー、11・・・・ロックインアン
プ。
FIG. 1 is an explanatory diagram showing the basic configuration of the present invention, FIG. 2 is a configuration diagram showing the specific configuration of the present invention, and FIG. 3 is an explanatory diagram showing the relationship between the detection configuration and detected waveform in FIG. 4 is a diagram showing an embodiment of the present invention, (a) is a plan view, (b) is a front view, (c) is a side view, and FIG. 5 is a control and display device for the device shown in FIG. 4. FIG. 6 is an explanatory diagram showing the basic configuration of the conventional device. 1a...Substrate, 1b...Thin film. 2... Laser light source, 3... Optical position detection element,
4... Sample (material to be measured), 5, 6... Coil, 7... Coil power supply, 8... Phase shifter,
9...Amplifier (preamplifier), 10...Recorder, 11...Lock-in amplifier.

Claims (2)

【特許請求の範囲】[Claims] (1)被測定材料を挟んで左右或は上下に対面して設け
られる一対または二対の磁場発生装置と、その磁界中に
置かれた被測定材料に向かって照射するレーザー光源と
、被測定材料の磁歪変位によるレーザー反射光の変位を
検出する光位置検出素子とからなる磁歪測定装置。
(1) A pair or two pairs of magnetic field generators installed facing left and right or up and down with the material to be measured in between, a laser light source that irradiates toward the material to be measured placed in the magnetic field, and the material to be measured. A magnetostriction measurement device consisting of an optical position detection element that detects the displacement of laser reflected light due to magnetostriction displacement of a material.
(2)光位置検出素子よりの検知信号を、磁場発生装置
に同期的磁場変化を与える電流を供給するコイル電源よ
りの参照信号を利用して位相検波するロックアップアン
プを設けてなる特許請求の範囲第1項記載の磁歪測定装
置。
(2) A patent claim comprising a lock-up amplifier that detects the phase of a detection signal from an optical position detection element using a reference signal from a coil power supply that supplies a current that causes a synchronous magnetic field change to a magnetic field generator. The magnetostriction measuring device according to scope 1.
JP32543587A 1987-12-24 1987-12-24 Magnetostriction measuring instrument Pending JPH01167686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32543587A JPH01167686A (en) 1987-12-24 1987-12-24 Magnetostriction measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32543587A JPH01167686A (en) 1987-12-24 1987-12-24 Magnetostriction measuring instrument

Publications (1)

Publication Number Publication Date
JPH01167686A true JPH01167686A (en) 1989-07-03

Family

ID=18176828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32543587A Pending JPH01167686A (en) 1987-12-24 1987-12-24 Magnetostriction measuring instrument

Country Status (1)

Country Link
JP (1) JPH01167686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728585B2 (en) 2002-12-20 2010-06-01 International Business Machines Corporation Systems for measuring magnetostriction in magnetoresistive elements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575666A (en) * 1978-11-30 1980-06-07 Ibm Magnetostriction constant direct determining method and device for excuting the same
JPS566170A (en) * 1979-06-27 1981-01-22 Nippon Denki Keiki Kenteishiyo Iron loss measuring instrument
JPS5776451A (en) * 1980-10-30 1982-05-13 Shimadzu Corp Measuring circuit for eddy current magnetic field

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575666A (en) * 1978-11-30 1980-06-07 Ibm Magnetostriction constant direct determining method and device for excuting the same
JPS566170A (en) * 1979-06-27 1981-01-22 Nippon Denki Keiki Kenteishiyo Iron loss measuring instrument
JPS5776451A (en) * 1980-10-30 1982-05-13 Shimadzu Corp Measuring circuit for eddy current magnetic field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728585B2 (en) 2002-12-20 2010-06-01 International Business Machines Corporation Systems for measuring magnetostriction in magnetoresistive elements

Similar Documents

Publication Publication Date Title
Tam et al. A new high-precision optical technique to measure magnetostriction of a thin magnetic film deposited on a substrate
Li et al. Simple, high‐resolution interferometer for the measurement of frequency‐dependent complex piezoelectric responses in ferroelectric ceramics
Tam et al. Precise measurements of a magnetostriction coefficient of a thin soft‐magnetic film deposited on a substrate
JP4585740B2 (en) Magnetic recording / reproducing device
JPH0348102A (en) Detecting apparatus of very small displacement, piezoelectric actuator having this detecting apparatus and scanning probe microscope having this piezoelectric actuator
US4215310A (en) Magnetic testing method and apparatus having provision for eliminating inaccuracies caused by gaps between probe and test piece
Roseman et al. Cryogenic magnetic force microscope
US4315214A (en) Displacement sensor using a galvanomagnetic element positioned in a periodically inverted magnetic field
CN1844937B (en) High-sensitivity MEMS photoelectric galvanometer, making and detecting method thereof
Wolff et al. Precision interferometric dilatometer
US4100442A (en) Electrically driven oscillating capacitor device
CN112162113A (en) High-precision accelerometer
Chitnis et al. Optical fiber sensor for vibration amplitude measurement
JPH01167686A (en) Magnetostriction measuring instrument
CN107121649B (en) Method for measuring magnetic moment of magnetic molecular cluster by using magnetometer
Eberhardt et al. Tensiometer for free standing smectic films
Thornley et al. Magnetic field measurements in the scanning electron microscope
Haddad et al. Gaussian beams and spatial modulation in nanopositioning
JPWO2005090909A1 (en) Film thickness measuring apparatus and film thickness measuring method
JP3346429B2 (en) Magnetostriction measuring device
US2845546A (en) Amplitude discriminator
SU1267242A1 (en) Method of determining thermal physical properties of materials
Kwaaitaal The measurement of small magnetostrictive effects by an interferometric method
JPH045524A (en) Alternating current magneto-striction measuring method
EP0170427A2 (en) Method of and apparatus for the measurement of magnetic fields