JPH01167522A - Device for detecting blown-off state of burner flame - Google Patents

Device for detecting blown-off state of burner flame

Info

Publication number
JPH01167522A
JPH01167522A JP62324486A JP32448687A JPH01167522A JP H01167522 A JPH01167522 A JP H01167522A JP 62324486 A JP62324486 A JP 62324486A JP 32448687 A JP32448687 A JP 32448687A JP H01167522 A JPH01167522 A JP H01167522A
Authority
JP
Japan
Prior art keywords
power spectrum
flame
rate
state
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62324486A
Other languages
Japanese (ja)
Other versions
JPH0814370B2 (en
Inventor
Akihiko Kishida
岸田 晃彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62324486A priority Critical patent/JPH0814370B2/en
Publication of JPH01167522A publication Critical patent/JPH01167522A/en
Publication of JPH0814370B2 publication Critical patent/JPH0814370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/20Warning devices
    • F23N2231/22Warning devices using warning lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To detect a proper blown state and increase a heating efficiency by a method wherein an amount of supplied air for a combustion part is adjusted in response to a rate of variation of a power spectrum integrated value of a low frequency band got from a detected signal of an optical sensor and a rate of variation of a power spectrum ratio. CONSTITUTION:An optical sensor 13 arranged within a combustion furnace 1, a flame condition discriminating unit 15 and an air flow rate limiting device 12 are provided. A rate of variation of a power spectrum integrated value of a low frequency band and a rate of variation of a power spectrum ratio are calculated in response to a power spectrum got through an analyzation of frequency of the sensed signal of the optical sensor 13 by a flame state discriminating unit 15. When a multiplicity of both rates of variation becomes positive, the flame state discriminating unit 15 may output a limiting signal to an air flow rate limiting device 12 to meter an adjusting valve 9 so as to perform a positive stoppage of supplying air. In turn, a control signal is outputted to an informing means such as a lamp 16 and the like to inform an operator that a flame 14 becomes a blown-off state.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、バーナ火炎吹き飛び状態検出装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a burner flame blown state detection device.

(従来の技術) 従来、燃焼制御装置の一例としてフォトダイオードなど
の光電変換素子を燃焼炉内に配設し、その検出信号に基
づいて周波数解析手段でパワースペクトラムを得て、こ
のパワースペクトラムで算定されるパワースペクトラム
比に従ってバーナへの空気供給量を調節したものが知ら
れている。
(Prior art) Conventionally, as an example of a combustion control device, a photoelectric conversion element such as a photodiode is placed in a combustion furnace, and a power spectrum is obtained by a frequency analysis means based on the detection signal, and calculations are made using this power spectrum. It is known that the amount of air supplied to the burner is adjusted according to the power spectrum ratio.

ナオ、この場合、パワースペクトラム比は次のように算
定している。
In this case, the power spectrum ratio is calculated as follows.

例えば、バーナタイル式の保炎器を使用した燃焼器でA
重油101:/11燃焼し、排ガス02%を1、4.2
.1.3.2.3.9.4.6 、6.0% と変化さ
せた時、Geフォトダイオードなどの光電変換素子で得
られる光パワー振動信号に基づいて周波数解析手段は第
4図に示すようなパワースペクトラムを得る。排ガス0
2%が増加すると、特定の周波数(第4図の例では15
Hz)以上の帯域については大きくなっている。そして
、この特徴を数値表現するために、全周波数帯について
の積分値をA、特定周波数以上の帯域についての積分値
をBとしてそれぞれを算定し、両者の比いをとって(第
5図参照)、パワースペクトラム比Cを算定している。
For example, in a combustor that uses a burner tile flame holder,
Heavy oil 101:/11 combustion, exhaust gas 02% 1,4.2
.. 1.3.2.3.9.4.6 When the power is changed to 6.0%, the frequency analysis means is shown in Fig. 4 based on the optical power oscillation signal obtained from a photoelectric conversion element such as a Ge photodiode. Obtain the power spectrum as shown. Exhaust gas 0
An increase of 2% increases the frequency at a certain frequency (15 in the example in Figure 4).
Hz) and higher bands are larger. In order to express this feature numerically, we calculate the integral value for all frequency bands as A, and the integral value for bands above a specific frequency as B, and compare them (see Figure 5). ), the power spectrum ratio C is calculated.

このパワースペクトラム比Cは排ガス02%を横軸にし
て表示すると第3図に示すように上に凸形状になる。
When this power spectrum ratio C is expressed with 02% exhaust gas as the horizontal axis, it has an upwardly convex shape as shown in FIG.

(発明が解決しようとする問題点) ところで、上述したような従来の燃焼制御装。(Problem to be solved by the invention) By the way, the conventional combustion control device as described above.

置を燃焼装置に適用して製品加熱を行なうとき、燃料微
粒化エアの吹き出し速度や燃焼用エアの吹き出し速匿に
よっては火炎がいわゆる吹き飛び状態になってしまうこ
とがあった。しかしながら、上述したような従来の燃焼
制御装置では火炎状態を検出する光電変換素子を有して
いるもΩの上述のような吹き飛び状態を検出できず、加
熱効率が低下するという問題点があった。この問題点は
、例えばバーナをオン、オフ制御して炉内温度を一定に
保つ炉のように常時パイロットバーナを着火状態にして
おく炉において特に顕著となりこのような炉では吹き飛
び状態でも通常の燃焼状態と同様に空気、燃料供給を継
続して行なうことさえ起こり得た。
When applying this to a combustion device to heat a product, depending on the blowing speed of the fuel atomization air and the speed of blowing out the combustion air, the flame may be blown away. However, although the conventional combustion control device described above has a photoelectric conversion element that detects the flame state, it cannot detect the blown-off state as described above, resulting in a reduction in heating efficiency. . This problem is particularly noticeable in furnaces where the pilot burner is always in the ignited state, such as furnaces that keep the internal temperature constant by controlling the burners on and off. It was even possible to continue the air and fuel supply as in the situation.

本発明は上記事情に鑑みてなされたもので吹き飛・び状
態を適切に検出し、加熱効率を高めることができるバー
ナ火炎吹き飛び状態検出装置を提供するこ・とを目的と
する。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a burner flame blown state detection device that can appropriately detect the blown out state and improve heating efficiency.

(問題点を解決するための手段) 上記目的を達成するための手段について、第1図および
第3図を参照して説明すると、本発明は、炉1内に配設
された光センサ13と、元センサ13の検出信号を周波
数解析して得られるノくワースペクトラムに基づいて低
周波数帯のパワースペクトラム積分値の変化率およびパ
ワースペクトラム比の変化率を算定し両変化率の積が正
の場合、この旨を示す制御信号を示す火炎状態判定器1
5と、前記制御信号に従って調節バルブ9を制御するエ
ア流量制限装置12とを備えたことを要旨とする。
(Means for Solving the Problems) The means for achieving the above object will be explained with reference to FIGS. 1 and 3. , calculate the rate of change of the power spectrum integral value and the rate of change of the power spectrum ratio in the low frequency band based on the noise spectrum obtained by frequency analysis of the detection signal of the original sensor 13, and determine if the product of both rates of change is positive. flame condition determiner 1 which indicates a control signal indicating this.
5, and an air flow rate restricting device 12 that controls the regulating valve 9 in accordance with the control signal.

なお、変化率の積が正の場合、吹き飛び状態であると判
定するのは次の理由に基づく。すなわち、パワースペク
ト・ラムは、一般に第4図に示すように特定周波数(第
4図では15Hz)以上の周波数領域では排ガス02%
が大きくなると増加し、また、低周波数(第4図では2
 Hz )以下の周波数領域では排ガス02チが大きく
なると減少する傾向がちシ、これら周波数によって特定
周波数帯、低周波数帯が規定される。そして、低周波数
帯のパワースペクトラムの積分値りは排ガス02%を横
軸にすると第3図に示すように低減傾向を示す。また、
パワースペクトラム比Cを算出すると上述したように第
3図に示すように排ガス02%が増加していくと、所定
値までは上昇し、所定値を越えると火炎の吹き飛び現象
によって減少する傾向がある。そして、このように火炎
の吹き飛び状態では他の状態と異なり、低周波数帯のパ
ワースペクト2ムの積分値りおよびパワースペクトラム
比Cが共に減少することに基づいて両者の積が゛正にな
った場合、火炎は吹き飛び状態になっていると判定して
いる。
Note that when the product of the rate of change is positive, it is determined that the state is blown away based on the following reason. In other words, as shown in Figure 4, the power spectrum ram generally reduces exhaust gas by 0.2% in the frequency range above a specific frequency (15Hz in Figure 4).
increases as
In the frequency range below Hz, the exhaust gas tends to decrease as it increases, and these frequencies define a specific frequency band and a low frequency band. The integrated value of the power spectrum in the low frequency band shows a decreasing tendency as shown in FIG. 3 when the horizontal axis is 02% of the exhaust gas. Also,
When calculating the power spectrum ratio C, as mentioned above, as shown in Figure 3, as the exhaust gas 02% increases, it increases up to a predetermined value, and when it exceeds a predetermined value, it tends to decrease due to the flame blow-off phenomenon. . In this way, in the flame blown state, unlike other states, the product of both becomes positive because the integral value of the power spectrum 2m in the low frequency band and the power spectrum ratio C both decrease. In this case, it is determined that the flame is in a state of being blown away.

(作 用) 本発明は、上記構成によって低周波数帯のパワースペク
トラム積分値の変化率とパワースペクトラム比の変化率
との積が正になると、この旨の制御信号を空気供給量調
節手段および報知手段へ出力し、バーナへの空気供給量
を調節するので、火炎が吹き飛び状態になった場合これ
を検出し燃焼を制御して加熱効率を高めることができる
(Function) With the above configuration, when the product of the rate of change of the power spectrum integral value in the low frequency band and the rate of change of the power spectrum ratio becomes positive, the present invention sends a control signal to this effect to the air supply amount adjusting means and the alarm. Since the air is output to the burner and the amount of air supplied to the burner is adjusted, if the flame is blown out, it can be detected and combustion can be controlled to increase heating efficiency.

(実施例) 以下、本発明の一実施例のバーナ火炎吹き飛び状態検出
装置について添付図面を参照して説明する。
(Embodiment) Hereinafter, a burner flame blown state detection device according to an embodiment of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の一実施例のバーナ火炎吹き飛び状態検
出装置を示すブロック図である。
FIG. 1 is a block diagram showing a burner flame blown state detection device according to an embodiment of the present invention.

第1図において、炉1に配設されたバーナ2には燃料用
配管3.燃料微粉化エア配管4および燃焼用エア配管5
が接続されている。
In FIG. 1, a burner 2 installed in a furnace 1 has a fuel pipe 3. Fuel pulverization air piping 4 and combustion air piping 5
is connected.

燃料用配管3の途中には流量計6および調節バルブ7が
、燃料微粉化エア配管4の途中には調節バルブ8が、ま
た風貌用エア配管5の途中には調節バルブ9がそれぞれ
配設されている。
A flow meter 6 and a control valve 7 are provided in the middle of the fuel pipe 3, a control valve 8 is provided in the middle of the fuel pulverized air pipe 4, and a control valve 9 is provided in the middle of the appearance air pipe 5. ing.

なお、炉1内には温度計10が配設されておシ、この温
度計10に温度調節計11が接続されている。
Note that a thermometer 10 is disposed inside the furnace 1, and a temperature controller 11 is connected to this thermometer 10.

温度調節計11は温度計10の検出データおよび流量計
6の検出データを取込んで調節バルブ7を制御して燃焼
状態を調節させ炉1内の温度を一定値に保つようにする
とともに、取込みデータに基づいて得られる制御信号を
エア流量制限装置12へ出力するようになっている。エ
ア流量制限装置12は温度調節計11から取込んだ制御
信号を、後述の火炎状態判定器15から出力される補正
係数信号に従って補正し、補正して得られた信号を調節
バルブ9へ出力して燃焼用エアの供給量を調整するよう
になっている。
The temperature controller 11 takes in the detection data of the thermometer 10 and the detection data of the flow meter 6, controls the control valve 7 to adjust the combustion state, and maintains the temperature in the furnace 1 at a constant value. A control signal obtained based on the data is output to the air flow rate restricting device 12. The air flow rate restriction device 12 corrects the control signal taken in from the temperature controller 11 according to a correction coefficient signal output from a flame condition determiner 15 (described later), and outputs the corrected signal to the control valve 9. The amount of combustion air supplied is adjusted by

また、炉1内には光センサ16が配設されている。光セ
ンサ13はバーナ2の火炎14から発せられる光パワー
を取込んでこれを光電変換して燃焼検出信号として出力
する。光センサ13には火炎状態判定器15が接続され
ている。火炎状態判定器15は燃焼検出信号を取込む一
方、不図示の記憶手段に格納された制御プログラムを実
行して次のような処理を行なう。
Furthermore, an optical sensor 16 is provided within the furnace 1 . The optical sensor 13 takes in the optical power emitted from the flame 14 of the burner 2, photoelectrically converts it, and outputs it as a combustion detection signal. A flame condition determiner 15 is connected to the optical sensor 13 . The flame state determiner 15 receives the combustion detection signal and executes a control program stored in a storage means (not shown) to perform the following processing.

すなわち、燃焼検出信号を周波数解析してパワースペク
トラムを算出し、さらに全周波数帯のパワースペクトラ
ムの積分値A、特定周波数帯のパワースペクトラムの積
分値Bおよび低周波数帯のパワースペクトラムの積分値
りを算出し、次にパワースペクトラム比C= B/Aを
演算する。そして、このような演算を順次継続して行な
うとともに、時間差Δを毎にパワースペクトラム比Cに
ついての変化率Eを C−C’ E=□ t C′:前回のデータ として算出し、また低周波数帯のパワースペクトラムの
積分値りについての変化率FをD −D’ p=− Δt D′:前回のデータ として算出し、両変化′率の積EXE’が正になったか
否かを間接ExFが0よシ大きいか否かで判定し0より
大きい場合、第3図を用いて説明したように火炎14は
吹き飛び状態になっていると判定しこの旨を示す制限信
号をエア流量制限装置12へ出力する。
That is, the combustion detection signal is frequency-analyzed to calculate the power spectrum, and the integrated value A of the power spectrum of all frequency bands, the integrated value B of the power spectrum of a specific frequency band, and the integrated value of the power spectrum of the low frequency band are calculated. Then, calculate the power spectrum ratio C=B/A. Then, while continuing to perform such calculations in sequence, the rate of change E for the power spectrum ratio C is calculated for each time difference Δ as C-C' E=□ t C': previous data, and the low frequency Calculate the rate of change F with respect to the integral value of the power spectrum of the band as the previous data, and indirectly determine whether the product EXE' of both rates of change is positive. If it is larger than 0, it is determined that the flame 14 is in a blown-off state as explained using FIG. 3, and a restriction signal indicating this is sent to the air flow rate restriction device 12. Output to.

また、火炎状態判定器15には報知手段としてのランプ
16が接続されており、火炎状態判定器15は制限信号
をエア流量制限装置12へ出力すると同時にランプ16
へ制御信号を出力し、ランプ16を点灯させて吹き飛び
状態になったことを知らせる。なお、報知手段としては
ランプ16に限定されるものではなく警報音を発する装
置であってもよい。
Further, a lamp 16 as a notification means is connected to the flame condition determiner 15, and the flame condition determiner 15 outputs a restriction signal to the air flow rate restricting device 12 and simultaneously outputs a restriction signal to the lamp 16.
A control signal is output to the lamp 16 to light the lamp 16 to notify that the blowout condition has occurred. Note that the notification means is not limited to the lamp 16, but may be a device that emits an alarm sound.

以上のように構成されたバーナ火炎吹き飛び検出装置の
動作について、以下、第2図のフローチャートを参照し
て説明する。
The operation of the burner flame blowout detection device configured as described above will be explained below with reference to the flowchart of FIG. 2.

まず、光センサ13が火炎14に基づく光パワーを取込
んでこれを光電変換して燃焼検出信号を火炎状態判定器
15へ出力する。
First, the optical sensor 13 takes in the optical power based on the flame 14, photoelectrically converts it, and outputs a combustion detection signal to the flame state determiner 15.

すると、火炎状態判定器15は燃焼検出信号を取込んで
(ステップ(以下、STという)31)、パワースペク
トラムを算出する(S’12)。
Then, the flame state determiner 15 takes in the combustion detection signal (step (hereinafter referred to as ST) 31) and calculates a power spectrum (S'12).

次に、全周波数帯のパワースペクトラムの積分値A、特
定周波数帯のパワースペクトラムの積分値Bおよびパワ
ースペクトラム比C== B/Aを順次算出す、る( 
8T33 、34 、35 )。
Next, the integral value A of the power spectrum of all frequency bands, the integral value B of the power spectrum of a specific frequency band, and the power spectrum ratio C== B/A are sequentially calculated (
8T33, 34, 35).

続いて、低周波帯のパワースペクトラムの積分値りを算
出する(ST36)。
Subsequently, the integrated value of the power spectrum in the low frequency band is calculated (ST36).

さらに、時間差Δを毎に変化率E、Fを算出し、同時に
両変化率の積E X Fが0より犬きくなったか否かを
判定しく S ’1’ 38 )、E X 1”が0よ
り大きくなるまで上述の動作を継続して行なう。そして
、5T38の段階でYES”と判定するとエア流通制限
装置12へ制限信号を出力して調節バルブ9を絞って空
気の供給を確実に停止させる一方、ランプ16へ制御信
号を出力してランプ16を点灯させて操作員に火炎14
が吹き飛び状態になったことを知らせる(ST39)。
Furthermore, the rates of change E and F are calculated for each time difference Δ, and at the same time it is determined whether the product of both rates of change, E x F, is greater than 0. The above-mentioned operation is continued until it becomes larger.Then, if the determination is ``YES'' at step 5T38, a restriction signal is output to the air flow restriction device 12, and the control valve 9 is throttled to ensure that the air supply is stopped. On the other hand, a control signal is output to the lamp 16 to turn on the lamp 16 and prompt the operator to ignite the flame 14.
It is notified that it has become blown away (ST39).

このようにして吹き飛び状態になった場合、直ちに空気
の供給を停止して確実に消火を行なえるので加熱効率を
高めることができる。
In this manner, when the fire is blown away, the air supply can be immediately stopped to ensure extinguishment, thereby increasing heating efficiency.

なお、本実施例ではランプ16を点灯するので操作員に
火炎吹き飛び状態を適切に知らせることができ燃焼装置
の運転に役立てることができる。
In this embodiment, since the lamp 16 is turned on, the operator can be appropriately notified of the flame blown state, which can be useful for the operation of the combustion apparatus.

(発明の効果) 以上説明したように、本発明は、低周波数帯パワースペ
クトラム積分値の変化率およびパワースペクトラム比の
変化率の両者を乗算し、この乗算値が正になったことで
吹き飛び状態と判定し、この判定結果に従って燃焼部へ
の空気供給量を調節するので、火炎吹き飛び状態になっ
たことを適格に検出でき燃焼を制御して加熱効率を高め
ることができるという効果を有する。
(Effects of the Invention) As explained above, the present invention multiplies both the rate of change of the low frequency band power spectrum integral value and the rate of change of the power spectrum ratio, and when this multiplication value becomes positive, a blowout state occurs. Since the amount of air supplied to the combustion section is adjusted according to the result of this determination, it is possible to properly detect the flame blowout state and control combustion to improve heating efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のバーナ火炎吹き飛び状態検
出装置を示すブロック図、第2図は同装置の動作例を示
すフローチャート、第3図はパワースペクトラム比およ
び低周波帯のパワースペクトラムの積分値の一例を示す
特性図、第4図は光電変換素子で得られる火炎の光パワ
ーの振動信号の周波数解析結果を示すパワースペクトラ
ムを示す模式図、第5図はパワースペクトラムの周波数
帯域を示す模式図である。 1・・・炉、  2・・・バーナ、12・・・調節バル
ブ、13・・・光センサ、 14・・・火炎、 15・
・・火炎状態判定器。 特許出願人  トヨタ自動車株式会社 第1図 才2図 オ 3 図 1非 力゛ ス02[0IQ1 才 4  図        1411”ス周澗枚[H
zl −十s  p4
Fig. 1 is a block diagram showing a burner flame blown state detection device according to an embodiment of the present invention, Fig. 2 is a flowchart showing an example of the operation of the device, and Fig. 3 shows the power spectrum ratio and the power spectrum in the low frequency band. A characteristic diagram showing an example of an integral value, Fig. 4 is a schematic diagram showing a power spectrum showing the frequency analysis result of the vibration signal of the optical power of the flame obtained by a photoelectric conversion element, and Fig. 5 shows the frequency band of the power spectrum. It is a schematic diagram. DESCRIPTION OF SYMBOLS 1... Furnace, 2... Burner, 12... Control valve, 13... Optical sensor, 14... Flame, 15.
...Flame status determiner. Patent Applicant: Toyota Motor Corporation
zl -10s p4

Claims (1)

【特許請求の範囲】[Claims] 燃焼炉内に配設された光センサと、この光センサの検出
信号の周波数解析データに基づいて低周波数帯パワース
ペクトラム積分値の変化率およびパワースペクトラム比
の変化率を算定し、両変化率の積が正の場合、この結果
を示す制御信号を出力する制御手段と、前記制御信号に
従って燃焼部への空気供給量を調節する手段とを備えた
ことを特徴とするバーナ火炎吹き飛び状態検出装置。
Based on the optical sensor installed in the combustion furnace and the frequency analysis data of the detection signal of this optical sensor, the rate of change of the low frequency band power spectrum integral value and the rate of change of the power spectrum ratio are calculated, and the rate of change of both rates of change is calculated. A burner flame blown state detection device comprising: control means for outputting a control signal indicating this result when the product is positive; and means for adjusting the amount of air supplied to the combustion section in accordance with the control signal.
JP62324486A 1987-12-22 1987-12-22 Burner flame blowout prevention device Expired - Lifetime JPH0814370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62324486A JPH0814370B2 (en) 1987-12-22 1987-12-22 Burner flame blowout prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324486A JPH0814370B2 (en) 1987-12-22 1987-12-22 Burner flame blowout prevention device

Publications (2)

Publication Number Publication Date
JPH01167522A true JPH01167522A (en) 1989-07-03
JPH0814370B2 JPH0814370B2 (en) 1996-02-14

Family

ID=18166342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324486A Expired - Lifetime JPH0814370B2 (en) 1987-12-22 1987-12-22 Burner flame blowout prevention device

Country Status (1)

Country Link
JP (1) JPH0814370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263851A (en) * 1991-05-10 1993-11-23 Toyota Jidosha Kabushiki Kaisha Combustion control system for burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263851A (en) * 1991-05-10 1993-11-23 Toyota Jidosha Kabushiki Kaisha Combustion control system for burner

Also Published As

Publication number Publication date
JPH0814370B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
EP1800058B1 (en) A method for monitoring and controlling the stability of a burner of a fired heater
TWI417453B (en) Automated tuning of gas turbine combustion systems
US9453648B2 (en) Furnace with modulating firing rate adaptation
US4457692A (en) Dual firing rate flame sensing system
US20060105279A1 (en) Feedback control for modulating gas burner
JPH01260213A (en) Fuel burner control method and control device
CA2642980C (en) Assured compliance mode of operating a combustion system
US5393222A (en) Thermoelectric sensor
JP2011099608A (en) Boiler combustion control device
JPH01167522A (en) Device for detecting blown-off state of burner flame
US20110047979A1 (en) Fuel-fired combustor
KR101038116B1 (en) apparatus and method of furnace pressure control in regenerative reheating furnace
US5775895A (en) Combustion-state detecting circuit of combustion apparatus
JPH0476232A (en) Flame failure predicting determiner for gas turbine engine
KR100689150B1 (en) Multiplex control system of boiler air and fuel ratio
JP3707186B2 (en) Vibration combustion detection method and combustion apparatus
JP2958550B2 (en) Combustion equipment
JP4248994B2 (en) Gas stove
GB2298060A (en) Burner control
JP2000179836A (en) Combustion controller
KR100345610B1 (en) A combustion controlling method for a boiler
JP2019158310A (en) Combustion device
JPS63105321A (en) Combustion control
JP3403886B2 (en) Combustion equipment
JPS63105324A (en) Combustion control