JPH01167209A - Production of fine particle of hydroxyapatite - Google Patents

Production of fine particle of hydroxyapatite

Info

Publication number
JPH01167209A
JPH01167209A JP32651687A JP32651687A JPH01167209A JP H01167209 A JPH01167209 A JP H01167209A JP 32651687 A JP32651687 A JP 32651687A JP 32651687 A JP32651687 A JP 32651687A JP H01167209 A JPH01167209 A JP H01167209A
Authority
JP
Japan
Prior art keywords
compound
hap
organic solvent
hydrophilic organic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32651687A
Other languages
Japanese (ja)
Other versions
JP2572793B2 (en
Inventor
Takao Kawai
隆夫 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62326516A priority Critical patent/JP2572793B2/en
Publication of JPH01167209A publication Critical patent/JPH01167209A/en
Application granted granted Critical
Publication of JP2572793B2 publication Critical patent/JP2572793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • C01B25/325Preparation by double decomposition

Abstract

PURPOSE:To produce the title substance having single phase, fine particle size and high crystallinity, by dissolving a non-phosphate-type reactive Ca compound and a non-Ca-type reactive oxyacid compound of P at a specific ratio and a specific temperature and subjecting the obtained solution to hydrative substitution reaction under a specific condition. CONSTITUTION:(A) A non-phosphate-type reactive Ca compound and (B) a non-Ca-type reactive oxyacid compound of P are dissolved in water or a hydrophilic organic solvent at <=50 deg.C at a specific Ca/P ratio. The obtained solution is dripped into water or a hydrophilic organic solvent maintained at >=70 deg.C and a pH of >=4 (preferably 8-11) to effect the hydrative substitution reaction and obtain a hydroxyapatite as a precipitate. The compound A is e.g., CaCl2, Ca(NO3)2 or Ca(HCOO)2 and the compound B is e.g., H3PO4, KH2PO4 or phosphoric acid trimethoxide.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、単相で微粒かつ結晶性の良好な高純度ヒドロ
キシアパタイトの製造法、さらにCa/P(原子比の意
味、以下同じ)を再現性良く制御することのできるヒド
ロキシアパタイトの製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for producing high-purity hydroxyapatite that is single-phase, fine-grained, and has good crystallinity, and further provides a method for producing high-purity hydroxyapatite that is single-phase, fine-grained, and has good crystallinity. The present invention relates to a method for producing hydroxyapatite that can be controlled with good reproducibility.

[従来の技術] CaOP2 O6系アパタイトは生体材料として開発さ
れており、中でも特にヒドロキシアパタイト(以下HA
Pと記す)は人体の骨を形成する物質と同じ組成であり
、生体内に埋入された場合、生体との親和性が良く、自
家骨との接合性も良いので、人工骨や人工歯などの材料
として用いられている。また蛋白質との親和性やHAP
自体の有するイオン交換能を利用してクロマトグラフィ
ー用の充填材やイオン交換材などにも用いられている。
[Prior art] CaOP2 O6-based apatite has been developed as a biomaterial, especially hydroxyapatite (hereinafter referred to as HA).
P) has the same composition as the material that forms bones in the human body, and when implanted in a living body, it has good compatibility with the living body and has good bonding properties with autologous bone, so it can be used as an artificial bone or artificial tooth. It is used as a material such as In addition, affinity with proteins and HAP
Utilizing its own ion exchange ability, it is also used in chromatography packing materials and ion exchange materials.

HAPの製造方法としては、 ■湿式法:Ca塩水溶液と燐酸塩水溶液を反応させてC
aHPO4,40〜1.67の微結晶状の燐酸カルシウ
ムを得、これを更に特定のカルシウム化合物と反応させ
て目的のMAPに変換する方法、■水熱合成法:特公昭
59−51485号(特開昭53−111000号)公
報に開示されている様にCaHPO4・2H20(又は
CaHPO4)にCa(OH)2を加えて、あるいはO
CP [Caa H2(PO4)8 ・5H20]にC
a化合物を加えオートクレーブ中で200〜400℃、
15〜200気圧の熱水条件下で反応させて緻密結晶構
造の結晶質HAPを製造する方法、 ■乾式合成法:特公昭59−51485号(特開昭53
−111000号)公報に開示されているCa’6 H
2(PO4)a ・5H20にCa化合物を加え100
0℃〜1300℃で固相反応させて緻密結晶構造の結晶
質HAPを製造する方法、等がある。
As for the production method of HAP, ■Wet method: Ca salt aqueous solution and phosphate aqueous solution are reacted to produce C
A method of obtaining microcrystalline calcium phosphate with aHPO4.40 to 1.67 and further reacting it with a specific calcium compound to convert it into the desired MAP. ■Hydrothermal synthesis method: Japanese Patent Publication No. 59-51485 (Special Publication No. 59-51485) As disclosed in Publication No. 111000/1983, Ca(OH)2 is added to CaHPO4.2H20 (or CaHPO4), or O
CP [Caa H2(PO4)8 ・5H20]
Add compound a and heat in an autoclave at 200-400°C.
A method for producing crystalline HAP with a dense crystal structure by reacting under hydrothermal conditions of 15 to 200 atmospheres, ■Dry synthesis method: Japanese Patent Publication No. 59-51485 (Japanese Patent Publication No. 59-51485)
-111000) Ca'6 H disclosed in the publication
2(PO4)a ・Add Ca compound to 5H20 to 100
There is a method of manufacturing crystalline HAP with a dense crystal structure by performing a solid phase reaction at 0° C. to 1300° C., and the like.

[発明が解決しようとする問題点] 前記■の方法は反応速度が大きいため生成物はコロイド
状となり、取扱いや操作の面で難があり、Ca / P
の再現性が悪く、HAP以外の生成相が混入したり、未
反応相が残ったりする。■の方法では高温高圧を必要と
し、設備費が高くなる上に生産効率も低い。またHAP
粒子の大きいものを得るには良い方法と言えるが微粒子
状のものは得難い。■の方法では反応を完結させようと
すれば高温かつ長時間を要する。また、■と■の方法で
はHAP生成の前段階として純粋なCaHPO4・2H
2o(又はCa HP O4)やCaH2(PO4)a
・5H20を得ることが不可欠である。
[Problems to be Solved by the Invention] In the method (2) above, the reaction rate is high, so the product becomes colloidal, which is difficult in terms of handling and operation.
The reproducibility is poor, and produced phases other than HAP may be mixed in, or unreacted phases may remain. Method (2) requires high temperature and high pressure, which increases equipment costs and has low production efficiency. Also HAP
This is a good method for obtaining large particles, but it is difficult to obtain fine particles. Method (2) requires high temperatures and a long time to complete the reaction. In addition, in methods ■ and ■, pure CaHPO4.2H is
2o (or Ca HP O4) or CaH2(PO4)a
-It is essential to obtain 5H20.

また、粉末を成形して焼成固化する場合において、成形
体の密度を高くするに当たっては、粉末の粒子径ができ
るだけ細かくζしかも粒度分布の狭いことが望まれてい
るにもかかわらず、前記の方法で得られるHAP粒子は
サイズが数μmから10μm以上の粗粒のものであり、
−次粒子のサイズがこのように大きいと充填率が低くな
り、密度を高めることが難しい。そこで粒子サイズを細
かくしようとすると結晶性が悪くなり、水分を多く含む
ため緻密成形体の焼成時における収縮率が大きくなり、
かつ不定になるという問題を有していた。
Furthermore, when compacting powder and solidifying it by firing, in order to increase the density of the compact, it is desirable that the particle size of the powder be as fine as possible and that the particle size distribution be narrow. The HAP particles obtained are coarse particles with a size of several μm to 10 μm or more,
- If the size of the secondary particles is this large, the filling rate will be low and it will be difficult to increase the density. Therefore, if we try to make the particle size finer, the crystallinity will deteriorate and the shrinkage rate during firing of the dense compact will increase due to the high water content.
And there was a problem that it became undefined.

そこで本発明においては過酷な条件を要することなく、
また高価な装置も必要とせずにHAP単相で微粒且つ結
晶性の良好なHAPを製造する方法、更にはCa / 
Pを再現性良く制御することのできるHAPの製造方法
について検討した。
Therefore, in the present invention, without requiring harsh conditions,
In addition, there is a method for producing fine-grained HAP with good crystallinity using a single HAP phase without requiring expensive equipment, and furthermore, a method for producing HAP with fine grains and good crystallinity without requiring expensive equipment.
We investigated a method for producing HAP that can control P with good reproducibility.

[問題点を解決するための手段] 上記問題点を解決することのできた本発明とは所定のC
a / Pとなるように非燐酸型の反応性Ca化合物お
よび非Ca型の燐の反応性酸素酸化合物を50℃以下の
水および/または親水性有機溶媒に溶解し、この溶液を
水および/または親水性有機溶媒に温度70℃以上、p
H4以上(好ましくは8〜11)に保ちつつ滴下し、生
成する沈殿物を回収することを構成要旨とするものであ
る。
[Means for solving the problems] The present invention that can solve the above problems is based on a predetermined C.
A non-phosphoric acid type reactive Ca compound and a non-Ca type phosphorus reactive oxygen acid compound are dissolved in water and/or a hydrophilic organic solvent at 50°C or less so that a / P, and this solution is dissolved in water and/or a hydrophilic organic solvent. Or in a hydrophilic organic solvent at a temperature of 70°C or higher, p
The gist of the system is to drop the solution while maintaining the temperature at H4 or higher (preferably 8 to 11) and collect the generated precipitate.

[作用] 本発明で用いる非燐酸型の反応性Ca化合物および非C
a型の反応性酸素酸化合物は水あるいは親水性有機溶媒
に可溶なものであり、例えば非燐酸型の反応性Ca化合
物としてはCaCl2゜Ca  (NO3)2 、Ca
  (HCOO)2 。
[Action] Non-phosphate reactive Ca compound and non-C
The a-type reactive oxygen acid compound is soluble in water or a hydrophilic organic solvent. For example, non-phosphoric acid type reactive Ca compounds include CaCl2°Ca(NO3)2, Ca
(HCOO)2.

Ca (CH3Coo)2 、Ca (OH)2 。Ca (CH3Coo)2, Ca (OH)2.

CaCO3等やカルシウムジメトキシド、カルシウムジ
ェトキシド、カルシウムジブロボキシド等のCa−アル
コキシド類およびカルボン酸塩類等が非限定的に例示さ
れる。また非Ca型の燐の反応性酸素酸化合物としては
H2PO4あるいはKH2PO4、NH4H2PO4。
Non-limiting examples include CaCO3, Ca-alkoxides such as calcium dimethoxide, calcium jetoxide, and calcium dibroboxide, and carboxylic acid salts. In addition, non-Ca type phosphorus reactive oxygen acid compounds include H2PO4, KH2PO4, and NH4H2PO4.

(NH4)2 HPO4、(NH4)3P04等の如き
燐酸塩の他、燐酸トリメトキシド、燐酸トリエトキシド
、燐酸トリプロポキシド、亜燐酸トリメトキシド、亜燐
酸トリエトキシド、亜燐酸トリプロポキシド等の各種燐
の酸素酸のアルコキシド類や燐酸トリメチル、メタ燐酸
エチル、燐酸モノエチル、燐酸ジエチル、燐酸トリエチ
ル、ピロリン酸エチル等の各種燐の酸素酸のエステル類
が非限定的に例示される。
In addition to phosphates such as (NH4)2HPO4 and (NH4)3P04, various phosphorus oxygen acids such as phosphoric acid trimethoxide, phosphoric triethoxide, phosphoric acid tripropoxide, phosphorous trimethoxide, phosphorous triethoxide, and phosphorous tripropoxide are used. Non-limiting examples include alkoxides and esters of various phosphorus oxygen acids such as trimethyl phosphate, ethyl metaphosphate, monoethyl phosphate, diethyl phosphate, triethyl phosphate, and ethyl pyrophosphate.

前記非燐酸型の反応性Ca化合物および非Ca型の燐の
反応性酸素酸化合物を所定のCa / Pとなるような
配合で50℃以下の水および/または親水性有機溶媒に
溶解させ、この溶解液を水および/または親水性溶媒に
温度70℃以上、pH4以上(好ましくは8〜11)に
保ちつつ滴下し、水和置換反応させてHAP沈殿物を得
る。この際溶解液の温度を50℃以下とするのは溶解液
中での反応を抑制するためである。
The non-phosphoric acid type reactive Ca compound and the non-Ca type phosphorus reactive oxygen acid compound are dissolved in water and/or a hydrophilic organic solvent at a temperature of 50°C or less in a proportion that gives a predetermined Ca/P, and this The solution is added dropwise to water and/or a hydrophilic solvent while maintaining the temperature at 70° C. or higher and the pH at 4 or higher (preferably 8 to 11) to cause a hydration displacement reaction to obtain a HAP precipitate. At this time, the temperature of the solution is set to 50° C. or less in order to suppress the reaction in the solution.

また被滴下液の温度を70℃以上に保つとともにKOH
,NaOH,NH4OH等のアルカリを滴下してpHを
4以上(好ましくは8〜11)に保つのは、被滴下液の
温度が70℃未満では生成HAPが非晶質相との混合晶
となってしまい、また結晶性も悪くなってしまうからで
あり、被滴下液の温度は70℃以上とする。また被滴下
液がpH4未満では沈殿物が生成せず、生成しても生成
したHAP微粒子が再溶解し、生成物の粒子形状や化学
組成が不安定になるのでpH4以上(好ましくは8〜1
1)に保つことが必要である。
In addition, while keeping the temperature of the dripping liquid above 70℃,
, NaOH, NH4OH, etc. to keep the pH at 4 or higher (preferably 8 to 11) is because if the temperature of the dropping liquid is below 70°C, the HAP formed will become a mixed crystal with an amorphous phase. This is because the temperature of the liquid to be dropped should be 70° C. or higher. In addition, if the dropping solution has a pH of less than 4, no precipitate will be formed, and even if a precipitate is formed, the generated HAP fine particles will be redissolved, making the particle shape and chemical composition of the product unstable.
1).

また前記Ca化合物および前記P化合物を溶解する液あ
るいは溶解液を滴下する被滴下液の水以外の親水性有機
溶媒としてはメタノール、エタノール、アセトン、エー
テル等が例示され、水和反応置換に際しては溶解液およ
び被滴下液として同じものあるいは異なるものを使用し
ても良い。
In addition, examples of hydrophilic organic solvents other than water for the solution dissolving the Ca compound and the P compound or the dropping solution to which the solution is dropped include methanol, ethanol, acetone, ether, etc. The liquid and the dripping liquid may be the same or different.

水和反応置換して得られるHAPのCa / Pは配合
原料のCa / Pに対して第1図に示すような結果が
得られ、配合原料のCa / P≧1.3以上のもので
は単相HAPが得られる。この点は原料の如何を問わず
本発明方法によれば同様であり、再現性の良いものであ
った。またHAP粒子は分散性に優れ、サイズおよび形
状のそろった針状微粒子であった。
The results shown in Figure 1 are obtained for the Ca/P of HAP obtained by hydration reaction substitution with respect to the Ca/P of the blended raw materials, and when the blended raw materials Ca/P is 1.3 or more, it is simple. Phase HAP is obtained. This point was the same according to the method of the present invention regardless of the raw material, and the reproducibility was good. Furthermore, the HAP particles had excellent dispersibility and were acicular fine particles of uniform size and shape.

[実施例] 実施例1 第1表に示す配合割合でCaG12とKH2PO4を2
5℃でイオン交換水1℃に溶解し、混合溶液とした。
[Example] Example 1 CaG12 and KH2PO4 were mixed at the blending ratio shown in Table 1.
It was dissolved in ion-exchanged water at 1°C at 5°C to form a mixed solution.

′fS1表 続いて70℃のイオン交換水I℃にこの温度を保ちつつ
、pHコントローラに接続したマイクロチューブポンプ
でKOH液をpH4以上に保つように加えるとともに前
記混合液を滴下したところ乳白色の懸濁液を得た。該懸
濁液を2時間保持した後、メンブランフィルタ−にて濾
過し、AgN0.液で濾液の白濁が認められなくなるま
で純水で洗浄した。得られた生成物を100℃にて乾燥
後粉末X線回折に付した結果によると、原料のCa /
 Pが1.0のものを除いてすべてHAPの単相であっ
た。また透過電子顕微鏡による粒子形状の観察ではサイ
ズのそろった針状粒子が均一に分散していた。得られた
HAPのC、a / Pと原料のCa / Pの関係を
第1図に示す。
'fS1 Table Next, while keeping this temperature at 70°C ion-exchanged water I°C, KOH solution was added using a microtube pump connected to a pH controller to keep the pH above 4, and the above mixture was dropped, resulting in a milky white suspension. A cloudy liquid was obtained. After holding the suspension for 2 hours, it was filtered with a membrane filter and AgN0. The filtrate was washed with pure water until no cloudiness was observed in the filtrate. According to the results of drying the obtained product at 100°C and subjecting it to powder X-ray diffraction, the raw material Ca/
All of them had a single phase of HAP except for the one with P of 1.0. Furthermore, observation of the particle shape using a transmission electron microscope revealed that acicular particles of uniform size were uniformly dispersed. Figure 1 shows the relationship between C, a/P of the obtained HAP and Ca/P of the raw material.

実施例2 第2表に示すCa / Pの配合割合でCaG12とH
3P 04  (85%濃度)を25℃のイオン交換水
IAに溶解して混合溶液を得、実施例1と同様にして第
2表に示すCa / PのHAPを得た。
Example 2 CaG12 and H with the Ca/P blending ratio shown in Table 2
3P 04 (85% concentration) was dissolved in ion-exchanged water IA at 25°C to obtain a mixed solution, and the Ca/P HAP shown in Table 2 was obtained in the same manner as in Example 1.

得られたMAPは単相で分散性に優れ、サイズのそろっ
た針状粒子であった。
The obtained MAP was a single phase, had excellent dispersibility, and was acicular particles of uniform size.

第   2   表 実施例3 Ca/P=1.67となるような配合割合でCaエトキ
シドと燐酸トリメチルを25℃のエチルアルコールに溶
解して混合溶液を得た。次いで実施例1と同様にしてC
a/P=1.67のHA、Pを得た。
Table 2 Example 3 Ca ethoxide and trimethyl phosphate were dissolved in ethyl alcohol at 25° C. at a mixing ratio such that Ca/P=1.67 to obtain a mixed solution. Then, in the same manner as in Example 1, C
HA and P of a/P=1.67 were obtained.

得られたHAPは単相で分散性に優れ、サイズのそろフ
た微粒針状粒子であった。
The obtained HAP was a single phase, had excellent dispersibility, and was fine needle-like particles with a uniform size.

比較例1 1.5にのCa (OH) 2スラリー(濃度ia、5
g/fl)に15℃のH3PO4液(H3PO4濃度8
5%、濃度u3g/u)を添加して(この時、O Ca / P = 1.666でCa / P <−と
なっている)第3表に示す条件で反応させ、得られた生
成物の化学組成ならびにX線回折による生成相を第3表
に示す。
Comparative Example 1 Ca (OH) 2 slurry (concentration ia, 5
g/fl) at 15℃ H3PO4 solution (H3PO4 concentration 8
5%, concentration u3g/u) (at this time, O Ca / P = 1.666 and Ca / P <-) was reacted under the conditions shown in Table 3, and the obtained product was Table 3 shows the chemical composition of and the phases formed by X-ray diffraction.

第3表から明らかなように生成物は各種燐酸カルシウム
が含有されており、HAP単相のものは得られないこと
がわかる。またC a / Pも反応条件によって異な
りている。
As is clear from Table 3, the product contains various calcium phosphates, and it can be seen that a single-phase HAP product cannot be obtained. Moreover, C a /P also differs depending on the reaction conditions.

比較例2 Ca (OH)210g/ j’のスラリーにH3PO
410g/λをCa/P=1.67となるように添加混
合し、70℃でHAPを反応生成させた。得られたHA
PのCa / Pは第2図に示すように反応ロットごと
に異なり、Ca / Pの制御が不可能であった。また
粒子形状もふぞろいで結晶性も低ヰかった。
Comparative Example 2 H3PO to slurry of Ca (OH) 210g/j'
410 g/λ was added and mixed so that Ca/P=1.67, and HAP was reacted and produced at 70°C. Obtained HA
As shown in FIG. 2, the Ca/P of P varied from reaction lot to reaction lot, making it impossible to control Ca/P. Furthermore, the particle shape was irregular and the crystallinity was low.

[発明の効果] 本発明は以上のように構成されているので、単相で微粒
かつ結晶性の良好な高純度のヒドロキシアパタイトを製
造することができる。またCa/Pを再現性良く制御す
ることができる。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to produce high-purity hydroxyapatite that is single-phase, fine-grained, and has good crystallinity. Moreover, Ca/P can be controlled with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は配合原料Ca / Pに対する生成HAPのC
a / Pを示す図、第2図は比較例における各反応ロ
ットのCa / Pを示す図である。
Figure 1 shows the C of produced HAP with respect to the raw materials Ca/P.
FIG. 2 is a diagram showing Ca/P of each reaction lot in a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 所定のCa/Pとなるように非燐酸型の反応性Ca化合
物および非Ca型の燐の反応性酸素酸化合物を50℃以
下の水および/または親水性有機溶媒に溶解し、この溶
液を水および/または親水性有機溶媒に温度70℃以上
、pH4以上に保ちつつ滴下し、生成する沈殿物を回収
することを特徴とするヒドロキシアパタイト微粒子の製
造方法。
A non-phosphoric acid type reactive Ca compound and a non-Ca type phosphorus reactive oxygen acid compound are dissolved in water and/or a hydrophilic organic solvent at a temperature of 50°C or less so that a predetermined Ca/P is obtained, and this solution is dissolved in water and/or a hydrophilic organic solvent. and/or a method for producing hydroxyapatite fine particles, which comprises adding dropwise to a hydrophilic organic solvent while maintaining the temperature at 70°C or higher and the pH at 4 or higher, and collecting the generated precipitate.
JP62326516A 1987-12-23 1987-12-23 Method for producing hydroxyapatite fine particles Expired - Lifetime JP2572793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62326516A JP2572793B2 (en) 1987-12-23 1987-12-23 Method for producing hydroxyapatite fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62326516A JP2572793B2 (en) 1987-12-23 1987-12-23 Method for producing hydroxyapatite fine particles

Publications (2)

Publication Number Publication Date
JPH01167209A true JPH01167209A (en) 1989-06-30
JP2572793B2 JP2572793B2 (en) 1997-01-16

Family

ID=18188705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62326516A Expired - Lifetime JP2572793B2 (en) 1987-12-23 1987-12-23 Method for producing hydroxyapatite fine particles

Country Status (1)

Country Link
JP (1) JP2572793B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1005019B (en) * 2004-12-23 2005-10-11 Βαιμακης@Τιβεριος Low temerature production of high crystallinity hydroxyapatite mono-crystals
JP2008050260A (en) * 1997-01-16 2008-03-06 Orthovita Inc Novel minerals and methods for their production and use
US9220595B2 (en) 2004-06-23 2015-12-29 Orthovita, Inc. Shapeable bone graft substitute and instruments for delivery thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050260A (en) * 1997-01-16 2008-03-06 Orthovita Inc Novel minerals and methods for their production and use
US9220595B2 (en) 2004-06-23 2015-12-29 Orthovita, Inc. Shapeable bone graft substitute and instruments for delivery thereof
US9789225B2 (en) 2004-06-23 2017-10-17 Orthovita, Inc. Shapeable bone graft substitute and instruments for delivery thereof
US10441683B2 (en) 2004-06-23 2019-10-15 Orthovita, Inc. Method for restoring bone using shapeable bone graft substitute and instruments for delivery thereof
GR1005019B (en) * 2004-12-23 2005-10-11 Βαιμακης@Τιβεριος Low temerature production of high crystallinity hydroxyapatite mono-crystals

Also Published As

Publication number Publication date
JP2572793B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US5427754A (en) Method for production of platelike hydroxyapatite
EP0205622A1 (en) Calcium-phosphorus type apatite having novel properties and process for its production
Graham et al. The low temperature formation of octacalcium phosphate
PT103528A (en) METHOD OF PRODUCTION OF NANOPARTICLES OF CALCIUM PHOSPHATES WITH HIGH PURITY AND RESPECTIVE USE
CA2432583A1 (en) Method of preparing alpha- and beta-tricalcium phosphate powders
JPH0369844B2 (en)
KR102189825B1 (en) Manufacturing method of octacalcium phosphate and octacalcium phosphate manufactured by thereby
JPH01167209A (en) Production of fine particle of hydroxyapatite
EP0113153B1 (en) A process for the manufacture of highly pure trimagnesium phosphate octahydrate
CN110078038A (en) A kind of hydroxyapatite and the preparation method and application thereof
JP2896498B2 (en) Method for producing plate-shaped hydroxyapatite with a-plane grown
JPH0940408A (en) Production of hydroxyapatite platelike large-sized crystal
JPH02149408A (en) Preparation of fine particle aggregate of hydroxyapatite
JP3247896B2 (en) Method for producing hydroxyapatite
JPS6344683B2 (en)
RU2629079C1 (en) Method for producing calcium pyrophosphate powder
JPH06122510A (en) Method for producing hexacalcium phosphate
JPH0426509A (en) Hydroxyapatite fine crystal and its production
KR0153988B1 (en) Process for the preparation of hydroxylapatite by using sol-gel reaction
JPH0292860A (en) Production of calcium phosphate compact
JPS63288905A (en) Production of fine hydroxyapatite particle
JPH05170413A (en) Production of hydroxyapatite
UNGUREANU et al. SYNTHESIS OF CERAMIC BIOMATERIALS BASED ON CALCIUM AND PHOSPHORUS FROM AQUEOUS SOLUTIONS.
KR20220161210A (en) Method for producing a whitlockite crystal, without formation of a hydroxyapatite crystal
KR820000224B1 (en) Process for preparing crystal whitlockite