JPH01165646A - Vinyl chloride resin composition - Google Patents

Vinyl chloride resin composition

Info

Publication number
JPH01165646A
JPH01165646A JP32286287A JP32286287A JPH01165646A JP H01165646 A JPH01165646 A JP H01165646A JP 32286287 A JP32286287 A JP 32286287A JP 32286287 A JP32286287 A JP 32286287A JP H01165646 A JPH01165646 A JP H01165646A
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
powder
resin
plasticizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32286287A
Other languages
Japanese (ja)
Inventor
Kentaro Iwanaga
健太郎 岩永
Katsuo Takemoto
武本 勝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP32286287A priority Critical patent/JPH01165646A/en
Publication of JPH01165646A publication Critical patent/JPH01165646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the title composition for powder molding excellent in powder flow and heat meltability, by mixing a specified vinyl chloride resin with a plasticizer. CONSTITUTION:Vinyl chloride (a) is polymerized in bulk with optionally a monomer (b) copolymerizable with component (a) (e.g., ethylene) to obtain a vinyl chloride resin (A) of a degree of polymerization of 400-3000, desirably 600-1200, a particle diameter range of 50-300, preferably 70-250mum and a porosity of 0.17-0.25, preferably 0.18-0.22cc/g. 100 pts.wt. component A is mixed with 50-100 pts.wt. plasticizer (B) (e.g., diisodecyl phthalate) and optionally a stabilizer (aid), a processing aid, a filler, a dusting powder, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、粉末成形用塩化ビニル樹脂組成物に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a vinyl chloride resin composition for powder molding.

更に詳しくは、特に、粉体流動性及び熱溶融性を要求さ
れる加工分野に有効な粉末成形用塩化ビニル樹脂組成物
に関するものである。
More specifically, the present invention relates to a vinyl chloride resin composition for powder molding that is particularly effective in processing fields that require powder fluidity and heat meltability.

[従来の技術及び問題点] 塩化ビニル樹脂の成形には従来から種々の方法が実施さ
れている。
[Prior Art and Problems] Various methods have been conventionally used for molding vinyl chloride resin.

これらの内、粉末成形法として例えば、回転成形法、パ
ウダースラッシュ成形法、流動浸漬塗装法。
Among these, examples of powder molding methods include rotational molding, powder slush molding, and fluidized dip coating.

静電塗装法、粉末コーティング法などが挙げられる。Examples include electrostatic coating method and powder coating method.

これら粉末成形法に於いては、原料樹脂粉末に求められ
る性質として、粉体流動性、熱溶融性の良好なことが要
求されるが、これは、これを用いて得た製品の均肉化の
ため、アンダーカットのような細部への原料粉末の浸透
を容易にするためであり、また溶融性が良いとより低い
温度で加工出来、従って熱劣化を防ぐことができるため
である。
In these powder molding methods, the properties required for the raw resin powder are good powder fluidity and heat meltability, which is necessary for the uniform thickness of the products obtained using this. This is to make it easier for the raw material powder to penetrate into details such as undercuts, and if the meltability is good, it can be processed at a lower temperature, thus preventing thermal deterioration.

従来より、塩化ビニル樹脂組成物の粉体流動性及び熱溶
融性の改良検討は種々なされている。
Conventionally, various studies have been made to improve the powder fluidity and heat meltability of vinyl chloride resin compositions.

例えば、樹脂とその他の添加剤の混合後に、粉体流動性
を改良するために配合する打粉剤の検討や、熱溶融性を
改良するための原料樹脂の種類例えば共重合体を用いる
等の検討であるが、未だ満足のできる結果は得られてい
ない。
For example, consider the dusting agent to be added to improve the powder fluidity after mixing the resin and other additives, and consider the type of raw material resin, such as using a copolymer, to improve the heat meltability. However, satisfactory results have not yet been obtained.

さらに、従来の粉末成形用塩化ビニル樹脂組成物では、
粉体流動性及び溶融性が十分でなく、そのために、 (1)金型への均一付着がなされない、(2)アンダー
カット部などの複雑形状部分へ粉末が浸透しない。
Furthermore, in conventional powder molding vinyl chloride resin compositions,
Powder fluidity and meltability are insufficient, and as a result, (1) the powder does not adhere uniformly to the mold, and (2) the powder does not penetrate into complex-shaped parts such as undercuts.

(3)溶融が十分でなくレベリング性が悪い。(3) Melting is insufficient and leveling properties are poor.

(4)溶融が不均一で均肉化しない。(4) Melting is uneven and the thickness is not uniform.

(5)脱泡が完全でなく、製品中に数多くの気泡を含む
ため機械的強度が劣る、 などの問題があり、さらに樹脂の溶融性が十分でないと
、成形に高温度(220〜240℃)下で長時間必要と
なるので、塩化ビニル樹脂そのもの及び添加剤の一種と
して用いられる、例えば有機顔料等の熱安定性が問題と
なる。
(5) There are problems such as incomplete defoaming and poor mechanical strength due to the large number of bubbles in the product.Furthermore, if the meltability of the resin is not sufficient, the molding process will take place at high temperatures (220-240°C). ), the thermal stability of the vinyl chloride resin itself and of the organic pigments used as a type of additive becomes a problem.

樹脂の溶融性を改善する目的で、重合度の低い塩化ビニ
ル樹脂や低軟化温度の共重合体を用いることが検討され
ている。
In order to improve the meltability of resins, the use of vinyl chloride resins with a low degree of polymerization and copolymers with a low softening temperature is being considered.

しかしこれらの方法は、樹脂の溶融性に関する問題は改
善されるが、熱安定性及び機械的強度に問題が残り実用
面でなお問題が残る。
However, although these methods improve the problem with the meltability of the resin, problems with thermal stability and mechanical strength remain, and problems still remain in practical use.

また樹脂に対して多量の可塑剤を用いる方法があるが、
この方法は可塑剤と樹脂との混合中にブロッキングを起
こし易く、可塑剤の樹脂中への浸透が不完全となる場合
があり、得られた粉末樹脂組成物の粉体流動性は極めて
劣る。
There is also a method of using a large amount of plasticizer for the resin,
This method tends to cause blocking during mixing of the plasticizer and resin, and the plasticizer may not penetrate completely into the resin, resulting in extremely poor powder fluidity of the resulting powder resin composition.

更に、樹脂の溶融性及び吸油性を良くするために懸濁重
合法で得られる表皮(スキン)層(例えばポリビニルア
ルコール(PVA)の層)のない塩化ビニル樹脂を用い
ると、得られる樹脂組成物の溶融性は改善されるが、可
塑剤等の添加剤との混合中に粒子が崩壊しやすくなり、
樹脂組成物中に不定形の小粒子が多数生成するため粉体
流動性が劣り、また成形時に金型未付着の樹脂組成物(
回収し使用する)中に、融着した粒子が混在することと
なり、このような組成物を繰り返し用いて加工すると製
品表面にピンホール等を生じ易くなる。
Furthermore, if a vinyl chloride resin without a skin layer (for example, a layer of polyvinyl alcohol (PVA)) obtained by a suspension polymerization method is used to improve the meltability and oil absorption of the resin, the resulting resin composition Although the meltability of the particles is improved, the particles tend to disintegrate during mixing with additives such as plasticizers,
Powder fluidity is poor due to the formation of many irregularly shaped small particles in the resin composition, and the resin composition that does not adhere to the mold during molding (
(recovered and used), fused particles will be mixed in, and if such a composition is repeatedly used and processed, pinholes etc. are likely to occur on the product surface.

このように比較的−船釣な懸濁重合法により得られる塩
化ビニル樹脂の粉末成形加工への適用には未だ数多くの
問題が残されている。
Many problems still remain in the application of vinyl chloride resin obtained by such a relatively simple suspension polymerization method to powder molding processing.

[問題点を解決するための手段] 本発明者らは、上述の問題に鑑み、塩化ビニル樹脂の重
合法による生成物の物性差について各種検討した結果、
塊状重合法により得た塩化ビニル樹脂は、懸濁重合法に
より得られるものよりも、更に溶融性に優れ、粉末成形
用の塩化ビニル樹脂組成物として好適なものとなること
を見出した。
[Means for Solving the Problems] In view of the above-mentioned problems, the present inventors have conducted various studies on the differences in physical properties of products produced by the polymerization method of vinyl chloride resin, and have found that:
It has been found that vinyl chloride resin obtained by bulk polymerization has even better meltability than that obtained by suspension polymerization, and is suitable as a vinyl chloride resin composition for powder molding.

又同じく、熱安定性及び機械的強度を低下させることな
く、粉体流動性の優れた塩化ビニル樹脂組成物を得るた
めに、基材となる塩化ビニル樹脂について鋭意検討した
結果、成る条件を満足する樹脂を用いることによって目
的が達成されることを見い出し本発明を完成するに至っ
た。
Similarly, in order to obtain a vinyl chloride resin composition with excellent powder fluidity without reducing thermal stability and mechanical strength, as a result of intensive studies on the vinyl chloride resin that serves as the base material, we have found that the following conditions are satisfied. The present inventors have discovered that the object can be achieved by using a resin that has the following properties, and have completed the present invention.

即ち、本発明は、塊状重合法により得た、粒径範囲が実
質的に50〜300μnであり、かつポロシティ−が0
.17〜0.25n+L/gである塩化ビニル樹脂と可
塑剤とからなる粉末成形用塩化ビニル樹脂組成物に関す
る。
That is, the present invention provides particles having a particle size range of substantially 50 to 300 μn and a porosity of 0, obtained by a bulk polymerization method.
.. The present invention relates to a vinyl chloride resin composition for powder molding, which comprises a vinyl chloride resin and a plasticizer, and a plasticizer.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で用いる塩化ビニル樹脂とは、塊状重合法によっ
て得られた塩化ビニル樹脂であり、さらに詳しくは塩化
ビニルの単独重合体及び塩化ビニル単量体と共重合可能
な単量体との共重合塩化ビニル樹脂を指す。
The vinyl chloride resin used in the present invention is a vinyl chloride resin obtained by a bulk polymerization method, and more specifically, a vinyl chloride homopolymer and a copolymer with a monomer copolymerizable with a vinyl chloride monomer. Refers to vinyl chloride resin.

本発明で用いる重合体を得る塊状重合法は特に制限され
るものでなく、通常の塩化ビニル塊状重合法、例えば、
第一段重合で種重合体を得、これを第二段重合により生
長させて重合体を得る方法等である。
The bulk polymerization method for obtaining the polymer used in the present invention is not particularly limited, and may be a general vinyl chloride bulk polymerization method, for example,
This method involves obtaining a seed polymer in the first stage polymerization and growing it in the second stage polymerization to obtain a polymer.

塩化ビニル単量体と共重合可能な単量体とは、例えば、
エチレン、プロピレン、ブテン、ペンテン−1,ブタジ
ェン、スチレン、α−メチルスチレン、アクリロニトリ
ル、塩化ビニリデン、シアン化ビニリデン、アルキルビ
ニルエーテル類、カルボン酸ビニルエステル類、アリー
ルエーテル類、ジアルキルマレイン酸類、フマル酸エス
テル類、N−ビニルピロリドン、ビニルピリジン、ビニ
ルシラン類、アクリル酸アルキルエステル類、メタクリ
ル酸アルキルエステル類等が挙げられる。
Monomers copolymerizable with vinyl chloride monomers include, for example,
Ethylene, propylene, butene, pentene-1, butadiene, styrene, α-methylstyrene, acrylonitrile, vinylidene chloride, vinylidene cyanide, alkyl vinyl ethers, carboxylic acid vinyl esters, aryl ethers, dialkyl maleates, fumaric acid esters , N-vinylpyrrolidone, vinylpyridine, vinylsilanes, acrylic acid alkyl esters, methacrylic acid alkyl esters, and the like.

ここで用いる塩化ビニル樹脂の重合度は、成形方法、成
形条件及び用途によっても異なるが、通常の軟質塩化ビ
ニル樹脂組成物に於いて使用される400〜3000の
範囲のものが使用可能である。
The degree of polymerization of the vinyl chloride resin used here varies depending on the molding method, molding conditions, and application, but it can range from 400 to 3,000, which is used in ordinary soft vinyl chloride resin compositions.

粉末成形用としては重合度600〜1200のものが望
ましい。
For powder molding, those having a degree of polymerization of 600 to 1200 are desirable.

本発明で用いる塩化ビニル樹脂は、塊状重合法で得られ
たものであり、粒径範囲が実質的に50〜300μ−で
ポロシティ−が0.17〜0.25cc/gであること
を必須とする。
The vinyl chloride resin used in the present invention is obtained by bulk polymerization, and it is essential that the particle size range is substantially 50 to 300 μ- and the porosity is 0.17 to 0.25 cc/g. do.

樹脂の粒径分布がこの範囲をはずれると、組成物とした
時の粉体流動性や溶融性が悪くなり、さらに他の添加剤
゛との混合時及び成形時にブロッキングが起こりやすく
なる。本発明では塩化ビニル樹脂のより好ましい粒径範
囲は70〜250μ腸である。
If the particle size distribution of the resin is out of this range, the powder fluidity and meltability when formed into a composition will be poor, and blocking will likely occur during mixing with other additives and during molding. In the present invention, a more preferable particle size range of the vinyl chloride resin is 70 to 250 microns.

尚、前記した粒径範囲の樹脂は、重合で得られた樹脂を
適宜分級して粒度を調整することにより得ることもでき
る。
Note that the resin having the particle size range described above can also be obtained by appropriately classifying the resin obtained by polymerization and adjusting the particle size.

本発明で言うポロシティ−とは粒子の空孔度を表わし、
本発明においては水銀圧入法によって得た値を用いた。
In the present invention, porosity refers to the degree of porosity of particles,
In the present invention, values obtained by mercury porosimetry were used.

この値が大きい程可塑剤等の吸収量が多いことを意味す
る。
The larger this value is, the greater the amount of plasticizer etc. absorbed.

本発明に於いてポロシティ−が0.17cc/g未満の
樹脂を用いた場合、これと可箪剤との混合時に樹脂中に
必要量の可塑剤が吸収されず、従って樹脂粒子間に可塑
剤が残存し、このため得られる組成物の粉体流動性が悪
化する。
In the present invention, if a resin with a porosity of less than 0.17 cc/g is used, the necessary amount of plasticizer will not be absorbed into the resin when mixed with a plasticizer, and therefore the plasticizer will not be absorbed between the resin particles. remains, which deteriorates the powder fluidity of the resulting composition.

又同じ<0.25g+1/gをこえると用いる可塑剤量
にも依るが、例えば樹脂100重量部に対して100重
量部以下の可塑剤を用いた場合、この組成物のかさ比重
が低下し、これを用いて成形する際に好ましくない。
If the same <0.25g + 1/g is exceeded, depending on the amount of plasticizer used, for example, if less than 100 parts by weight of plasticizer is used for 100 parts by weight of resin, the bulk specific gravity of the composition will decrease, This is not preferable when molding using this.

本発明において、塩化ビニル樹脂のより好ましいポロシ
ティ−値は0.18〜0.22g+1/gである。
In the present invention, a more preferable porosity value of the vinyl chloride resin is 0.18 to 0.22g+1/g.

本発明に於いて塩化ビニル樹脂に加える可塑剤としては
特に制限はなく、例えばフタル酸ジ−N−ブチル、フタ
ル酸ジー2−エチルヘキシル(DOP)、フタル酸ジ−
N−オクチル、フタル酸ジイソオクチル、フタル酸オク
チルデシル、フタル酸ジイソデシル、フタル酸ブチルベ
ンジル、イソフタル酸ジー2−エチルヘキシル等のフタ
ル酸系可塑剤、アジピン酸ジー2−エチルヘキシル(D
OA) 、アジピン酸ジ−N−デシル、アジピン酸ジイ
ソデシル、アジピン酸ジー2−エチルヘキシル、セバシ
ン酸ジブチル、セバシン酸ジー2−エチルヘキシル等の
脂肪酸エステル系可塑剤、リン酸トリブチル、リン酸ト
リー2−エチルヘキシル、リン酸トリー2−エチルへキ
シルジフェニル、リン酸トリクレジル等のリン酸エステ
ル系及びエポキシ化大豆油、エポキシ化アマニ油等のエ
ポキシ系可塑剤または液状のエポキシ樹脂などが挙げら
れ、これらの一種以上を使用する。 前記した液状のエ
ポキシ樹脂とは、エポキシ化大豆油などの二次可塑剤と
は若干異なるが、エポキシ化大豆油等のエポキシ系可塑
剤と同様に樹脂組成物の熱安定性に寄与し、かつ液状で
あるで、本発明の組成物に於いては、エポキシ系可塑剤
の範喘に含めることができる。
In the present invention, the plasticizer added to the vinyl chloride resin is not particularly limited, and examples include di-N-butyl phthalate, di-2-ethylhexyl phthalate (DOP), and di-N-butyl phthalate.
Phthalic acid plasticizers such as N-octyl, diisooctyl phthalate, octyldecyl phthalate, diisodecyl phthalate, butylbenzyl phthalate, di-2-ethylhexyl isophthalate, di-2-ethylhexyl adipate (D
OA), fatty acid ester plasticizers such as di-N-decyl adipate, diisodecyl adipate, di-2-ethylhexyl adipate, dibutyl sebacate, di-2-ethylhexyl sebacate, tributyl phosphate, tri-2-ethylhexyl phosphate , phosphate esters such as tri-2-ethylhexyldiphenyl phosphate and tricresyl phosphate, and epoxy plasticizers such as epoxidized soybean oil and epoxidized linseed oil, or liquid epoxy resins, and one or more of these. use. Although the liquid epoxy resin described above is slightly different from a secondary plasticizer such as epoxidized soybean oil, it contributes to the thermal stability of the resin composition in the same way as an epoxy plasticizer such as epoxidized soybean oil, and Since it is a liquid, it can be included in the category of epoxy plasticizers in the composition of the present invention.

前記した可搬剤の添加量は、樹脂100重量部に対して
可塑剤50−100重量部が好ましい。
The amount of the above-mentioned transportability agent added is preferably 50 to 100 parts by weight of the plasticizer per 100 parts by weight of the resin.

さらに必要に応じて安定剤等、例えば、ステアリン酸亜
鉛、同カルシウム、同バリウム、同カドミウムなどの金
属石けん系安定剤、錫ラウレート、同マレエートメルカ
プト錫などの錫系安定剤などを使用することができる。
Furthermore, if necessary, stabilizers may be used, such as metal soap stabilizers such as zinc stearate, calcium stearate, barium stearate, and cadmium stearate, and tin-based stabilizers such as tin laurate and tin maleate mercapto. Can be done.

更に、必要に応じて通常用いられる安定助剤、加工助剤
、充填剤及び打粉剤として無機及び有機化合物を配合す
ることもできる。
Furthermore, if necessary, inorganic and organic compounds can be blended as commonly used stabilizing aids, processing aids, fillers and dusting agents.

尚、組成物の流動性改良剤(打粉剤)として、微細懸濁
重合法で得られる、いわゆるポーラスでないベーストレ
ジンを用いることも好ましい結果を得る。この際のペー
ストレジンの使用量は、樹脂100重量部に対し5〜2
0重量部である。
In addition, preferable results can also be obtained by using a so-called non-porous base resin obtained by a fine suspension polymerization method as a fluidity improver (powdering agent) of the composition. The amount of paste resin used at this time is 5 to 2 parts by weight per 100 parts by weight of resin.
It is 0 parts by weight.

[発明の効果] 本発明の粉末成形用塩化ビニル樹脂組成物は、粉体流動
性、溶融性に優れ、これを用いて成形した製品は、欠肉
のない均一肉厚の製品となり、成形使用後回収して再使
用される粉体中にも凝集物は含まれることはない。
[Effects of the Invention] The vinyl chloride resin composition for powder molding of the present invention has excellent powder flowability and meltability, and products molded using the same have uniform wall thickness with no underfill, making it easy to use for molding. Aggregates are not included in the powder that is later collected and reused.

[実施例] 以下、本発明を実施例により更に詳述するが、本発明は
、これらに限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例11比較例1〜4 内容積10Lのヘンシェルミキサーに塊状重合法(種重
合体を用いる通常の方法)、懸濁重合法(水せす媒体中
に、塩化ビニル単量体、PVAを含む分散剤、重合開始
剤などを仕込み、加温、攪拌して重合を行なう通常の方
法)で得られたストレート塩化ビニル樹脂を適宜分級な
どしたもの1Kg。
Example 11 Comparative Examples 1 to 4 In a Henschel mixer with an internal volume of 10 L, bulk polymerization method (normal method using a seed polymer), suspension polymerization method (containing vinyl chloride monomer and PVA in a water flask medium) 1 kg of straight vinyl chloride resin obtained by adding a dispersant, a polymerization initiator, etc., and performing polymerization by heating and stirring), which was appropriately classified.

Ba−Zn系複合粉末安定剤30gを仕込み、一定回転
速度で攪拌しながら加温し、可塑剤として、ジイソデシ
ルフタレート700g、エポキシ系可塑剤80gを加え
てトライブレンドし、120℃まで達した時点でこのブ
レンド物を冷却し、樹脂温度が60℃以下となった時点
で、微細懸濁重合法により得たペースト樹脂を120g
これに仕込み、更に攪拌を続けた後粉末樹脂組成物を得
た。
30g of Ba-Zn composite powder stabilizer was charged, heated while stirring at a constant rotational speed, and triblended with 700g of diisodecyl phthalate and 80g of epoxy plasticizer added as plasticizers, and when the temperature reached 120℃. This blend was cooled, and when the resin temperature became 60°C or less, 120g of paste resin obtained by the fine suspension polymerization method was added.
A powdered resin composition was obtained after the mixture was added to this and stirring was continued.

得られた粉末樹脂組成物の、かさ比重(JIS K 8
721による方法)、安息角(円筒回転法・・・筒井理
化学機器製円筒回転型流動表面測定機による)を測定し
た。
The bulk specific gravity (JIS K 8
721 method), and the angle of repose (cylindrical rotation method...using a cylindrical rotation type flow surface measurement device manufactured by Tsutsui Rikagaku Instruments).

銅−ニッケル合板製の自動車のアームレスト表尺金形を
240℃のオーブン中に入れ予備加熱を行ない、金型温
度を200℃とした後炉外へ取り出し、序で、速やかに
前記粉末組成物を投入し、10秒間振盪した後、未付着
粉末を排出し、再度240℃の加熱炉に金型を入れ3分
間成形を行ない、得られた製品のレベリング性(表面状
態)、アンダーカット部の欠肉、肉厚の均一性を目視に
より評価した。又、この操作を10回繰り返えしたとき
の未付着粉体の凝集物(ブロッキング物)の多寡により
ブロッキング性を評価した。
An automobile armrest scale mold made of copper-nickel plywood was preheated by placing it in an oven at 240°C, and after bringing the mold temperature to 200°C, it was taken out of the furnace, and the powder composition was immediately poured into it. After shaking for 10 seconds, the unadhered powder was discharged, and the mold was placed in a heating furnace at 240°C again and molded for 3 minutes. The uniformity of the wall thickness was visually evaluated. Moreover, the blocking property was evaluated based on the amount of aggregates (blocking substances) of unattached powder when this operation was repeated 10 times.

尚、ボロシテーは、ASTM(ASTM Bul、23
6:39−44 Feb、 1959)に準じてAMI
NCO社製 POROCI METERにてΔ−1定し
た。結果を表−1に示した。
In addition, the borosity is ASTM (ASTM Bul, 23
6:39-44 Feb, 1959)
Δ-1 was determined using POROCI METER manufactured by NCO. The results are shown in Table-1.

表−1 実施例1比較例1〃2 〃3 〃4 ポロ’7テー 0.21  0.21 0.28 0.
18 0.45(m17g) 重合度    950  950 1050 800 
1050かさ比重*   0.63  0.61 0.
57 0.8 0.45(g/ml) 安息角    29   30  32  30>40
じ) レベリング性  AAABB 欠肉      AABDC 肉厚均一性   AABCD ブロッキング性 ACBCD *は組成物のかさ比重を示す。
Table-1 Example 1 Comparative Example 1 2 3 4 Polo '7 Tee 0.21 0.21 0.28 0.
18 0.45 (m17g) Degree of polymerization 950 950 1050 800
1050 Bulk specific gravity* 0.63 0.61 0.
57 0.8 0.45 (g/ml) Angle of repose 29 30 32 30>40
Di) Leveling property AAABB Thickness AABDC Thickness uniformity AABCD Blocking property ACBCD * indicates the bulk specific gravity of the composition.

重合体は次の物を用いた。The following polymers were used.

塊状重合法により得た重合体を70〜250μmに分級
した物(実施例1、比較例2) 同じく朱分級の物(比較例1) 懸濁重合法により得た重合体を70〜250μmに分級
した物(比較例3.4) 表中、A−Dの判定は、次の基準で行なった。
Polymer obtained by bulk polymerization method classified into 70-250 μm (Example 1, Comparative Example 2) Same red classification (Comparative Example 1) Polymer obtained by suspension polymerization method classified into 70-250 μm (Comparative Example 3.4) In the table, A to D were judged based on the following criteria.

[レベリング性] 製品表面(粉末の排出側)の平滑性を、未溶融粒子の有
無、表面の波打ち、光沢を目視により判断 A: すべての点で優れている。
[Leveling property] Visually judge the smoothness of the product surface (powder discharge side) for the presence or absence of unmelted particles, surface waving, and gloss. A: Excellent in all respects.

B: 未溶融粒子は無く、光沢はあるが、波打ちが認め
られる。
B: There are no unmelted particles and there is luster, but waving is observed.

C: 表面の平滑性に劣り、光沢が少ない。C: Poor surface smoothness and low gloss.

D: 未溶融粒子が認められる。D: Unmelted particles are observed.

[欠肉性] 製品の全部、特に、アンダーカット部の欠肉を目視によ
り判断 A: すべての点で優れている。
[Undercut property] Judging by visual inspection of the entire product, especially the undercut part, A: Excellent in all respects.

B: アンダーカット部の欠肉が薄い。B: Thin undercut portion.

C: アンダーカット部が部分的に欠肉D: 欠肉が連
続的で、引張により切断が起る。
C: The undercut part is partially lacking in thickness.D: The lack of thickness is continuous and cutting occurs due to tension.

[肉厚均一性] 欠肉性と同様の判断、特にシート状部分の肉厚を厚み計
で測定し評価 A: 肉厚が平均肉厚の5%以内。
[Thickness Uniformity] Judgment is the same as for lack of thickness, especially the thickness of the sheet-like portion is measured using a thickness gauge, and evaluation is A: The thickness is within 5% of the average thickness.

B: アンダーカット部のみ5%を外れる。B: Only the undercut portion deviates from 5%.

C: アンダーカット部の肉厚均一性が特に劣り、シー
ト部分も若干5%を外れる。
C: The thickness uniformity of the undercut portion is particularly poor, and the thickness of the sheet portion also slightly deviates from 5%.

D: シート部分の肉厚均一性が極めて劣る。D: The thickness uniformity of the sheet portion is extremely poor.

[ブロッキング性] 繰返し使用されるフンバウンド粒子中のブロック物の多
寡 A: 無し。
[Blocking property] Amount of blocking substances in repeatedly used dung bound particles A: None.

B:10回繰返し使用すると、少量出る。B: A small amount comes out when used repeatedly 10 times.

C: 数回繰返し使用すると、少量出る。C: A small amount comes out after repeated use several times.

D:1回繰返し使用すると、少量出る。D: A small amount comes out when used repeatedly.

実施例2 懸濁重合法で得た塩化ビニル重合体(粒度ニア0〜20
0μ■、ポロシテー:  0.2aL/g、重合度: 
 800)塊状重合法で得た塩化ビニル重合体(粒度ニ
ア0〜200μl、ボロシテー:  0.21mL/g
%重合度: 900)について溶融性の比較試験を行な
った。
Example 2 Vinyl chloride polymer obtained by suspension polymerization method (particle size nia 0 to 20
0μ■, porosity: 0.2aL/g, degree of polymerization:
800) Vinyl chloride polymer obtained by bulk polymerization method (particle size: 0 to 200 μl, volume: 0.21 mL/g
% degree of polymerization: 900), a comparative test of meltability was conducted.

300℃のオーブン中にニッケル/銅(厚みNi 2m
m/Cu 3sn 20cmx2Gcm)の合板を入れ
加熱し、取出した後表面温度が所定温度となった時上記
のコンパウンド20gを投入し、10秒間振盪し、その
後未付着の粉末を排出し、1分間静置した後水冷脱型尚
、コンパウンドは実施例1と同じ配合の物を用いた。
Nickel/copper (thickness Ni 2m) was placed in an oven at 300°C.
Plywood (Cu 3sn 20cm After standing, the mold was cooled with water and removed from the mold.The same compound as in Example 1 was used.

し、脱泡性、レベリング性を判定した。The defoaming properties and leveling properties were evaluated.

結果を次表に示した。The results are shown in the table below.

表中の記号は次を意味する。The symbols in the table have the following meanings.

O: 脱泡性、レベリング性共に良 Δ: 脱泡性不良、レベリング住良 ×: 脱泡性、レベリング性共に不良 以上の結果から塊状重合法により得た重合体を用いると
、気泡のない成形体を得ることができ、機械的物性が向
上した。
O: Both defoaming property and leveling property are good Δ: Defoaming property is poor, leveling Sumiyoshi The mechanical properties were improved.

Claims (1)

【特許請求の範囲】[Claims] 塊状重合法により得た、粒径範囲が実質的に50〜30
0μmであり、かつポロシティーが0.17〜0.25
mL/gである塩化ビニル樹脂と可塑剤とからなる粉末
成形用塩化ビニル樹脂組成物。
Obtained by bulk polymerization method, with a particle size range of substantially 50 to 30
0 μm and porosity of 0.17 to 0.25
mL/g of a vinyl chloride resin composition for powder molding comprising a vinyl chloride resin and a plasticizer.
JP32286287A 1987-12-22 1987-12-22 Vinyl chloride resin composition Pending JPH01165646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32286287A JPH01165646A (en) 1987-12-22 1987-12-22 Vinyl chloride resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32286287A JPH01165646A (en) 1987-12-22 1987-12-22 Vinyl chloride resin composition

Publications (1)

Publication Number Publication Date
JPH01165646A true JPH01165646A (en) 1989-06-29

Family

ID=18148438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32286287A Pending JPH01165646A (en) 1987-12-22 1987-12-22 Vinyl chloride resin composition

Country Status (1)

Country Link
JP (1) JPH01165646A (en)

Similar Documents

Publication Publication Date Title
US7135525B2 (en) Laser-sintering powder with PMMI, PMMA, and/or PMMI-PMMA copolymers, process for its preparation, and moldings produced from this laser-sintering powder
JPH0217576B2 (en)
JP6689233B2 (en) Process for incorporating solid inorganic additives into solid polymers using dispersions
JP2550258B2 (en) Vinyl chloride resin composition for powder slush molding
KR20200055786A (en) One-component polymer modifier
JPH01165646A (en) Vinyl chloride resin composition
RU2609806C2 (en) Method of incorporating additives into vinylidene chloride polymers without use of blender
JP5034150B2 (en) Polytetrafluoroethylene granulated product and molded product thereof
US5179138A (en) Process for producing a vinyl chloride resin composition for powder molding
JPH01153744A (en) Vinyl chloride resin composition
JPS58149936A (en) Vinyl chloride resin compositon for powder molding
JPH03195755A (en) Vinyl chloride resin composition
JP3998762B2 (en) Vinyl chloride resin granules for paste processing and method for producing the same
JPH01156357A (en) Vinyl chloride resin composition for powder molding
JP4588915B2 (en) Acrylic resin plastisol and acrylic resin molded products
CA1309223C (en) Process for producing a vinyl chloride resin composition for powder molding
JPH0352496B2 (en)
JPS648661B2 (en)
JPH08113692A (en) Composition for reinforcing thermoplastic polymer,containingsynergistic agent of fine silica powder with calcium salt, and improved in anticaking characteristics and flowability
JPH05156184A (en) Production of vinyl chloride resin power composition
US12134213B2 (en) Process for forming a rotational molded article
JPS6354019B2 (en)
EP3320042B1 (en) Polymer composition, its method of preparation and use
JPS6239621B2 (en)
JPS6354018B2 (en)