JPS6354019B2 - - Google Patents

Info

Publication number
JPS6354019B2
JPS6354019B2 JP58030107A JP3010783A JPS6354019B2 JP S6354019 B2 JPS6354019 B2 JP S6354019B2 JP 58030107 A JP58030107 A JP 58030107A JP 3010783 A JP3010783 A JP 3010783A JP S6354019 B2 JPS6354019 B2 JP S6354019B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
plasticizer
powder
chloride resin
emulsion polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58030107A
Other languages
Japanese (ja)
Other versions
JPS59166546A (en
Inventor
Katsuro Hidaka
Shunichi Yonekawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Vinyl Co
Original Assignee
Mitsubishi Kasei Vinyl Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Vinyl Co filed Critical Mitsubishi Kasei Vinyl Co
Priority to JP3010783A priority Critical patent/JPS59166546A/en
Publication of JPS59166546A publication Critical patent/JPS59166546A/en
Publication of JPS6354019B2 publication Critical patent/JPS6354019B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、熱劣化を起さず、粉体流動性及び成
形または塗装時における溶融性に優れ、かつ表面
平滑性または艶消し性に優れた粉体成形体の製造
を可能ならしめる粉体成形用樹脂組成物に係る。 近時、微粉末の合成樹脂を使用する各種成形
法、塗装法が開発されており、その代表的なもの
として回転成形法、パウダーコーテイング法、流
動浸漬塗装法、静電塗装法がある。例えば、回転
成形法は、所望の成形金型内にその内面に沿つて
合成樹脂を焼結して一体融合物を作る方法であ
り、流動浸漬塗装法は、加熱した被塗装物に合成
樹脂を付着せしめて付着した表面樹脂粉体を溶融
し、樹脂被膜を形成する方法である。これらの成
形法や塗装法に用いる合成樹脂は、優れた粉体流
動特性と溶融特性、加熱時に熱劣化を起さない安
定性が要求されるとともに、得られる成形体の表
面の平滑性や艶消し性を要求されるケースが近時
増加している。これは自動車内装材等に使用する
場合にプラスチツクらしくない高級感を出すこと
を目的としており、高級品を指向する最近の内装
材市場では重要な要素となつている。 本発明において、成形体の表面平滑性とは、金
型等に接しない側の面に生じるあばたのような凸
凹のない状態をいい、艶消し性とは、微視的な凹
凸が表面全体にあり、全体的に見たとき平滑でか
つ艶がない状態をいう。 本発明者等は、先に粉体流動性と溶融特性が優
れ、かつ加工時の熱劣化のない粉体成形用塩化ビ
ニル系樹脂組成物として、可塑剤を含有せしめた
塩化ビニル系樹脂組成物と可塑剤を含有してなる
5μ以下の粉状塩化ビニル樹脂組成物とを加熱す
ることなしに混合した組成物を特願昭57−176764
号として提案した。該発明の組成物では粉体流動
性、溶融性あるいは表面平滑性の優れた粉体成形
体は得られるが、その金型に接していない側の面
の表面平滑性は充分ではなく、またきわめて艶の
有る成形体しか得られない。この組成物を粉体成
形に供し、無理に艶を消そうとして低温で成形す
るとある程度の艶消しは達成できるが、成形体の
機械的強度等の物性が低下してしまいとても実用
には供し得ない。 本発明者等は、成形体の機械的強度等の物性の
低下のない艶消し様の粉体成形体を製造すべく鋭
意検討した結果、可塑剤を吸収した塩化ビニル系
樹脂の表面積を特定の熱可塑性乳化重合体でもつ
て90%以上被覆することにより粉体流動性、溶融
特性、成形体の機械的物性の低下をきたすことな
く艶消しされた成形体が得られることを見いだ
し、またその被覆率が90%未満であつても粉体流
動性、溶融特性にすぐれ、かつ表面平滑性にすぐ
れた成形品になることを見いだし本発明に到達し
た。 すなわち、本発明の目的は、粉体成形時の粉体
流動性、溶融特性、熱安定性にすぐれ、かつ機械
的強度を低下させることなく表面が平滑なまたは
艶消しした成形体を製造しうる粉体成形用樹脂組
成物を提供するにある。 しかして、本発明の要旨は、可塑剤を吸収せし
めた塩化ビニル系樹脂に熱可塑性乳化重合体を被
覆してなる粉体成形用樹脂組成物であつて、前記
可塑剤は前記塩化ビニル系樹脂の粘度平均重合度
Yとの間に次の一般式の範囲で表わされるX量用
い、 700(1+X/100)≧Y≧250(1+X/100) 〔式中、Xは、塩化ビニル系樹脂100重量部当り
の可塑剤の重量部であり、10以上の値、Yは、塩
化ビニル系樹脂の粘度平均重合度をそれぞれ示
す。〕 前記熱可塑性乳化重合体は、平均粒子径が0.01
〜1μmの塩化ビニル系乳化重合体、メチルメタ
クリレート系乳化重合体またはスチレン−アクリ
ロニトリル系乳化共重合体(ただし、アクリロニ
トリル含有量20〜40重量%の範囲)の少なくとも
一種を用い、かつ可塑剤を吸収した塩化ビニル系
樹脂の表面積の熱可塑性乳化重合体による被覆率
が少なくとも5%であることを特徴とする粉体成
形用樹脂組成物に存する。 本発明を詳細に説明するに、本発明の組成物の
一成分である可塑剤を吸収せしめた塩化ビニル系
樹脂とは、例えば塩化ビニル系樹脂と可塑剤とを
塩化ビニル系樹脂の溶融温度以下、具体的には
130℃以下の温度で加熱混合し、可塑剤を塩化ビ
ニル系樹脂に吸収させた後冷却して得られる粉末
状の塩化ビニル樹脂である。該塩化ビニル系樹脂
は、塩化ビニルの単独重合体または塩化ビニルと
これに共重合可能な単量体との共重合体であり、
粒子径を大きくしかつポーラスにして可塑剤の吸
収性を良好にするために、通常懸濁重合法または
塊状重合法によつて製造されたものであり、この
内でも懸濁重合法によつて製造されたものである
のが好ましい。 また、塩化ビニルに共重合可能な単量体として
は、例えばエチレン、プロピレン、ブテン、ペン
テン−1、ブタジエン、スチレン、α−メチルス
チレン、酢酸、カプロン酸、カプリル酸、安息香
酸等カルボン酸のビニルエステル類またはアリー
ルエステル類、アルキル基の炭素原子数1〜12
(C1〜12)のジアルキルマレイン酸あるいはフマー
ル酸エステル類、アクリロニトリル、塩化ビニリ
デン、シアン化ビニリデン、アルキル基C1〜16
アルキルビニルエーテル、N−ビニルピロリド
ン、ビニリピリジン、ビニルシラン類、アルキル
基C1〜16のアクリル酸アルキルエステル類または
メタクリル酸アルキルエステル類があげられ、こ
れらの少なくとも一種を塩化ビニル100重量部に
対して40重量部以下、好ましくは30重量部以下の
範囲で共重合させることができる。 これらの塩化ビニル系樹脂として如何程の重合
度をもつものを選択すべきかは、使用する可塑剤
の種類及び量によつて決定される。 塩化ビニル系樹脂の重合度と可塑剤の使用量の
好ましい関係は次の一般式の範囲で表わされる。 700(1+X/100)≧Y≧250(1+X/100) 〔式中、Xは、塩化ビニル系樹脂100重量部当り
の可塑剤の使用重量部であり、10以上の値、Y
は、塩化ビニル系樹脂の粘度平均重合度をそれぞ
れ示す。〕 塩化ビニル系樹脂の重合度によつて可塑剤の使
用量を制限するのは、所望とする可塑剤、使用
量、配合において、可塑剤を上述の規定された量
よりも多い量用いたとき粉体の流動性が著しく悪
化し、また成形体からの可塑剤のプリードが激し
くなり実用に供し得ないためである。逆に、規定
された量より少ない量を用いれば加工温度の制約
から物性の劣つたものとなつてしまう。可塑剤の
使用量は、一般的に重合度と可塑剤が上述の関係
範囲にあり、かつ塩化ビニル系樹脂100重量部当
り、可塑剤30〜150重量部の範囲であるのが最も
好ましい。 塩化ビニル系樹脂に吸収せしめられる可塑剤
は、塩化ビニル系樹脂に用いられるものなら特に
制限されるものではないが、炭素原子数4〜13の
アルキル基を有するジアルキルフタレート、ジア
ルキルアジペート、トリアルキルトリメリテー
ト、ジアルキルセバケート、ジアルキルアゼレー
ト、アルキルベンジルフタレート、トリアルキル
フオスフエート、アルキルアリルフオスフエート
及びポリエステル系可塑剤等が挙げられ、具体的
にはフタル酸ジ−n−ブチル、フタル酸ジ−n−
オクチル、フタル酸ジ−2−エチルヘキシル
(DOP)、フタル酸ジイソオクチル、フタル酸オ
クチルデシル、フタル酸ジイソデシル、フタル酸
ブチルベンジル、イソフタル酸ジ−2−エチルヘ
キシル、アジピン酸ジ−2−エチルヘキシル
(DOA)、アジピン酸ジ−n−デシル、アジピン
酸ジイソデシル、トリメリツト酸−トリ−2−エ
チルヘキシル、アゼライン酸ジ−2−エチルヘキ
シル、セバシン酸ジブチル、セバシン酸ジ−2−
エチルヘキシル、リン酸トリブチル、リン酸トリ
−2−エチルヘキシル、リン酸−2−エチルヘキ
シルジフエニル、リン酸トリクレジル等があげら
れ、これらの一種または二種以上を混合して使用
する。 また、上述の可塑剤を吸収せしめられた塩化ビ
ニル系樹脂には粉体成形に悪影響を与えない範囲
内で安定剤、着色剤、充填材、二次可塑剤等の他
の添加剤が添加されていてもよい。 可塑剤を吸収せしめた塩化ビニル系樹脂の表面
を被覆する目的で使用される熱可塑性乳化重合体
は、塩化ビニル乳化重合体、メチルメタクリレー
ト乳化重合体、スチレン−アクリロニトリル乳化
共重合体(アクリロニトリル含有量20〜40%、好
ましくは25〜35%)から選択される少なくとも一
種の乳化重合体である。この乳化重合体は一次平
均粒子径が、0.05〜1μmの範囲にあるのが良く、
好ましくは0.05〜0.5μm、特に0.05〜0.3μmの範
囲であるのが好ましい。 粒子径が0.05μmより小さい場合は流動性が良
好でない。一方、粒子径が1μmより大きい場合
は表面平滑性の良い成形体が得られず、また成形
体物性が劣るようになる。 それらの乳化重合体は、粉末成形用樹脂組成物
の製造時又は粉末成形加工時に悪影響を及ぼさな
い範囲内で、それら乳化重合体の主たる単量体と
それと共重合可能な単量体との乳化共重合体であ
つても良く、また安定剤、着色剤、充填剤または
可塑剤等の他の添加剤が添加されていても良い。 これらの乳化重合体は、塩化ビニル単量体、メ
チルメタクリレート単量体、スチレン〜アクリロ
ニトリル単量体混合物またはこれらの単量体を主
体とするこれら単量体と共重合可能な単量体との
単量体混合物を脱イオン水、乳化剤、水溶性重合
開始剤と共に反応せしめる通常の乳化重合方法、
あるるいは上記の単一単量体または単量体混合物
を脱イオン水、乳化剤、油溶性重合開始剤と共に
乳化処理したのち、反応せしめて得られるラテツ
クスを、スプレー乾燥するかまたは塩析凝集せし
めた後に脱水乾燥する等の通常の乾燥方法によつ
て製造される。共重合可能な単量体の使用量は、
出来るだけ少量が好ましく、一般的には全単量体
の20%以下であるのが好ましい。 これらの乳化重合体の可塑剤を吸収せしめられ
た塩化ビニル系樹脂の表面への被覆は、ヘンシエ
ルミキサー、リボンブレンダー、擂潰機等によつ
て可塑剤を吸収せしめられた塩化ビニル系樹脂と
乳化重合体を単に混合することによつて極めて容
易に達成される。 被覆率は、使用する可塑剤を吸収せしめた塩化
ビニル系樹脂の種類、乳化重合体の種類及び量、
混合機の種類及び混合時間等によつて変るけれど
も、若干の予備実験を行なうことにより容易に決
定することができる。 例えば、粉体流動特性、溶融特性、熱安定性共
に優れ、かつ表面平滑性の優れた粉体成形体を得
る目的においては、可塑剤を吸収せしめた塩化ビ
ニル系樹脂の熱可塑性乳化重合体による被覆率を
5%以上でかつ90%未満、好ましくは8〜80%の
範囲にするのが良く、該被覆率にするためには可
塑剤を吸収せしめた塩化ビニル系樹脂と熱可塑性
乳化重合体の混合割合を、一般的に前者/後者の
重量比で99/1〜60/40の範囲にするのが望まし
い。また、粉体流動特性、溶融特性、熱安定性共
にすぐれ、かつ艶消し表面を有する粉体成形体を
製造する目的においては、被覆率を90%以上にす
るのが好ましく、該被覆率にする可塑剤を吸収せ
しめた塩化ビニル系樹脂の熱可塑性乳化重合体に
よる混合割合が、一般的に前者/後者が重量比で
95/5〜55/45の範囲で充分であり、この範囲以
上の乳化重合体を使用したとしても艶消しの効果
が必要以上に向上しないので、かえつて経済的な
不利益が生じてくる。被覆率が90%より小さい場
合には、艶消しの効果を発揮し難くなる。 本発明の粉体成形用樹脂組成物によれば、それ
自体粉体流動特性にすぐれ、また比較的低い温度
で溶融するために成形加工が容易であり、熱安定
性にもすぐれている。さらに、本発明の組成物を
各種粉体成形法に供する場合、乳化重合体による
被覆率の相違によつて、金型等に接触しない側の
面が平滑になつた成形体が得られるか、または艶
消し表面の成形体が得られるかの違いがあり、幅
広い粉体成形体を製造することができる。 したがつて、本発明の組成物は、回転成形、パ
ウダーコーテイング、流動浸漬塗装、静電塗装等
の各種成形法、塗装法に有効に利用でき、その工
業的利用価値は頗る高い。 以下に本発明の組成物を、原料製造例及び実施
例にて詳述するが、本発明は、その要旨を逸脱し
ない限り、以下の実施例に限定されるものではな
い。 原料製造例 1 熱可塑性乳化重合体〔〕〜〔〕の製造方法 3容のステンレススチール製オートクレーブ
に脱イオン水200重量部、ラウリル硫酸ナトリウ
ム(表1に示した重量部)、過硫酸カリウム0.8重
量部を投入し、オートクレーブ内を窒素置換した
のち塩化ビニル単量体100重量部を添加し、58℃
にて8時間反応せしめた。未反応の残余単量体を
除去したのち得られたラテツクスを凍結乾燥して
表1に表示された一次平均粒子径を有する塩化ビ
ニル乳化重合体を得た。
The present invention provides powder molding that makes it possible to produce a powder molded product that does not undergo thermal deterioration, has excellent powder fluidity and meltability during molding or painting, and has excellent surface smoothness or matte property. The present invention relates to a resin composition for use. Recently, various molding methods and coating methods using finely powdered synthetic resins have been developed, and typical examples include rotational molding, powder coating, fluidized dip coating, and electrostatic coating. For example, rotational molding is a method in which a synthetic resin is sintered along the inner surface of a desired mold to create an integral amalgam, while fluid dip coating is a method in which a synthetic resin is sintered into a heated object to be coated. This method involves melting the adhered surface resin powder to form a resin coating. The synthetic resins used in these molding and painting methods are required to have excellent powder flow characteristics, melting properties, and stability that does not cause thermal deterioration during heating, as well as to ensure the smoothness and gloss of the surface of the resulting molded product. Recently, the number of cases requiring erasability has been increasing. The purpose of this is to give a luxurious feel that does not resemble plastic when used in automobile interior materials, etc., and has become an important element in the recent interior materials market that is oriented toward luxury products. In the present invention, the surface smoothness of a molded article refers to a state in which there are no irregularities such as pockmarks that occur on the side that does not come into contact with a mold, etc., and matteness refers to a state in which there are no microscopic irregularities on the entire surface. This refers to a state that is smooth and lacks luster when viewed as a whole. The present inventors have previously developed a vinyl chloride resin composition containing a plasticizer as a powder molding vinyl chloride resin composition that has excellent powder fluidity and melting properties and is free from thermal deterioration during processing. and plasticizers.
Patent application No. 57-176764 for a composition obtained by mixing a powdered vinyl chloride resin composition with a particle size of 5μ or less without heating.
proposed as a number. With the composition of the invention, a powder compact with excellent powder flowability, meltability, or surface smoothness can be obtained, but the surface smoothness of the side not in contact with the mold is not sufficient and is extremely poor. Only glossy molded products can be obtained. If this composition is subjected to powder molding and molded at a low temperature in an attempt to forcibly remove the luster, a certain degree of matteness can be achieved, but the physical properties such as mechanical strength of the molded product deteriorate, making it very difficult to use for practical use. do not have. As a result of intensive study to produce a matte-like powder molded body without deterioration of physical properties such as mechanical strength of the molded body, the present inventors determined that the surface area of the vinyl chloride resin that has absorbed the plasticizer can be It has been discovered that by covering 90% or more of a thermoplastic emulsion polymer, a matte molded product can be obtained without deteriorating the powder fluidity, melting properties, and mechanical properties of the molded product, and the coating The inventors have discovered that even when the ratio is less than 90%, a molded article with excellent powder flowability, melting characteristics, and surface smoothness can be obtained, and the present invention has been achieved. That is, an object of the present invention is to produce a molded product that has excellent powder flowability, melting characteristics, and thermal stability during powder molding, and has a smooth or matte surface without reducing mechanical strength. The present invention provides a resin composition for powder molding. The gist of the present invention is therefore a resin composition for powder molding, which is formed by coating a thermoplastic emulsion polymer on a vinyl chloride resin that has absorbed a plasticizer, wherein the plasticizer is a vinyl chloride resin that has absorbed a plasticizer. 700 (1+X/100)≧Y≧250 (1+X/100) [wherein, X is vinyl chloride resin 100] It is the weight part of the plasticizer per weight part, and the value is 10 or more, and Y indicates the viscosity average degree of polymerization of the vinyl chloride resin. ] The thermoplastic emulsion polymer has an average particle diameter of 0.01
Uses at least one of ~1 μm vinyl chloride emulsion polymer, methyl methacrylate emulsion polymer, or styrene-acrylonitrile emulsion copolymer (acrylonitrile content in the range of 20 to 40% by weight), and absorbs a plasticizer. The present invention provides a resin composition for powder molding, characterized in that the surface area of the vinyl chloride resin covered by the thermoplastic emulsion polymer is at least 5%. To explain the present invention in detail, the vinyl chloride resin that has absorbed a plasticizer, which is one of the components of the composition of the present invention, means, for example, that the vinyl chloride resin and the plasticizer are mixed at a temperature lower than the melting temperature of the vinyl chloride resin. ,in particular
Powdered vinyl chloride resin obtained by heating and mixing at a temperature of 130°C or lower to absorb the plasticizer into the vinyl chloride resin, followed by cooling. The vinyl chloride resin is a homopolymer of vinyl chloride or a copolymer of vinyl chloride and a monomer copolymerizable therewith,
In order to increase the particle size and make it porous to improve plasticizer absorption, it is usually produced by suspension polymerization or bulk polymerization. Preferably, it is manufactured. Examples of monomers copolymerizable with vinyl chloride include vinyl carboxylic acids such as ethylene, propylene, butene, pentene-1, butadiene, styrene, α-methylstyrene, acetic acid, caproic acid, caprylic acid, and benzoic acid. Esters or aryl esters, alkyl group having 1 to 12 carbon atoms
( C1-12 ) dialkyl maleic or fumaric acid esters, acrylonitrile, vinylidene chloride, vinylidene cyanide, alkyl vinyl ethers with alkyl groups C1-16 , N-vinylpyrrolidone, vinylipyridine, vinylsilanes, alkyl groups C1-16 16 acrylic acid alkyl esters or methacrylic acid alkyl esters, and at least one of these can be copolymerized in an amount of 40 parts by weight or less, preferably 30 parts by weight or less, based on 100 parts by weight of vinyl chloride. . The degree of polymerization of these vinyl chloride resins to be selected is determined by the type and amount of the plasticizer used. The preferred relationship between the degree of polymerization of the vinyl chloride resin and the amount of plasticizer used is expressed by the following general formula. 700(1+X/100)≧Y≧250(1+X/100) [In the formula,
respectively indicate the viscosity average degree of polymerization of vinyl chloride resin. ] The amount of plasticizer used is limited depending on the degree of polymerization of the vinyl chloride resin when the amount of plasticizer used is greater than the amount specified above for the desired plasticizer, amount, and formulation. This is because the fluidity of the powder deteriorates significantly and the plasticizer bleeds out from the molded product, making it impossible to put it to practical use. On the other hand, if an amount smaller than the specified amount is used, the physical properties will be inferior due to processing temperature restrictions. The amount of plasticizer to be used is generally such that the degree of polymerization and plasticizer are within the above-mentioned relationship range, and most preferably in the range of 30 to 150 parts by weight of plasticizer per 100 parts by weight of vinyl chloride resin. The plasticizer that can be absorbed into the vinyl chloride resin is not particularly limited as long as it is used for the vinyl chloride resin, but dialkyl phthalates, dialkyl adipates, and trialkyl tricarbons having an alkyl group having 4 to 13 carbon atoms can be used. Examples include mellitate, dialkyl sebacate, dialkyl azelate, alkyl benzyl phthalate, trialkyl phosphate, alkyl allyl phosphate, and polyester plasticizers. Specifically, di-n-butyl phthalate, phthalic acid G-n-
Octyl, di-2-ethylhexyl phthalate (DOP), diisooctyl phthalate, octyldecyl phthalate, diisodecyl phthalate, butylbenzyl phthalate, di-2-ethylhexyl isophthalate, di-2-ethylhexyl adipate (DOA), Di-n-decyl adipate, diisodecyl adipate, tri-2-ethylhexyl trimellitate, di-2-ethylhexyl azelaate, dibutyl sebacate, di-2-sebacate
Examples include ethylhexyl, tributyl phosphate, tri-2-ethylhexyl phosphate, 2-ethylhexyldiphenyl phosphate, and tricresyl phosphate, and these may be used alone or in combination of two or more. In addition, other additives such as stabilizers, colorants, fillers, secondary plasticizers, etc. may be added to the vinyl chloride resin that has absorbed the above-mentioned plasticizer to the extent that they do not adversely affect powder molding. You can leave it there. Thermoplastic emulsion polymers used to coat the surface of vinyl chloride resins that have absorbed plasticizers include vinyl chloride emulsion polymers, methyl methacrylate emulsion polymers, and styrene-acrylonitrile emulsion copolymers (acrylonitrile content: 20-40%, preferably 25-35%). This emulsion polymer preferably has a primary average particle diameter in the range of 0.05 to 1 μm,
It is preferably in the range of 0.05 to 0.5 μm, particularly 0.05 to 0.3 μm. If the particle size is smaller than 0.05 μm, fluidity is not good. On the other hand, if the particle size is larger than 1 μm, a molded product with good surface smoothness cannot be obtained, and the physical properties of the molded product will be poor. These emulsion polymers are made by emulsifying the main monomer of the emulsion polymer with a monomer copolymerizable with it, within a range that does not adversely affect the production of the resin composition for powder molding or the powder molding process. It may be a copolymer, and other additives such as stabilizers, colorants, fillers or plasticizers may be added. These emulsion polymers are composed of vinyl chloride monomers, methyl methacrylate monomers, styrene to acrylonitrile monomer mixtures, or monomers that are copolymerizable with these monomers. A conventional emulsion polymerization method in which a monomer mixture is reacted with deionized water, an emulsifier, and a water-soluble polymerization initiator;
Alternatively, the above single monomer or monomer mixture is emulsified with deionized water, an emulsifier, and an oil-soluble polymerization initiator, and the resulting latex is spray-dried or salted out and agglomerated. It is manufactured by a normal drying method such as dehydration and drying after drying. The amount of copolymerizable monomer used is
It is preferably as small as possible, and generally 20% or less of the total monomers. The surface of the vinyl chloride resin that has absorbed the plasticizer of these emulsion polymers is coated with the vinyl chloride resin that has absorbed the plasticizer using a Henschel mixer, ribbon blender, crusher, etc. This is very easily achieved by simply mixing the emulsion polymers. The coverage rate depends on the type of vinyl chloride resin used to absorb the plasticizer, the type and amount of the emulsion polymer,
Although it varies depending on the type of mixer, mixing time, etc., it can be easily determined by conducting some preliminary experiments. For example, in order to obtain a powder molded body with excellent powder flow characteristics, melting characteristics, and thermal stability, and with excellent surface smoothness, a thermoplastic emulsion polymer of vinyl chloride resin that has absorbed a plasticizer is used. It is preferable that the coverage is 5% or more and less than 90%, preferably in the range of 8 to 80%, and in order to achieve this coverage, a vinyl chloride resin and a thermoplastic emulsion polymer that have absorbed a plasticizer are used. It is generally desirable that the mixing ratio of the former/latter be in the range of 99/1 to 60/40 by weight. In addition, for the purpose of producing a powder molded body that has excellent powder flow characteristics, melting characteristics, and thermal stability and has a matte surface, it is preferable that the coverage is 90% or more. Generally speaking, the mixing ratio of vinyl chloride resin that has absorbed plasticizer to thermoplastic emulsion polymer is the former/latter in terms of weight ratio.
A range of 95/5 to 55/45 is sufficient, and even if an emulsion polymer exceeding this range is used, the matting effect will not be improved more than necessary, resulting in an economic disadvantage. If the coverage is less than 90%, it will be difficult to achieve a matting effect. The powder molding resin composition of the present invention itself has excellent powder flow characteristics, and since it melts at a relatively low temperature, it can be easily molded and has excellent thermal stability. Furthermore, when the composition of the present invention is subjected to various powder molding methods, whether a molded product with a smooth surface on the side not in contact with a mold etc. can be obtained due to the difference in coverage with the emulsion polymer; There is a difference in whether a molded product with a matte surface or a molded product with a matte surface can be obtained, and a wide variety of powder molded products can be manufactured. Therefore, the composition of the present invention can be effectively used in various molding methods and coating methods such as rotational molding, powder coating, fluidized dip coating, and electrostatic coating, and its industrial utility value is extremely high. The composition of the present invention will be described in detail below using raw material production examples and examples, but the present invention is not limited to the following examples unless it departs from the gist thereof. Raw material production example 1 Method for producing thermoplastic emulsion polymers [] to [] In a 3-volume stainless steel autoclave, add 200 parts by weight of deionized water, sodium lauryl sulfate (parts by weight shown in Table 1), and 0.8 parts by weight of potassium persulfate. After replacing the inside of the autoclave with nitrogen, 100 parts by weight of vinyl chloride monomer was added and heated to 58°C.
The mixture was allowed to react for 8 hours. After removing unreacted residual monomers, the resulting latex was freeze-dried to obtain a vinyl chloride emulsion polymer having the primary average particle diameter shown in Table 1.

【表】 原料製造例 2 熱可塑性乳化重合体〔〕の製造方法 3容のステンレススチール製オートクレーブ
に脱イオン水200重量部、ラウリル硫酸ナトリウ
ム1重量部、過硫酸カリウム0.5重量部、メチル
メタクリレート100重量部を投入し、気相部を窒
素置換したのち70℃に昇温し、5時間反応せしめ
た。未反応の残余単量体を除去したのち、得られ
たラテツクスをスプレー乾燥してメチルメタクリ
レート乳化重合体〔)を得た。一次平均粒子径
は0.1μmであつた。 原料製造例 3 熱可塑性乳化重合体〔〕〜〔〕の製造方法 3容のステンレススチール製オートクレーブ
に、スチレンとアクリロニトリルとの単量体混合
物を表2に示す割合で全単量体混合物100重量部
中の20重量部、脱イオン水200重量部、ラウリル
硫酸ナトリウム1重量部、過硫酸カリウム0.5重
量部を投入し、気相部を窒素置換したのち80℃に
昇温し反応を開始した。反応中残りの単量体混合
物80重量部を2時間かけて逐次添加し、添加終了
後3時間反応せしめスチレン−アクリロニトリル
乳化共重合体のラテツクスを製造した。該ラテツ
クスをスプレー乾燥して表2に示すようなアクリ
ロニトリル含有率および一次平均粒子径を有する
乳化重合体を得た。
[Table] Raw material production example 2 Production method of thermoplastic emulsion polymer [ ] In a 3-volume stainless steel autoclave, add 200 parts by weight of deionized water, 1 part by weight of sodium lauryl sulfate, 0.5 part by weight of potassium persulfate, and 100 parts by weight of methyl methacrylate. After replacing the gas phase with nitrogen, the temperature was raised to 70°C and the reaction was allowed to proceed for 5 hours. After removing unreacted residual monomers, the obtained latex was spray dried to obtain a methyl methacrylate emulsion polymer. The primary average particle diameter was 0.1 μm. Raw material production example 3 Method for producing thermoplastic emulsion polymers [] to [] In a 3-volume stainless steel autoclave, add 100 parts by weight of the total monomer mixture of styrene and acrylonitrile in the proportions shown in Table 2. 20 parts by weight of the solution, 200 parts by weight of deionized water, 1 part by weight of sodium lauryl sulfate, and 0.5 parts by weight of potassium persulfate were added, and after replacing the gas phase with nitrogen, the temperature was raised to 80°C to start the reaction. During the reaction, 80 parts by weight of the remaining monomer mixture were successively added over 2 hours, and after the addition was completed, the reaction was allowed to proceed for 3 hours to produce a latex of a styrene-acrylonitrile emulsion copolymer. The latex was spray-dried to obtain an emulsion polymer having an acrylonitrile content and an average primary particle diameter as shown in Table 2.

【表】 なお、一次平均粒子径の測定は、電子顕微鏡観
察により行つた。 実施例1〜7、比較例1〜4 粘度平均重合度800の塩化ビニルストレートポ
リマー(懸濁重合品)100重量部、メルカプト錫
系安定剤1重量部、フタル酸ジ−2−エチルヘキ
シル80重量部をヘンシエルミキサーに投入し、撹
拌混合しながら昇温し130℃に樹脂温度が上昇す
るまで撹拌を継続して可塑剤を塩化ビニルストレ
ートポリマーに吸収せしめた。撹拌下に該ポリマ
ーを冷却し、該ポリマーの樹脂温度が60℃になつ
たところで、表3に示す乳化重合体を前記ポリマ
ーと所定割合になるように投入し、表3に示す時
間混合を継続した。 このようにして作られた組成物は、表3に示す
割合の被覆率で、可塑剤を吸収せしめられた塩化
ビニル系樹脂の表面が乳化重合体によつて被覆さ
れている。 これらの樹脂組成物を粉体成形に供した時の評
価結果を併せて表3に記すが、被覆率が90%以上
で、かつ乳化重合体として0.05〜1μmの粒子径を
もつ塩化ビニル乳化重合体、メチルメタアクリレ
ート乳化重合体、スチレン−アクリロニトリル乳
化共重合体を用いた時に、はじめて物性の良好な
艶消し状態の良好な粉体成形体が得られることが
わかる。 なお、実施例における粉体成形用樹脂組成物の
特性及び成形体の物性の測定は、次の通り行つ
た。 (1) 被覆率の測定 電子顕微鏡写真観察により行つた。 被覆率を出すためには、粒子の表面積及び被
覆されている部分の面積を出す必要がある。球
形粒子を写真に撮つた場合、傾きをもつている
部分の表面積を公正に評価出来ないので概ね水
平とみなせる部分の被覆割合でもつて表わし
た。 例えば、球形粒子の写真の場合、その平面で
粒子の半径がRとすると、中心から1/3Rの径
で囲まれた部分の被覆率を求めた。該方法によ
れば極めて正確な被覆率が得られる。 (2) 粉体流動性 100mlの組成物をJIS K 6721のかさ密度測
定装置用ホツパーに投入し、ホツパー内から組
成物全量が落下する時間(秒)で流動性の良悪
を判定した。 (3) 伸び 粉体成形用組成物をアルミ箔上に1mm厚にコ
ーテイングし、200℃に調温されたオーブン中
で10分間焼結せしめ、得られたフイルムをJIS
K 6723によつて測定した。 (4) 艶消し状態 (3)項で得られたフイルムを目視により5段階
に評価した。5級(艶消し良好)−1級(不
良)。
[Table] Note that the primary average particle diameter was measured by electron microscopy observation. Examples 1 to 7, Comparative Examples 1 to 4 100 parts by weight of vinyl chloride straight polymer (suspension polymer) with viscosity average degree of polymerization of 800, 1 part by weight of mercaptotin stabilizer, 80 parts by weight of di-2-ethylhexyl phthalate. was put into a Henschel mixer, and the temperature was raised while stirring and mixing. Stirring was continued until the resin temperature rose to 130°C, so that the plasticizer was absorbed into the vinyl chloride straight polymer. Cool the polymer while stirring, and when the resin temperature of the polymer reaches 60°C, add the emulsion polymer shown in Table 3 to the polymer at a predetermined ratio, and continue mixing for the time shown in Table 3. did. In the composition thus prepared, the surface of the vinyl chloride resin that has absorbed the plasticizer is coated with the emulsion polymer at a coverage ratio shown in Table 3. Table 3 shows the evaluation results when these resin compositions were subjected to powder molding. It can be seen that a powder molded body with good physical properties and a good matte state can only be obtained when a methyl methacrylate emulsion polymer or a styrene-acrylonitrile emulsion copolymer is used. In addition, the characteristics of the resin composition for powder molding and the physical properties of the molded article in the Examples were measured as follows. (1) Measurement of coverage was carried out by observation of electron micrographs. In order to calculate the coverage rate, it is necessary to calculate the surface area of the particle and the area of the covered part. When photographing spherical particles, it is difficult to fairly evaluate the surface area of slanted parts, so we also express the coverage ratio of parts that can be considered to be approximately horizontal. For example, in the case of a photograph of a spherical particle, assuming that the radius of the particle on the plane is R, the coverage of a portion surrounded by a diameter of 1/3R from the center was determined. The method provides extremely accurate coverage. (2) Powder fluidity 100 ml of the composition was put into a hopper for a bulk density measuring device according to JIS K 6721, and the fluidity was judged based on the time (seconds) for the entire amount of the composition to fall from the hopper. (3) Elongation The powder molding composition was coated on aluminum foil to a thickness of 1 mm and sintered for 10 minutes in an oven controlled at 200℃.The resulting film was rated according to JIS standards.
Measured by K 6723. (4) Matte state The film obtained in item (3) was visually evaluated on a five-point scale. Grade 5 (good matte) - Grade 1 (poor).

【表】【table】

【表】 実施例8、比較例5〜6 表4に表示した塩化ビニル樹脂(いずれも懸濁
重合、ストレートポリマー)100重量部、フタル
酸ジイソデシル120重量部、錫系安定剤1重量部
を110℃に温調せしめられたリボンブレンダーに
て1時間加熱混合して可塑剤を吸収せしめた。塩
化ビニル系樹脂と、乳化重合体〔〕を85/15
(重量割合)の割合で混合し擂潰機にて20分間混
練混合したところ、該乳化重合体による被覆率が
表4に示した粉体成形用塩化ビニル樹脂組成物が
得られた。該組成物を実施例1と同様の方法によ
り粉体成形体を製造した。組成物の粉体特性及び
成形体の評価結果を表4に併記するが、700(1+
X/100)≧Y≧250(1+X/100)の範囲内にある重
合 度をもつ塩化ビニル樹脂を使用した時に優れた結
果を示していることがわかる。
[Table] Example 8, Comparative Examples 5 to 6 100 parts by weight of the vinyl chloride resin shown in Table 4 (both suspension polymerization and straight polymer), 120 parts by weight of diisodecyl phthalate, and 1 part by weight of tin-based stabilizer were added to 110 parts by weight. The mixture was heated and mixed for 1 hour using a ribbon blender kept at a temperature of 0.degree. C. to absorb the plasticizer. PVC resin and emulsion polymer []85/15
(weight ratio) and kneaded and mixed for 20 minutes using a crusher to obtain a vinyl chloride resin composition for powder molding having a coverage rate of the emulsion polymer shown in Table 4. A powder compact was produced from the composition in the same manner as in Example 1. The powder characteristics of the composition and the evaluation results of the molded body are also listed in Table 4.
It can be seen that excellent results were obtained when a vinyl chloride resin having a degree of polymerization within the range of X/100)≧Y≧250 (1+X/100) was used.

【表】 実施例9〜17、比較例7〜10 実施例1と同様の方法により、被覆率を変えた
粉体成形用樹脂組成物を製造し、組成物の特性及
び粉体成形体の表面平滑性を測定し表5に記し
た。 なお、溶融性、表面平滑性及び熱安定性の測定
は次の方法によつた。 (4) 溶融性 アルミ箔上に粉体成形用樹脂組成物を1mm厚
にコーテイングし、180℃で加熱し、透明フイ
ルムになるまでの時間で判定した。 (5) 表面平滑性 アルミ箔上に粉体成形用樹脂組成物を2mm厚
さにコーテイングし、200℃に調温されたオー
ブン中で3分間焼結せしめ、得られたシートを
小坂式万能表面測定機にかけ凹凸の度合を調べ
た。凸部の最大厚みのところと凹部の最小厚み
のところの差で表わした。 (6) 熱安定性 (4)項で製造した透明フイルムを220℃のギヤ
オーブン中で加熱し、フイルムが変色するまで
の時間で判定した。
[Table] Examples 9 to 17, Comparative Examples 7 to 10 Powder molding resin compositions with different coverage rates were produced by the same method as in Example 1, and the characteristics of the compositions and the surface of powder molded bodies were The smoothness was measured and recorded in Table 5. The meltability, surface smoothness and thermal stability were measured by the following methods. (4) Meltability A resin composition for powder molding was coated on aluminum foil to a thickness of 1 mm, heated at 180°C, and evaluated based on the time it took to form a transparent film. (5) Surface smoothness The resin composition for powder molding was coated on aluminum foil to a thickness of 2 mm and sintered for 3 minutes in an oven controlled at 200°C. The degree of unevenness was examined using a measuring machine. It is expressed as the difference between the maximum thickness of the convex portion and the minimum thickness of the concave portion. (6) Thermal stability The transparent film produced in item (4) was heated in a gear oven at 220°C, and the evaluation was based on the time it took for the film to change color.

【表】 実施例18、比較例11〜12 実施例8及び比較例5、6で用いた塩化ビニル
系樹脂を実施例8と同様にして被覆率90%未満の
粉体成形用樹脂組成物を製造し、粉体流動性、溶
融性、熱安定性、成形体の表面平滑性を測定し、
表6に示した。 この結果、700(1+X/100)≧Y≧250(1+X/1
00) の範囲外にある重合度をもつ塩化ビニル系樹脂を
使用したとき表面平滑性が劣ることが判る。
[Table] Example 18, Comparative Examples 11-12 A resin composition for powder molding with a coverage of less than 90% was prepared using the vinyl chloride resin used in Example 8 and Comparative Examples 5 and 6 in the same manner as in Example 8. manufactured and measured the powder fluidity, meltability, thermal stability, and surface smoothness of the molded product,
It is shown in Table 6. As a result, 700(1+X/100)≧Y≧250(1+X/1
It can be seen that when a vinyl chloride resin having a degree of polymerization outside the range of 00) is used, the surface smoothness is poor.

【表】 実施例 19〜21 実施例1と同様の方法により、可塑剤を吸収せ
しめた塩化ビニル系樹脂の表面を、表7に示した
熱可塑性乳化重合体でもつていずれも40%の被覆
率になるように被覆した。これら組成物の粉体特
性及び成形体の評価結果を表7に併記した。
[Table] Examples 19 to 21 Using the same method as in Example 1, the surface of vinyl chloride resin that had absorbed a plasticizer was coated with the thermoplastic emulsion polymer shown in Table 7, with a coverage rate of 40% in each case. It was coated so that Table 7 also lists the powder properties and molded body evaluation results of these compositions.

【表】【table】

Claims (1)

【特許請求の範囲】 1 可塑剤を吸収せしめた塩化ビニル系樹脂に熱
可塑性乳化重合体を被覆してなる粉体成形用樹脂
組成物であつて、前記可塑剤は前記塩化ビニル系
樹脂の粘度平均重合度Yとの間に次の一般式の範
囲で表わされるX量用い、 700(1+X/100)≧Y≧250(1+X/100) 〔式中、Xは、塩化ビニル系樹脂100重量部当り
の可塑剤の重量部であり、10以上の値、Yは、塩
化ビニル系樹脂の粘度平均重合度をそれぞれ示
す。〕 前記熱可塑性乳化重合体は、平均粒子径が0.05
〜1μmの塩化ビニル系乳化重合体、メチルメタ
クリレート系乳化重合体またはスチレン−アクリ
ロニトリル系乳化共重合体(ただし、アクリロニ
トリル含有量20〜40重量%の範囲)の少なくとも
一種を用い、かつ可塑剤を吸収した塩化ビニル系
樹脂の表面積の熱可塑性乳化重合体による被覆率
が少なくとも5%であることを特徴とする粉体成
形用樹脂組成物。 2 被覆率が5%以上90%未満の、表面平滑な粉
体成形体の製造を可能ならしめる、特許請求の範
囲第1項記載の粉体成形用樹脂組成物。 3 被覆率が90%以上の、艶消し粉体成形体の製
造を可能ならしめる、特許請求の範囲第1項記載
の粉体成形用樹脂組成物。
[Scope of Claims] 1. A resin composition for powder molding comprising a vinyl chloride resin that has absorbed a plasticizer and coated with a thermoplastic emulsion polymer, wherein the plasticizer has a viscosity of the vinyl chloride resin. Using the amount of X expressed in the range of the following general formula between the average degree of polymerization Y, 700 (1 + X / 100) ≧ Y ≧ 250 (1 + X / 100) [wherein, It is the weight part of the plasticizer per unit, and the value is 10 or more, and Y indicates the viscosity average degree of polymerization of the vinyl chloride resin. ] The thermoplastic emulsion polymer has an average particle size of 0.05
Uses at least one of ~1 μm vinyl chloride emulsion polymer, methyl methacrylate emulsion polymer, or styrene-acrylonitrile emulsion copolymer (acrylonitrile content in the range of 20 to 40% by weight), and absorbs a plasticizer. A resin composition for powder molding, characterized in that the surface area of the vinyl chloride resin covered by the thermoplastic emulsion polymer is at least 5%. 2. The resin composition for powder molding according to claim 1, which makes it possible to produce a powder molded body with a smooth surface and a coverage of 5% or more and less than 90%. 3. The resin composition for powder molding according to claim 1, which makes it possible to produce a matte powder molded body having a coverage of 90% or more.
JP3010783A 1983-02-24 1983-02-24 Resin composition for powder forming Granted JPS59166546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3010783A JPS59166546A (en) 1983-02-24 1983-02-24 Resin composition for powder forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3010783A JPS59166546A (en) 1983-02-24 1983-02-24 Resin composition for powder forming

Publications (2)

Publication Number Publication Date
JPS59166546A JPS59166546A (en) 1984-09-19
JPS6354019B2 true JPS6354019B2 (en) 1988-10-26

Family

ID=12294549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3010783A Granted JPS59166546A (en) 1983-02-24 1983-02-24 Resin composition for powder forming

Country Status (1)

Country Link
JP (1) JPS59166546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122357U (en) * 1989-03-17 1990-10-05

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189511A1 (en) * 2022-03-31 2023-10-05 日本ゼオン株式会社 Vinyl chloride resin composition for powder molding, method for producing same, vinyl chloride resin molded body, and laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990336A (en) * 1972-12-29 1974-08-29
JPS5028105A (en) * 1973-07-19 1975-03-22
JPS5123547A (en) * 1974-07-17 1976-02-25 Nippon Zeon Co Funmatsuseikeiyono funmatsuenkabinirujushisoseibutsu
JPS5613727A (en) * 1979-07-13 1981-02-10 Fujitsu Ltd Washing method
JPS56125443A (en) * 1980-03-07 1981-10-01 Chisso Corp Vinyl chloride resin composition for powder molding and production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990336A (en) * 1972-12-29 1974-08-29
JPS5028105A (en) * 1973-07-19 1975-03-22
JPS5123547A (en) * 1974-07-17 1976-02-25 Nippon Zeon Co Funmatsuseikeiyono funmatsuenkabinirujushisoseibutsu
JPS5613727A (en) * 1979-07-13 1981-02-10 Fujitsu Ltd Washing method
JPS56125443A (en) * 1980-03-07 1981-10-01 Chisso Corp Vinyl chloride resin composition for powder molding and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122357U (en) * 1989-03-17 1990-10-05

Also Published As

Publication number Publication date
JPS59166546A (en) 1984-09-19

Similar Documents

Publication Publication Date Title
KR20090111853A (en) Methacrylic polymer particles, process for production thereof, plastisol compositions made by using the particles, and articles made by using the compositions
JPH10510303A (en) Elastomer graft polymer
JPH0461899B2 (en)
JPS6354019B2 (en)
JP3509085B2 (en) Synthetic resin powder for plastisol and method for producing the same
CS216216B2 (en) Composition of the disperse and extension resin fitted for preparation of the plastisoles and organosoles and method of making the same
US5179138A (en) Process for producing a vinyl chloride resin composition for powder molding
JPS6215563B2 (en)
JPS61133257A (en) Vinyl chloride resin composition
JP3361094B2 (en) Free flowing powdered polyvinyl chloride composition
JPH0352496B2 (en)
JP3998762B2 (en) Vinyl chloride resin granules for paste processing and method for producing the same
JPS5915145B2 (en) Impact resistant thermoplastic resin composition
KR910008582B1 (en) Process for producing a vinyl chloride resin composition for powder molding
JPH05156184A (en) Production of vinyl chloride resin power composition
JPS648661B2 (en)
JP4526843B2 (en) Vinyl chloride resin particles for paste and composition thereof
JPS6354018B2 (en)
JPH02185550A (en) Thermoplastic molding compound
JPS648663B2 (en)
JPH02302412A (en) New processing aid
JPH03195755A (en) Vinyl chloride resin composition
JPH0494908A (en) Resin composition for powder molding
WO2023095825A1 (en) Vinyl chloride-based paste resin and resin composition for automobile undercoating
JPH06220280A (en) Vinyl chloride resin composition for paste and its production