JPS6239621B2 - - Google Patents

Info

Publication number
JPS6239621B2
JPS6239621B2 JP899480A JP899480A JPS6239621B2 JP S6239621 B2 JPS6239621 B2 JP S6239621B2 JP 899480 A JP899480 A JP 899480A JP 899480 A JP899480 A JP 899480A JP S6239621 B2 JPS6239621 B2 JP S6239621B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
plasticizer
chloride resin
composition
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP899480A
Other languages
Japanese (ja)
Other versions
JPS56106945A (en
Inventor
Tetsuya Yamada
Katsuoki Kamimura
Hideo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP899480A priority Critical patent/JPS56106945A/en
Publication of JPS56106945A publication Critical patent/JPS56106945A/en
Publication of JPS6239621B2 publication Critical patent/JPS6239621B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、流動浸漬用に適した塩化ビニル系樹
脂組成物に関するものである。 塩化ビニル樹脂は、その優れた機械的性質、耐
候性、耐薬品性に加えて、比較的安価であるた
め、広範囲の用途に使われているが、流動浸漬法
に使用する場合は高温時の熱安定性、溶融流動
性、粉末流動性等の加工性が要求される。塩化ビ
ニル樹脂は、可塑剤との相溶性が優れているた
め、可塑剤の量を変化させて、軟いものから硬い
ものまで巾広い製品を得ることができるが、汎用
の塩化ビニル樹脂は可塑剤を吸収する量が少な
く、ゲル化温度以内の温度で可塑剤と加熱混合し
冷却して得られる樹脂組成物の粉末流動性は可塑
剤量を増加させるに比例して悪化し、ひいては該
樹脂組成物同志が凝集して、保存中には固化する
までになり、流動浸漬用として使用不能となる。 一方、この様な欠点を改善するため、可塑剤の
添加量を少なくして完全に塩化ビニル樹脂内に吸
収させてしまうか、あるいは可塑剤を吸収させた
該樹脂組成物に多量の微粉末たとえばペーストレ
ジン、シリカなどを添加し、塩化ビニル樹脂表面
に付着させて、塩化ビニル樹脂表面に残留する可
塑剤の粘着性を防止する等の方法がある。ところ
が単に可塑剤の添加量を減らすだけでは溶融流動
性が悪化し、流動浸漬後の製品外観を損う。した
がつて同一の製品外観を得るために加工温度を上
げると該樹脂組成物が熱分解し、ひいては製品の
機械的、熱的性質が劣化する。 また、多量の微粉子を該樹脂組成物に添加する
場合、微粉末の塩化ビニル樹脂への付着力が弱い
ため、長時間浸漬層内で流動させ続けると、微粉
末と塩化ビニル樹脂が分級して、微粒子は流動層
の上層に浮上し、上部と下部の粒度分布が異なる
ようになり、粒子の大きさで被塗装物への付着量
が異なるため、厚みが上部と下部で不均一とな
り、製品外観を非常に損うのみならず、流動中微
粉末が飛散して作業環境を悪化させる弊害をとも
なうことになる。 本発明の目的は、かゝる従来の欠点を改良し、
流動浸漬用として優れた諸性質をもつた塩化ビニ
ル系樹脂組成物を提供することである。 本発明の流動浸漬用塩化ビニル系樹脂組成物
(以下組成物と言う)は、ミクロポアーボリユー
ムが0.3〜1.8c.c./g、マクロポアーボリユームが
0.6c.c./g以下で、かつポアーボリユームの合計
が0.85c.c./g以上である細孔を有する均一な球状
の塩化ビニル系樹脂粉末100重量部に対し、可塑
剤20〜100重量部からなることを特徴とする。さ
らに詳しくは、該樹脂と該可塑剤の混合に際しゲ
ル化温度以下の温度で加熱混合後冷却して得られ
るものであり、32メツシユスルーのものである。 本発明の組成物の一成分である塩化ビニル樹脂
は、ミクロポアーボリユームが0.3c.c./g以上望
ましくは0.4c.c./g以上で通常0.3〜1.8c.c./gであ
る。マクロポアーボリユームが0.6c.c./g以下望
ましくは0.5c.c./g以下であり、かつ、ポアーボ
リユームの合計が0.85c.c./g以上である細孔を有
するものであり、32メツシユスルー、500μ以下
の粒径を有する凹凸のない均一な球形の粉末であ
る。該樹脂は可塑剤を吸収する量が多くかつ可塑
剤を吸収した後の保持性も高いため、可塑剤と加
熱混合し冷却して得られる該樹脂組成物は、溶融
流動性、熱安定性、粉末流動性の優れたものとな
る。特に粒子表面の凹凸間に存在するマクロポア
ーは可塑剤を液滴として保持する傾向があり、可
塑剤が粒子表面に浸出しやすく、そのボリユーム
が0.6g/c.c.以上であれば粒子間の粘着性を増大
させ流動性が極めて劣る原因になりやすい。ミク
ロポアーボリユームはできるだけ大きい方が好ま
しく、その値が大きくなると可塑剤保持性が極め
て優れるため一旦吸収してしまえば粒子表面に可
塑剤が浸出することが少なくなり、流動性は大巾
に向上する。それに反して、可塑剤吸収速度は悪
化するがブレンド温度を高く、ブレンド時間を長
くすることで、何等支障なく樹脂組成物を製造す
ることが可能である。ポアーボリユームの合計が
0.85c.c./g以下になると可塑剤の吸収量が少なく
なり、粒子表面に可塑剤が残留して流動性を悪化
させる。 本発明の組成物に使用する塩化ビニル樹脂は懸
濁重合、塊状重合もしくは懸濁重合/乳化重合併
用など、特に重合方法によつて限定されるもので
はないが、好ましくは懸濁重合/乳化重合併用に
よる特公昭49−2189による方法で得られたものが
有利である。 すなわち、塩化ビニルまたはこれと共重合しう
る他のビニル単量体との混合物をまず油溶性ラジ
カル開始剤を用いて水性懸濁重合し、該重合開始
2時間〜10時間経過後、水溶性ラジカル開始剤を
添加して重合を続行する方法により得られる塩化
ビニル樹脂は実施各例に例示のように、0.3〜1.8
c.c./gのミクロポアーボリユーム、0.6c.c./g以
下のマクロポアーボリユームおよび合計ポアーボ
リユームが0.85c.c./g以上の細孔を有する塩化ビ
ニル樹脂であり、本発明において好ましく用いら
れる。 本発明の他の成分である可塑剤は、その種類は
特に限定される必要はなく、公知の可塑剤を使用
することができる。たとえば、フタル酸系可塑
剤、トリメリツト酸系可塑剤、脂肪族一塩基酸エ
ステル系可塑剤、脂肪族二塩基酸エステル系可塑
剤、芳香族エステル系可塑剤、ヒドロキシ酸エス
テル系可塑剤、石炭タール留分系可塑剤、エポキ
シ系可塑剤、リン酸エステル、ポリエステル系可
塑剤、等を使用する。その使用量は塩化ビニル系
樹脂100重量部に対して20〜100重量部であり、望
ましくは25〜40重量部である。可塑剤の使用量が
20重量部以下の場合、粉末流動性、粉末凝集性は
極めて優れたものになるが、溶融流動性が悪化す
るため製品外観を損う。したがつて、同一の製品
外観を得るためには加工温度を上げる必要があ
り、加工温度を上げると該組成物が熱分解し、ひ
いては製品の機械的、熱的性質が劣化する。可塑
剤の使用量が100重量部以上になると、溶融流動
性は極めて優れたものになるが、塩化ビニル樹脂
が可塑剤を保持できなくなり粉末流動性が極端に
悪化し、ひいては該組成物が凝集し固化するまで
になる。 本発明の組成物の塩化ビニル樹脂と可塑剤の混
合は、公知の混合機たとえばヘンセルミキサー
(商品名)、リボンブレンダーなどを用いて容易に
実施できる。混合に際して公知の種々の安定剤の
ほか種々の公知の塩化ビニル樹脂組成物用加工助
剤を本発明の目的を損わない範囲内で配合でき
る。 本発明の組成物の特徴は、粒子表面に可塑剤の
流出が少く粉末流動性、熱安定性がすぐれて、組
成物同志が凝集することがなく、保存中に固化す
ることがない。また、溶融流動性がすぐれて、被
塗装物への付着が均一である。さらに流動浸漬中
の微粉末の飛散がなく作業環境がよいなどの利点
がある。 本発明の組成物は、組成物の塩化ビニル樹脂粒
子内に含む可塑剤が従来のものより多いため、溶
融流動性がよくなり、そのため加工温度を低くし
て流動浸漬することが可能となり、ひいては熱安
定性が良好となると考えられる。 以下に実施例を示すが、本発明はこれに、限定
されるものではない。 実施例に用いた塩化ビニル樹脂サンプルの性質
の試験はつぎの方法で行つた。 ポアーボリユーム:水銀圧入式ポロシメーター
(カルロエルバ社製モデル70)にて測定し、半
径0.004〜7.5μ未満までの細孔の容積をミクロ
ポアーボリユーム、半径7.5〜75μの細孔の容
積をマクロポアーボリユームとして示す。 嵩比重・粒度:JIS K−6721に準拠した。 可塑剤保持量:PVC100gをDOP中に23℃で1時
間浸漬後、遠心分離機(3000rpm)でDOPを分
離後、PVCに付着しているDOPのg数で示
す。 可塑剤吸収速度:80℃の湯浴中に浸漬した容器に
PVC100g、DOP50gを加え撹拌しながらDOP
がPVCに吸収されてサラサラの状態になるま
での時間で示す。 また、本発明の組成物は以下の方法で試験を行
つた。 粉末流動性:組成物を290φ流動層で流動させ
て、浮上の程度を観察して4段階にて示す。 ◎……浮上率が大でバブリングなし、〇……浮
上率が中でバブリングなし、△……浮上率が小
でバブリングなし、×……浮上せず、バブリン
グあり、 粉末凝固性:組成物を25Kg詰紙袋に充填し、30日
間放置後、凝固状態を観察して4段階にて示
す。 ◎……凝固物なし、〇……凝固物が僅かにあ
る、△……凝固物が少量ある、×……凝固物が
多量ある。 表面平滑性:組成物の粉末流動性のテスト中最適
に流動させた状態で50×100×3.2mmの鉄板を
300℃に加熱して浸漬・被覆して、被覆表面の
平滑性を観察して4段階にて示す。 ◎……極めて平滑、〇……僅かにムラ、△……
少しムラ、×……多くのムラ、 実施例1〜4、比較例1〜2 内容積200のステンレス製重合器に脱イオン
水128Kg、ラジカル開始剤として、ジラウロイル
パーオキサイド(LPO)を51.2g、懸濁安定剤と
してケン化度73%のポリビニルアルコール51.2g
を仕込み、器内の空気を除去後51.2Kgの塩化ビニ
ルモノマーを仕込み、撹拌下に64℃で重合を開始
する。重合開始2.5時間後に水溶性ラジカル開始
剤として25.6gの過硫酸カリ(KPS)を3%の水
溶液として注入する。8時間後に(内圧9.0Kg/
cm2ゲージ圧に低下)、重合を停止し未反応ガスを
排出し得られたポリマーを水洗、乾燥し塩化ビニ
ル樹脂粉末サンプルA、B、C、Dとした。尚撹
拌動力は表1に示すようにかい型羽根の回転数を
変えることで変化させた。比較のために油溶性開
始剤単独の重合を行つた。上記と異なる点はKPS
触媒を重合途中で圧入することは行わず、LPO
を76.8g使用して7.5時間後に内圧9.0Kg/cm2に低
下した時点で重合を停止し以下上記と同様に処理
し塩化ビニル樹脂粉末サンプルE、Fを得た。こ
れらの塩化ビニル樹脂粉末の性質を表1に示す。 これらの塩化ビニル樹脂粉末を20Kg、ジオクチ
ルフタレート(DOP)8Kg、ジブチルスズジラ
ウレート0.4Kg、ジブチルスズメルカプト0.6Kg、
酸化チタン1Kgを100ヘンセルに投入し、120℃
まで加熱、撹拌後冷却し30メツシユの篩をパスし
たものを組成物とした。 該組成物を所定の方法で試験を行なつた結果を
表1に示す。
The present invention relates to a vinyl chloride resin composition suitable for fluidized dipping. PVC resin is used in a wide range of applications due to its excellent mechanical properties, weather resistance, and chemical resistance, as well as its relatively low cost. Processability such as thermal stability, melt flowability, and powder flowability is required. PVC resin has excellent compatibility with plasticizers, so it is possible to obtain a wide range of products from soft to hard by changing the amount of plasticizer, but general-purpose vinyl chloride resins have excellent compatibility with plasticizers. The powder fluidity of the resin composition obtained by heating and mixing with a plasticizer at a temperature below the gelling temperature and cooling deteriorates in proportion to the amount of plasticizer, and as a result, the resin The composition coagulates and becomes solidified during storage, making it unusable for fluid dipping. On the other hand, in order to improve such drawbacks, the amount of plasticizer added may be reduced so that it is completely absorbed into the vinyl chloride resin, or a large amount of fine powder, such as a large amount of fine powder, may be added to the resin composition in which the plasticizer has been absorbed. There is a method of adding paste resin, silica, etc. and making it adhere to the surface of the vinyl chloride resin to prevent the stickiness of the plasticizer remaining on the surface of the vinyl chloride resin. However, simply reducing the amount of plasticizer added deteriorates the melt fluidity and impairs the appearance of the product after fluid immersion. Therefore, if the processing temperature is increased in order to obtain the same product appearance, the resin composition will thermally decompose and the mechanical and thermal properties of the product will deteriorate. In addition, when a large amount of fine powder is added to the resin composition, the adhesion of the fine powder to the vinyl chloride resin is weak, so if it continues to flow in the immersion layer for a long time, the fine powder and the vinyl chloride resin will be classified. As a result, the fine particles float to the upper layer of the fluidized bed, and the particle size distribution at the top and bottom becomes different, and because the amount of adhesion to the object to be coated differs depending on the size of the particles, the thickness becomes uneven between the top and bottom. This not only seriously impairs the appearance of the product, but also causes the fine powder to scatter during the flow, resulting in an adverse effect of deteriorating the working environment. The purpose of the present invention is to improve such conventional drawbacks,
It is an object of the present invention to provide a vinyl chloride resin composition having excellent properties for use in fluidized dipping. The vinyl chloride resin composition for fluidized dipping of the present invention (hereinafter referred to as the composition) has a micropore volume of 0.3 to 1.8cc/g and a macropore volume of 0.3 to 1.8cc/g.
20 to 100 parts by weight of plasticizer per 100 parts by weight of uniform spherical vinyl chloride resin powder having pores of 0.6 cc/g or less and a total pore volume of 0.85 cc/g or more. Features. More specifically, it is obtained by heating and mixing the resin and the plasticizer at a temperature below the gelation temperature and then cooling, and has a mesh throughput of 32. The vinyl chloride resin which is one component of the composition of the present invention has a micropore volume of 0.3 cc/g or more, preferably 0.4 cc/g or more, and usually 0.3 to 1.8 cc/g. It has pores with a macropore volume of 0.6cc/g or less, preferably 0.5cc/g or less, and a total pore volume of 0.85cc/g or more, and has a particle size of 32 mesh through and 500μ or less. It is a uniform spherical powder with no irregularities. Since the resin absorbs a large amount of plasticizer and has a high retention property after absorbing the plasticizer, the resin composition obtained by heating and mixing with the plasticizer and cooling it has good melt flowability, thermal stability, The powder has excellent fluidity. In particular, the macropores that exist between the irregularities on the particle surface tend to hold the plasticizer in the form of droplets, and the plasticizer easily leaches onto the particle surface. This tends to cause the fluidity to become extremely poor. It is preferable for the micropore volume to be as large as possible; the larger the value, the better the plasticizer retention, so once absorbed, the plasticizer will be less leached to the particle surface, and the fluidity will be greatly improved. . On the other hand, it is possible to produce a resin composition without any problems by increasing the blending temperature and lengthening the blending time, although the plasticizer absorption rate deteriorates. The total pore volume is
When the amount is less than 0.85 cc/g, the amount of plasticizer absorbed decreases, and the plasticizer remains on the particle surface, worsening fluidity. The vinyl chloride resin used in the composition of the present invention is not particularly limited by the polymerization method, such as suspension polymerization, bulk polymerization, suspension polymerization/emulsion polymerization, etc., but preferably suspension polymerization/emulsion polymerization. It is advantageous to use the method according to Japanese Patent Publication No. 49-2189 in combination. That is, vinyl chloride or a mixture with other vinyl monomers copolymerizable with vinyl chloride is first subjected to aqueous suspension polymerization using an oil-soluble radical initiator, and after 2 to 10 hours have elapsed from the start of the polymerization, water-soluble radicals are The vinyl chloride resin obtained by the method of continuing polymerization by adding an initiator has a molecular weight of 0.3 to 1.8 as exemplified in each example.
The vinyl chloride resin has pores with a micropore volume of cc/g, a macropore volume of 0.6 cc/g or less, and a total pore volume of 0.85 cc/g or more, and is preferably used in the present invention. The type of plasticizer, which is another component of the present invention, does not need to be particularly limited, and any known plasticizer can be used. For example, phthalate plasticizers, trimellitic acid plasticizers, aliphatic monobasic acid ester plasticizers, aliphatic dibasic acid ester plasticizers, aromatic ester plasticizers, hydroxy acid ester plasticizers, coal tar. Distillate plasticizers, epoxy plasticizers, phosphate esters, polyester plasticizers, etc. are used. The amount used is 20 to 100 parts by weight, preferably 25 to 40 parts by weight, per 100 parts by weight of the vinyl chloride resin. The amount of plasticizer used
If the amount is 20 parts by weight or less, the powder fluidity and powder cohesiveness will be extremely excellent, but the melt fluidity will deteriorate and the product appearance will be impaired. Therefore, in order to obtain the same product appearance, it is necessary to increase the processing temperature, which thermally decomposes the composition and thus deteriorates the mechanical and thermal properties of the product. If the amount of plasticizer used is 100 parts by weight or more, the melt fluidity will be extremely good, but the vinyl chloride resin will no longer be able to hold the plasticizer, and the powder fluidity will be extremely deteriorated, and the composition will agglomerate. until it solidifies. The vinyl chloride resin and plasticizer of the composition of the present invention can be easily mixed using a known mixer such as a Hensel mixer (trade name) or a ribbon blender. During mixing, in addition to various known stabilizers, various known processing aids for vinyl chloride resin compositions can be added within a range that does not impair the object of the present invention. The composition of the present invention is characterized by less plasticizer flowing out onto the particle surface, excellent powder fluidity and thermal stability, and the compositions do not aggregate together and do not solidify during storage. Furthermore, it has excellent melt fluidity and adheres uniformly to the object to be coated. Another advantage is that there is no scattering of fine powder during fluidized immersion, resulting in a good working environment. Since the composition of the present invention contains a larger amount of plasticizer in the vinyl chloride resin particles than conventional compositions, it has better melt flowability, which makes it possible to perform fluid dipping at a lower processing temperature. It is thought that thermal stability will be improved. Examples are shown below, but the present invention is not limited thereto. The properties of the vinyl chloride resin samples used in the Examples were tested in the following manner. Pore volume: Measured using a mercury intrusion porosimeter (model 70 manufactured by Carlo Erba), the volume of pores with a radius of 0.004 to less than 7.5μ is defined as the micropore volume, and the volume of pores with a radius of 7.5 to 75μ is defined as the macropore volume. show. Bulk specific gravity/particle size: Based on JIS K-6721. Amount of plasticizer retained: After immersing 100 g of PVC in DOP at 23°C for 1 hour and separating the DOP with a centrifuge (3000 rpm), it is expressed as the number of grams of DOP attached to the PVC. Plasticizer absorption rate: in a container immersed in a water bath at 80℃
Add 100g of PVC and 50g of DOP and mix while stirring.
It is expressed as the time it takes for the material to be absorbed into PVC and become smooth. Further, the composition of the present invention was tested using the following method. Powder fluidity: The composition was fluidized in a 290φ fluidized bed, and the degree of floating was observed and evaluated in 4 stages. ◎... High floating rate and no bubbling, 0... Low floating rate and no bubbling, △... Low floating rate and no bubbling, ×... No floating and bubbling, Powder coagulation property: Composition Fill a 25Kg paper bag and leave it for 30 days, then observe the solidification state and rate it in 4 stages. ◎...No coagulated material, ○... A small amount of coagulated material is present, △... A small amount of coagulated material is present, ×... A large amount of coagulated material is present. Surface smoothness: During the powder flowability test of the composition, a 50 x 100 x 3.2 mm iron plate was
The coating was heated to 300°C, immersed and coated, and the smoothness of the coated surface was observed and evaluated in 4 stages. ◎...Extremely smooth, 〇...Slightly uneven, △...
A little unevenness, ×...a lot of unevenness, Examples 1 to 4, Comparative Examples 1 to 2 128 kg of deionized water and 51.2 g of dilauroyl peroxide (LPO) as a radical initiator were placed in a stainless steel polymerization vessel with an internal volume of 200. , 51.2g of polyvinyl alcohol with a degree of saponification of 73% as a suspension stabilizer
After removing the air inside the vessel, 51.2 kg of vinyl chloride monomer was charged and polymerization was started at 64°C with stirring. 2.5 hours after the start of polymerization, 25.6 g of potassium persulfate (KPS) was injected as a 3% aqueous solution as a water-soluble radical initiator. After 8 hours (internal pressure 9.0Kg/
cm 2 gauge pressure), polymerization was stopped, unreacted gas was discharged, and the resulting polymers were washed with water and dried to obtain vinyl chloride resin powder samples A, B, C, and D. As shown in Table 1, the stirring power was varied by changing the number of rotations of the paddle blades. For comparison, polymerization using an oil-soluble initiator alone was carried out. The difference from the above is KPS
The catalyst is not pressure-injected during polymerization, and LPO
After 7.5 hours, the polymerization was stopped when the internal pressure decreased to 9.0 kg/cm 2 , and the same procedure as above was carried out to obtain vinyl chloride resin powder samples E and F. Table 1 shows the properties of these vinyl chloride resin powders. 20 kg of these vinyl chloride resin powder, 8 kg of dioctyl phthalate (DOP), 0.4 kg of dibutyltin dilaurate, 0.6 kg of dibutyltin mercapto,
Pour 1 kg of titanium oxide into 100 Hensel and heat to 120℃.
The mixture was heated to 100%, stirred, cooled, and passed through a 30-mesh sieve to obtain a composition. Table 1 shows the results of testing the composition according to a predetermined method.

【表】【table】

【表】 実施例5〜8、比較例3〜4 かい型羽根をブルーマージン型羽根に変更し撹
拌動力を表2に示すようにした以外は実施例1と
同様の操作を行つて塩化ビニル樹脂粉末G、H、
I、Jのサンプルを得た。また比較例3〜4とし
て、かい型羽根をブルーマージン型羽根に変更
し、撹拌動力を表2に示すようにした以外は比較
例1〜2と同様の操作を行つて塩化ビニル樹脂粉
末K、Lのサンプルを得た。これらの性質を表2
に示す。 これらの塩化ビニル樹脂粉末を用い実施例1と
同様にして組成物を得た。その試験結果を表2に
示す。
[Table] Examples 5 to 8, Comparative Examples 3 to 4 Vinyl chloride resin was prepared in the same manner as in Example 1, except that the paddle-shaped impeller was changed to a blue margin-type impeller and the stirring power was as shown in Table 2. Powder G, H,
Samples I and J were obtained. In addition, as Comparative Examples 3 and 4, the same operations as in Comparative Examples 1 and 2 were performed except that the paddle-shaped impeller was changed to a blue margin-type impeller and the stirring power was as shown in Table 2. A sample of L was obtained. Table 2 shows these properties.
Shown below. A composition was obtained in the same manner as in Example 1 using these vinyl chloride resin powders. The test results are shown in Table 2.

【表】【table】

【表】 実施例9〜11、比較例5〜6 実施例3において、組成物のDOP量のみを表
3に示すように換えて他は同様に行なつた。その
結果を表3に示す。
[Table] Examples 9 to 11, Comparative Examples 5 to 6 Example 3 was carried out in the same manner as in Example 3 except that only the DOP amount of the composition was changed as shown in Table 3. The results are shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ミクロポアーボリユームが0.3〜1.8c.c./g、
マクロポアーボリユームが0.6c.c./g以下で、か
つポアーボリユームの合計が0.85c.c./g以上であ
る細孔を有する均一な球状の塩化ビニル系樹脂粉
末100重量部に対し、可塑剤20〜100重量部からな
る流動浸漬用塩化ビニル系樹脂組成物。 2 32メツシユスルーの粉状である特許請求の範
囲第1項記載の組成物。
[Claims] 1. Micropore volume is 0.3 to 1.8 cc/g,
20 to 100 parts by weight of plasticizer per 100 parts by weight of uniform spherical vinyl chloride resin powder having pores with a macropore volume of 0.6 cc/g or less and a total pore volume of 0.85 cc/g or more. A vinyl chloride resin composition for fluidized dipping. 2. The composition according to claim 1, which is in the form of a powder with a 32-mesh through content.
JP899480A 1980-01-29 1980-01-29 Vinyl chloride resin composition for fluidized bed dip coating Granted JPS56106945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP899480A JPS56106945A (en) 1980-01-29 1980-01-29 Vinyl chloride resin composition for fluidized bed dip coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP899480A JPS56106945A (en) 1980-01-29 1980-01-29 Vinyl chloride resin composition for fluidized bed dip coating

Publications (2)

Publication Number Publication Date
JPS56106945A JPS56106945A (en) 1981-08-25
JPS6239621B2 true JPS6239621B2 (en) 1987-08-24

Family

ID=11708230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP899480A Granted JPS56106945A (en) 1980-01-29 1980-01-29 Vinyl chloride resin composition for fluidized bed dip coating

Country Status (1)

Country Link
JP (1) JPS56106945A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210954A (en) * 1982-05-31 1983-12-08 Kanegafuchi Chem Ind Co Ltd Good delustered vinyl chloride resin composition
JPH0611877B2 (en) * 1986-03-20 1994-02-16 東亞合成化学工業株式会社 Powder coating composition
JPH0672169B2 (en) * 1988-11-14 1994-09-14 鐘淵化学工業株式会社 Spherical vinyl chloride resin granules

Also Published As

Publication number Publication date
JPS56106945A (en) 1981-08-25

Similar Documents

Publication Publication Date Title
US4408007A (en) Free-flowing sintering powders which have improved properties and are based on tetrafluoroethylene polymers and a process for their manufacture
JPH04216850A (en) Polyvinyl chloride plastisol composition
WO2006070591A1 (en) Aggregated-particle composition
EP0287757B1 (en) Crosslinked porous skinless particles of PVC resin and process for producing same
NO854019L (en) SPHERICAL POLYVINYL CHLORIDE PARTICLES.
JPS6157341B2 (en)
JPS6239621B2 (en)
EP0287701A2 (en) Skinless porous particle pvc resin and process for producing same
US5017631A (en) Method for making a spray dried emulsion polymer
WO2003004568A1 (en) Plastisol composition, gelled film and article
CS216216B2 (en) Composition of the disperse and extension resin fitted for preparation of the plastisoles and organosoles and method of making the same
JPS62232403A (en) Polymerization of vinyl monomer and production of porous polyvinyl chroride resin particles
US5179138A (en) Process for producing a vinyl chloride resin composition for powder molding
JPH11217479A (en) Polastisol composition and molded product
JP3998762B2 (en) Vinyl chloride resin granules for paste processing and method for producing the same
JP4526843B2 (en) Vinyl chloride resin particles for paste and composition thereof
EP0328724B1 (en) Process for producing a vinyl chloride resin composition for powder molding
JPS60235807A (en) Production of vinyl chloride polymer
JPS58149936A (en) Vinyl chloride resin compositon for powder molding
JP3036065B2 (en) Process for producing filled polytetrafluoroethylene granulated powder
JPH11124483A (en) Plastisol composition and molded product therefrom
JP2001517721A (en) Thermally film-forming material with polymerizable component (reactive plastisol)
JPS648661B2 (en)
JPH07304921A (en) Plastisol composition
JPH06322225A (en) Plastisol composition of excellent pot life