JPH01165559A - Selective racemization of optically active amino acid ester - Google Patents

Selective racemization of optically active amino acid ester

Info

Publication number
JPH01165559A
JPH01165559A JP32286387A JP32286387A JPH01165559A JP H01165559 A JPH01165559 A JP H01165559A JP 32286387 A JP32286387 A JP 32286387A JP 32286387 A JP32286387 A JP 32286387A JP H01165559 A JPH01165559 A JP H01165559A
Authority
JP
Japan
Prior art keywords
amino acid
optically active
peptide
acid ester
racemization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32286387A
Other languages
Japanese (ja)
Inventor
Yutaka Shiokawa
塩川 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP32286387A priority Critical patent/JPH01165559A/en
Publication of JPH01165559A publication Critical patent/JPH01165559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To racemize the title compound useful as a synthetic raw material for peptide rapidly and efficiently without adding another catalyst such as acid, by selectively racemizing an optically active alpha-amino acid ester in a polar solvent in the presence of peptide or a derivative thereof. CONSTITUTION:An optically active alpha-amino acid ester is selectively racemized in a polar solvent (e.g., ketone or methyl isobutyl ketone) in the presence of peptide or a derivative thereof (e.g., N-benzyloxycarbonyl-L-aspartyl-L- phenylalanine or an aliphatic lower alkyl ester thereof). The amount of the peptide or the derivative thereof added is >=about 0. 1mol, preferably about 0.5-about 5 mol based on 1 mol optically active alpha-amino acid ester. The racemization is carried out under heating at about 40-200 deg.C, preferably 90 deg.C-200 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光学活性α−アミノ酸エステルの選択的なラセ
ミ化法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for selective racemization of optically active α-amino acid esters.

(従来の技術) 光学活性なアミノ酸エステルは各種ペプチド類の合成出
発原料として有用であるが、一般な合成法によるアミノ
酸エステルはラセミ体であるためこれを適当光学分割等
の手段により、所望の光学活性体を得ることが必要にな
る。
(Prior art) Optically active amino acid esters are useful as starting materials for the synthesis of various peptides, but since amino acid esters produced by general synthetic methods are racemic, they can be converted into desired optical properties by means such as appropriate optical resolution. It is necessary to obtain the active form.

ところで、光学分割により得られるもう一方の所望でな
い光学活性体を有効に利用することが望まれるが、その
一つとしてこれを再びラセミ化し光学分割を経て漸時所
望の光学活性体に交換させていく利用法がある。
By the way, it is desired to effectively utilize the other undesired optically active substance obtained by optical resolution, and one way to do this is to racemize it again and gradually exchange it with the desired optically active substance through optical resolution. There are many ways to use it.

従来、知られた光学活性α−アミノ酸エステルのラセミ
化法としては、D−メチオニンエステルをアルデヒドと
反応させて、シプフ塩基とし、次いで加水分解する方法
(特公昭33−1755)光学活性アミノ酸エステルを
アルカリ金属と芳香族炭化水素より成る触媒、あるいは
アルカリを多孔性担体に分散、保持させた触媒に接触さ
せる方法(特開昭5O−50302)などがある。
Conventionally known racemization methods for optically active α-amino acid esters include a method in which D-methionine ester is reacted with aldehyde to form a Schipff base, and then hydrolyzed (Japanese Patent Publication No. 33-1755). There is a method of contacting a catalyst comprising an alkali metal and an aromatic hydrocarbon, or a catalyst in which an alkali is dispersed and held in a porous carrier (Japanese Patent Application Laid-open No. 50302-1983).

さらに光学活性フェニルアラニンエステルのラセミ化方
法として、当該ラセミ化をアルカリ金属アルコラードを
用いアルコール中で加熱して行う方法(米国特許第39
41831号明細′4i)が知られている。 またケト
ン溶媒中で加熱する方法(特開昭54−109912)
も知られている。
Furthermore, as a method for racemizing optically active phenylalanine ester, the racemization is carried out by heating in alcohol using an alkali metal alcoholade (US Patent No. 39
No. 41831 specification '4i) is known. Also, a method of heating in a ketone solvent (JP-A-54-109912)
is also known.

しかしながら、これらの公知方法のうち、シッフ塩基を
経由する方法では副反応が生起するので精製を十分に行
う必要がある。また触媒としてアルカリ金属など、又は
アルカリ金属アルコラードを使用する方法では触媒の製
造上、あるいはコスト上聞届があるなど必ずしも工業的
に有利な方法とは言えない。 ケトン溶媒中で加熱する
方法では、ケトンのみあるいは第二の触媒としてハロゲ
ン化水素酸、無機酸、脂肪族カルボン酸、芳香族カルボ
ン酸、有機スルホン酸、有機リン酸、ルイス酸を用いる
。ペプチド合成工業における合成反応系では原料アミノ
酸エステルと生成物ペプチドの共存する場合があり、こ
の系にこの方法を利用した場合、最大の問題は共存する
ペプチドを構成する原料アミノ酸エステル由来のアミノ
酸骨格をもラセミ化すると考えられていたことである。
However, among these known methods, the method via Schiff's base causes side reactions and therefore requires sufficient purification. In addition, methods using alkali metals or alkali metal alcolades as catalysts are not necessarily industrially advantageous, as there are concerns regarding catalyst production and cost considerations. In the method of heating in a ketone solvent, only a ketone or a hydrohalic acid, an inorganic acid, an aliphatic carboxylic acid, an aromatic carboxylic acid, an organic sulfonic acid, an organic phosphoric acid, or a Lewis acid are used as the second catalyst. In synthetic reaction systems in the peptide synthesis industry, raw amino acid esters and product peptides may coexist, and when this method is used in this system, the biggest problem is that the amino acid skeleton derived from the raw amino acid esters that make up the coexisting peptides is It was also thought that racemization would occur.

またこの方法では、ケトンのみを用いた場合ラセミ化反
応速度が非常に遅く、長時間の加熱を要するので、生成
物ペプチドが変質する恐れがある。
In addition, in this method, when only a ketone is used, the racemization reaction rate is very slow and long heating is required, so there is a risk that the product peptide may be denatured.

そこで第二の触媒としてこれらの酸を添加して反応速度
をあげている。しかし、そのため酸の添加、精製の操作
が加わることになり、やはり工業的に不利である。
Therefore, these acids are added as a second catalyst to increase the reaction rate. However, this requires addition of acid and purification operations, which is still industrially disadvantageous.

(発明が解決しようとする問題点) ペプチド合成工業においては合成反応後、目的の反応で
残った原料のアミノ酸エステルを有効利用するためにこ
れをラセミ化して用いるが、その際従来の方法ではラセ
ミ化触媒に選択性がない、あるいは低いため1、そのま
まラセミ化を行なうと生成物ペプチドを構成する原料ア
ミノ酸エステル由来の骨格をもラセミ化しする恐れがあ
り、原料と生成物であるペプチドを分離後、原料のみを
ラセミ化しなければならなかった。
(Problem to be solved by the invention) In the peptide synthesis industry, after the synthesis reaction, the amino acid ester of the raw material remaining from the target reaction is racemized and used in order to effectively utilize it. Because the reaction catalyst has no or low selectivity (1), if racemization is performed directly, there is a risk that the skeleton derived from the raw material amino acid ester that makes up the product peptide may also be racemized, so after separating the raw material and the product peptide, , only the raw materials had to be racemized.

さらにこの時、新たな触媒をを加えてラセミ化した後、
反応終了物を精製してフィードバックしなければならな
い。加えて生成物ペプチドの立体特異的精製製も難かし
い。
Furthermore, at this time, after adding a new catalyst and racemizing,
The reaction product must be purified and fed back. In addition, stereospecific purification of the product peptide is difficult.

従ってペプチド合成工業においては、共存するペプチド
の原料であるアミノ酸エステルのみを選択的にラセミ化
する方法が求められていた。
Therefore, in the peptide synthesis industry, there has been a need for a method for selectively racemizing only the coexisting amino acid esters that are raw materials for peptides.

本発明は、従来方法の様な繁雑な操作を避け、原料アミ
ノ酸エステルのみをラセミ化する方法を提供するもので
ある。
The present invention provides a method for racemizing only the starting amino acid ester, avoiding the complicated operations required in conventional methods.

(問題点を解決するための手段) 本発明者らは上記のように、従来共存する生成物ペプチ
ドをもラセミ化してしまうと考られていた問題を鋭意検
討した結果、驚くべきことに生成物ペプチドをプロトン
酸触媒として用いれば、酸などの他の触媒を添加するこ
となしに迅速に原料アミノ酸エステルをラセミ化できる
こと、及びペプチド中のアミノ酸骨格はほとんどラセミ
化されないことを見出して本発明に到達した。
(Means for Solving the Problems) As described above, the present inventors have intensively investigated the problem that was conventionally thought to result in racemization of coexisting product peptides, and have surprisingly found that The present invention was achieved by discovering that if a peptide is used as a protonic acid catalyst, the raw amino acid ester can be rapidly racemized without adding any other catalyst such as an acid, and that the amino acid skeleton in the peptide is hardly racemized. did.

従って、本発明は光学活性α−アミノ酸エステルを極性
溶媒中ペプチド又はその誘導体の存在下で選択的にラセ
ミ化することを特徴とする光学活性α−アミノ酸エステ
ルのラセミ化方法を提供するものである。
Therefore, the present invention provides a method for racemizing an optically active α-amino acid ester, which comprises selectively racemizing an optically active α-amino acid ester in the presence of a peptide or a derivative thereof in a polar solvent. .

(作用) 本発明方法によるラセミ化反応は光学活性α−アミノ酸
エステルを極性溶媒中で、側鎖あるいはC末端にカルボ
ン酸を持つペプチド又はその誘導体と共存させ、加熱す
ることにより進行する。
(Function) The racemization reaction according to the method of the present invention proceeds by allowing an optically active α-amino acid ester to coexist with a peptide or its derivative having a carboxylic acid at the side chain or C-terminus in a polar solvent, and heating the mixture.

本発明方法において、原料として用いられる光学活性α
−アミノ酸エステルとしては特に制限はなく、α−炭素
に水素を持つ中性、塩基性、または酸性アミノ酸のエス
テルが支障なく使用できるまた原料光学活性α−アミノ
酸エステルのエステル部分を構成するアルコール残基と
しては特に制限はなく、溶媒成分、あるいは必要により
使用する酸と反応しないものならばいずれでもよい。
In the method of the present invention, optically active α used as a raw material
- There are no particular restrictions on the amino acid ester, and esters of neutral, basic, or acidic amino acids having hydrogen at the α-carbon can be used without any problems.Also, alcohol residues constituting the ester moiety of the raw material optically active α-amino acid ester There are no particular limitations on the solvent, and any solvent may be used as long as it does not react with the solvent components or the acid used if necessary.

極性溶媒としては、好ましくはケトン、さらに好ましく
はメチルイソブチルケトンを使用することができる。こ
れらケトンは反応温度及び反応時間に特に制限がなけれ
ば、その種類は特に限定されることはない。また必ずし
も純粋である必要はなく、反応温度及び反応時間に制限
さえなければ水その他の溶媒を含んでいてもよい。ただ
し水を含むケトン溶媒中では反応は遅くなる傾向にある
側鎖あるいはC末端にカルボン酸を持つペプチド又はそ
の誘導体としては、ジペプチド以上のペプチド又はその
誘導体、たとえば、N−ベンジルオキシカルボニル−し
−ア・スバルチルーし一フェニルアラニン又はその脂肪
族低級アルキルエステルを例示することができる。 添
加量は光学活性α−アミノ酸エステルに対して約0.1
倍モル以上、好ましくは約0. 5ないし約5倍モル程
度である。
As the polar solvent, preferably a ketone, more preferably methyl isobutyl ketone can be used. The types of these ketones are not particularly limited as long as there are no particular restrictions on reaction temperature and reaction time. Furthermore, it does not necessarily have to be pure, and may contain water or other solvents as long as there are no restrictions on the reaction temperature and reaction time. However, the reaction tends to be slow in a ketone solvent containing water.Peptides or derivatives thereof that have a carboxylic acid in the side chain or C-terminus include dipeptides or higher peptides or derivatives thereof, such as N-benzyloxycarbonyl- Examples include subalternyl-phenylalanine and aliphatic lower alkyl esters thereof. The amount added is approximately 0.1 per optically active α-amino acid ester.
More than twice the mole, preferably about 0. It is about 5 to about 5 times the mole.

加熱は約40℃ないし200℃、好くは90℃ないし2
00℃の温度範囲内で行うことができる。
Heating is about 40°C to 200°C, preferably 90°C to 200°C.
It can be carried out within a temperature range of 00°C.

以下本発明を実施例についてさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 I L−フェニルアラニンメチルエステル11.4mmol
を含むメチルイソブチルケトン50gにカルボベンジル
オキシ−α−L−アスパルチルーフェニルアラニンメチ
ルエステル9.3mmolを加え、(カルボベンジルオ
キシ−α−L−アスパルチルーL−フェニルアラニンメ
チルエステル/L−フェニルアラニンメチルエステル−
0,82)沸点(約115℃)で25分間加熱還流した
。次いで反応液にIN−H(j水溶液14d、H2O5
0−を加え、水層側にフェニルアラニンメチルエステル
を塩酸塩として分離した。得られたフェニルアラニンメ
チルエステルは収率97.7%、比旋光度ハl:a):
”−0(C=2. t120 ) テあった。
Example I L-phenylalanine methyl ester 11.4 mmol
9.3 mmol of carbobenzyloxy-α-L-aspartyl-phenylalanine methyl ester was added to 50 g of methyl isobutyl ketone containing (carbobenzyloxy-α-L-aspartyl-L-phenylalanine methyl ester/L-phenylalanine methyl ester-
0.82) boiling point (approximately 115°C) for 25 minutes under reflux. Then, IN-H (j aqueous solution 14d, H2O5
0- was added, and phenylalanine methyl ester was separated as a hydrochloride in the aqueous layer side. The obtained phenylalanine methyl ester had a yield of 97.7% and a specific optical rotation of 1:a):
”-0 (C=2.t120) There was.

なおメチルイソブチルケトン側に分離したカルボベンジ
ルオキシ−α−L−アスパルチルーL−フェニルアラニ
ンメチルエステルは収率100%であり、またメチルイ
ソブチルケトンの着色はほとんどなかった。 カルボベ
ンジルオキシ−α−L−アスパルチル−し一フェニルア
ラニンメチルエステルのラセミ化、即ちα−L−アスパ
ルチルーD−フェニルアラニンメチルエステル(同時に
脱ベンジルオキシカルボニル化される)の生成量はHP
LCによる分析で1%以下であった。
The yield of carbobenzyloxy-α-L-aspartyl-L-phenylalanine methyl ester separated on the methyl isobutyl ketone side was 100%, and there was almost no coloring of the methyl isobutyl ketone. Racemization of carbobenzyloxy-α-L-aspartyl-monophenylalanine methyl ester, that is, the amount of α-L-aspartyl-D-phenylalanine methyl ester (simultaneously debenzyloxycarbonylated) is HP
Analysis by LC showed it to be 1% or less.

実施例2 カルボベンジルオキシ−α−L−アスパルチルーL−フ
ェニルアラニンメチルエステル合成後の反応液、即ちフ
ェニルアラニンメチルエステル3mmol(D体/1:
、体−9/1) 、カルボベンジルオキシ−α−L−ア
スパルチル−し一フェニルアラニンメチルエステル28
mmolを含むメチルイソブチルケトン150g (水
分2.5%)を水との共沸点(約94℃)にて12分間
加熱し水分を除いた後、10分間沸点(約115℃)で
加熱還流した。
Example 2 Reaction solution after synthesis of carbobenzyloxy-α-L-aspartyl-L-phenylalanine methyl ester, that is, 3 mmol of phenylalanine methyl ester (D form/1:
, body-9/1), carbobenzyloxy-α-L-aspartyl-phenylalanine methyl ester 28
150 g of methyl isobutyl ketone containing mmol (2.5% water) was heated for 12 minutes at the azeotropic point with water (approximately 94°C) to remove water, and then heated under reflux at the boiling point (approximately 115°C) for 10 minutes.

反応終了後、反応液中のフェニルアラニンメチルエステ
ルをHPLCにて分析したところ、収率95%、エナン
チオマー過剰率0.7%であった。
After the reaction was completed, phenylalanine methyl ester in the reaction solution was analyzed by HPLC, and the yield was 95% and the enantiomeric excess was 0.7%.

カルボベンジルオキシ−α−L−アスパルチルーL−フ
ェニルアラニンメチルエステルのラセミ化、即ちα−L
−アスパルチルーD−フェニルアラニンメチルエステル
の生成はHPLCによる分析で1%以下であった。
Racemization of carbobenzyloxy-α-L-aspartyl-L-phenylalanine methyl ester, i.e. α-L
The production of -aspartyl-D-phenylalanine methyl ester was determined to be less than 1% by HPLC analysis.

実施例 3 実施例2と同様のメチルイソブチルケトン溶液を加圧下
、115℃に加熱、70分間反応させた。
Example 3 The same methyl isobutyl ketone solution as in Example 2 was heated to 115° C. under pressure and reacted for 70 minutes.

反応終了後、反応液中のフェニルアラニンメチルエステ
ルをHPLCで分析したところ、収率92%、エナンチ
オマー過剰率3.6%であった。
After the reaction was completed, HPLC analysis of phenylalanine methyl ester in the reaction solution revealed that the yield was 92% and the enantiomeric excess was 3.6%.

カルボベンジルオキシ−α−L−アスパルチル−し一フ
ェニルアラニンメチルエステルのラセミ化、即ちα−L
−アスパルチルーD−フェニルアラニン2メチルエステ
ルの生成はHPLCによる分析で1%以下であった。
Racemization of carbobenzyloxy-α-L-aspartyl-monophenylalanine methyl ester, i.e. α-L
The production of -aspartyl-D-phenylalanine 2 methyl ester was determined to be less than 1% by HPLC analysis.

(発明の効果) 本発明の方法によれば、極めて効率よくペプチド類と共
存する光学活性アミノ酸を選択的にラセミ化することが
できる。しかもその際ペプチド合成の生成物などをほと
んどラセミ化しないとゆう優れた効果を奏する。
(Effects of the Invention) According to the method of the present invention, optically active amino acids coexisting with peptides can be selectively racemized extremely efficiently. Furthermore, excellent effects can be achieved if the peptide synthesis products are hardly racemized.

Claims (1)

【特許請求の範囲】 1)光学活性α−アミノ酸エステルを極性溶媒中ペプチ
ド又はその誘導体の存在下で選択的にラセミ化すること
を特徴とする光学活性α−アミノ酸エステルのラセミ化
方法。 2)ペプチド又はその誘導体として、N−ベンジルオキ
シカルボニル−L−アスパルチル−L−フェニルアラニ
ン又はその脂肪族低級アルキルエステルを用いる特許請
求の範囲第1項記載の方法。 3)ラセミ化反応を60℃ないし200℃の温度範囲内
で行う特許請求の範囲第1項又は第2項記載の方法。 4)極性溶媒としてケトンを用いる特許請求の範囲第1
項ないし第3項のいずれかの項記載の方法。
[Scope of Claims] 1) A method for racemizing an optically active α-amino acid ester, which comprises selectively racemizing an optically active α-amino acid ester in the presence of a peptide or a derivative thereof in a polar solvent. 2) The method according to claim 1, wherein N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine or an aliphatic lower alkyl ester thereof is used as the peptide or its derivative. 3) The method according to claim 1 or 2, wherein the racemization reaction is carried out within a temperature range of 60°C to 200°C. 4) Claim 1 using a ketone as a polar solvent
The method described in any of paragraphs 3 to 3.
JP32286387A 1987-12-22 1987-12-22 Selective racemization of optically active amino acid ester Pending JPH01165559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32286387A JPH01165559A (en) 1987-12-22 1987-12-22 Selective racemization of optically active amino acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32286387A JPH01165559A (en) 1987-12-22 1987-12-22 Selective racemization of optically active amino acid ester

Publications (1)

Publication Number Publication Date
JPH01165559A true JPH01165559A (en) 1989-06-29

Family

ID=18148450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32286387A Pending JPH01165559A (en) 1987-12-22 1987-12-22 Selective racemization of optically active amino acid ester

Country Status (1)

Country Link
JP (1) JPH01165559A (en)

Similar Documents

Publication Publication Date Title
Zhu et al. Efficient synthesis of optically active α-quaternary amino acids by highly diastereoselective [2, 3]-rearrangement of allylic ammonium ylides
JP3121805B2 (en) Stereoselective reduction of carbonyl compounds
JPH0570415A (en) Process for resolving optically active isomer mixture of alpha-amino acids
EP0937705B1 (en) Process for preparing D-alloisoleucine and intermediates for preparation
JPH01165559A (en) Selective racemization of optically active amino acid ester
CA2111971A1 (en) Ibuprofen resolution
JP3792449B2 (en) Purification method of methacrylic acid
JP3792448B2 (en) Purification method of methacrylic acid
KR20030038781A (en) Dynamic resolution of isomers and resolved isomers
MXPA04010877A (en) OPTICALLY ACTIVE beta-AMINOKETONES, OPTICALLY ACTIVE 1,3-AMINOALCOHOLS AND METHOD FOR THE PRODUCTION THEREOF.
JP4929938B2 (en) Process for producing optically active α-amino acid benzyl esters
JP4308155B2 (en) Process for producing δ-iminomalonic acid derivative and catalyst therefor
JPH04235943A (en) Process for producing ibuprofen
JP2002234863A (en) Method for purifying (meth)acrylic ester and (meth) acrylic ester
JPH05279325A (en) Production of optically active 3-hydroxypyrolidine
JP2005314375A (en) Method for manufacturing amines
JPWO2002085840A1 (en) Process for producing N-formyl amino acid and use thereof
JPS6141339B2 (en)
Murashige et al. Effective synthesis of optically active trifluoromethyldiazirinyl homophenylalanine and aroylalanine derivatives with the Friedel-Crafts reaction in triflic acid
JPH01120298A (en) Method for preparing optically pure homophenylalanine
JP3888402B2 (en) Process for producing optically active N-carbobenzoxy-tert-leucine
JP2728891B2 (en) Method for producing amino acid ester mineral salts
JP5981719B2 (en) Process for producing optically active thiazolyl alanine derivative and salt thereof
JP3694923B2 (en) Process for producing optically active 1- (2,4-dichlorophenyl) ethylamine
JP2004149529A (en) Method for purifying n-carboxylic acid anhydride