JPH01165048A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH01165048A
JPH01165048A JP62323227A JP32322787A JPH01165048A JP H01165048 A JPH01165048 A JP H01165048A JP 62323227 A JP62323227 A JP 62323227A JP 32322787 A JP32322787 A JP 32322787A JP H01165048 A JPH01165048 A JP H01165048A
Authority
JP
Japan
Prior art keywords
optical recording
layer
recording material
cooling
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62323227A
Other languages
Japanese (ja)
Other versions
JPH0822619B2 (en
Inventor
Haruo Kawakami
春雄 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62323227A priority Critical patent/JPH0822619B2/en
Publication of JPH01165048A publication Critical patent/JPH01165048A/en
Publication of JPH0822619B2 publication Critical patent/JPH0822619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To increase the data transfer speed of an optical disk and to increase the number of repetitions of writing and rewriting by specifying the value of the right lower index of the average chemical compsn. Ge1-xBi2xTe2x+1 of an optical recording material layer sandwiched by cooling layers via protective layers. CONSTITUTION:The optical recording material layer 3 is spot-melted by laser light and thereafter, said layer is rapidly cooled to a non-crystalline state by either of the cooling layer 5 consisting of Al or the transparent cooling layer 7 via the protective layers 2, 4 consisting of SiO2, by which recording is executed, at the time of writing information to the optical disk constituted by covering the surface with the protective layer 6 consisting of an org. material and forming a substrate 1 of polycarbonate. The crystallization rate is increased and the erasing time of the recorded information is shortened and in turn, the rapid cooling is needed at the time of recording as compared to the case in which GeTe and Bi2Te3 are respectively along, if the compsn. of the layer 3 satisfies formula I. In addition, the viscosity of the material increases and the annihilation by evaporation at the time of spot melting is suppressed. The number of repetitions of the writing and erasing is thus increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高速消去可能で、かつ繰り返し回数の大きな
、書換え型光記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rewritable optical recording medium that can be erased at high speed and that can be repeated a large number of times.

〔従来の技術〕[Conventional technology]

近年、情報記録の高密度化、大容量化に対する要求が高
まり、国内外でその研究開発が盛んに行われているが、
とくにレーザを光源として用いる光ディスクは、従来の
磁気記録媒体に比べておよそ10〜100倍の記録密度
を有し、しかも記録、再生ヘッドと記録媒体とが非接触
状態で情報の記録。
In recent years, there has been an increasing demand for higher density and larger capacity information storage, and research and development has been actively conducted both domestically and internationally.
In particular, optical disks that use a laser as a light source have a recording density approximately 10 to 100 times that of conventional magnetic recording media, and can record information without contact between the recording/reproducing head and the recording medium.

再生ができるために記録媒体の損傷も少なく、長寿命で
あるなどの特徴があることから、膨大な情報量を記録、
再生する手段として有望である。
Because it can be played back, there is little damage to the recording medium and it has a long lifespan, so it can record a huge amount of information.
It is promising as a means of regeneration.

この光ディスクは用途に応じて再生専用型、追記型、書
換え型の3種類に大別することができる。
These optical discs can be roughly classified into three types depending on their purpose: read-only type, write-once type, and rewritable type.

再生専用型は情報の読み出しのみが可能な再生専用ディ
スクであり、追記型は必要に応じて情報を記録し再生す
ることはできるが、記録した情報の消去は不可能なもの
である。これに対して書換え型は情報の記録、再生とさ
らに記録済みの情報を消去して書換えることが可能であ
り、コンピュータ用のデータファイルとしての利用が望
まれ、最も期待の大きいものである。
The read-only type is a read-only disk from which information can only be read, and the write-once type allows information to be recorded and reproduced as needed, but the recorded information cannot be erased. On the other hand, the rewritable type is capable of recording and reproducing information, as well as erasing and rewriting recorded information, and is desired and has the greatest expectations for use as a data file for computers.

書換え型のディスクについては、光磁気方式と。For rewritable discs, there is a magneto-optical method.

相変化方式の3つの記録方式の開発が進められているが
、いずれの方式も記録材料や書込み機構などの点でなお
改良の余地が残されている。これらのうち、相変化方式
は一般にレーザ光をディスクの記録面に集光して加熱し
、レーザ光のパルス出力とパルス幅とを制御することに
よって生ずる記録材料の相変化、すなわち結晶状態から
非結晶状態への移行または相転移などを起こさせ、それ
ぞれの状態における反射率の違いで情報の記録と消去を
行うものである。
Three phase change recording methods are being developed, but each method still leaves room for improvement in terms of recording materials, writing mechanisms, etc. Among these, the phase change method generally focuses a laser beam on the recording surface of the disk, heats it, and controls the pulse output and pulse width of the laser beam, thereby changing the phase of the recording material from a crystalline state to a non-crystalline state. It causes a transition to a crystalline state or a phase transition, and records and erases information based on the difference in reflectance in each state.

この相変化方式の光記録媒体の要部構成の一例を第3図
の模式断面図に示す、第3図において、図示してない多
くのトラッキング溝を設けたポリカーボネートなどの基
板1の表面にスパッタなどによりStowの第1の保護
層2を形成し、その上にGeTeの光記録材料層3と第
2の保護層4を設け、さらにその上にMの冷却層5を形
成し、最上層に有機物の表面保護層6をつけた構造とし
ている。
An example of the main structure of this phase change type optical recording medium is shown in the schematic cross-sectional view of FIG. 3. In FIG. A Stow first protective layer 2 is formed by a method such as Stow, and a GeTe optical recording material layer 3 and a second protective layer 4 are formed thereon, and an M cooling layer 5 is formed thereon. It has a structure in which a surface protective layer 6 of an organic substance is attached.

すなわち第3図の光記録媒体は基板l上にこれら各層を
符号順に堆積することによって構成される。
That is, the optical recording medium of FIG. 3 is constructed by depositing each of these layers in the order of the numbers on the substrate l.

光記録材料層3が二つの保護層2.4によってはさまれ
るようにするのは、信号の書き込み、消去の際、レーザ
光で加熱されて高温となった光記録材料が基板1と反応
することや蒸発、飛散するのを防止し、光記録材料の変
質を生じさせないためである。また光記録媒体の中には
冷却層5をもたないものもあるが、第2の保護層4と表
面保護層6の間に熱伝導性の良好なMなどの冷却層5を
設けることにより、光記録材料が結晶状態から非結晶状
態へ変化するとき、溶融状態からの冷却速度を上げるの
に有効なことが知られている。その際第2の保護層4は
断熱層としての役割も果たす。
The reason why the optical recording material layer 3 is sandwiched between the two protective layers 2.4 is that the optical recording material heated by laser light to a high temperature reacts with the substrate 1 when writing and erasing signals. This is to prevent evaporation, scattering, and deterioration of the optical recording material. Although some optical recording media do not have a cooling layer 5, it is possible to provide a cooling layer 5 such as M having good thermal conductivity between the second protective layer 4 and the surface protective layer 6. , is known to be effective in increasing the cooling rate from a molten state when an optical recording material changes from a crystalline state to an amorphous state. In this case, the second protective layer 4 also serves as a heat insulating layer.

断熱層としての第2の保護層4の厚さはこの光記録媒体
の特性を確保するために最適範囲を定めることが肝要で
あり、これを本発明者らは特願昭62−49337号に
より次のように開示している。すなわち断熱層の厚さX
は次式を満足することが必要である。
It is important to determine the optimum thickness of the second protective layer 4 as a heat insulating layer in order to ensure the characteristics of this optical recording medium, and the present inventors have determined this in Japanese Patent Application No. 62-49337. It is disclosed as follows. In other words, the thickness of the insulation layer
must satisfy the following equation.

KsTm/P< x< 2 X(Ks t/ l)s 
Cs )””但しKsは断熱層の熱伝導率、 Ttaは
光記録材料の融点、Pはこの光記録媒体に照射される光
の入力エネルギ密度、tは光の照射時間、ρ1は断熱層
の密度、 Csは断熱層の比熱である。
KsTm/P<x< 2 X(Ks t/l)s
Cs)""where Ks is the thermal conductivity of the heat insulating layer, Tta is the melting point of the optical recording material, P is the input energy density of the light irradiated to this optical recording medium, t is the light irradiation time, and ρ1 is the thermal conductivity of the heat insulating layer. Density, Cs is the specific heat of the insulation layer.

さらに本発明者らは基板1と第1の保護層2との間に高
い熱伝導率を有するAjNなどの透明冷却層7を介在さ
せた光記録媒体を特許出願中である。
Furthermore, the present inventors are currently applying for a patent for an optical recording medium in which a transparent cooling layer 7 made of AjN or the like having high thermal conductivity is interposed between the substrate 1 and the first protective layer 2.

第4図はその構造を示した模式断面図である。第4図は
第3図と共通部分を同一符号で表わしてあり、基板1と
第1の保護層2との間に透明冷却層7が設けられている
ほかは第3図と全く同様に構成されている。この透明冷
却層7は、光記録材料層3に形成されるレーザスポット
から第1の保護層2を通って拡散する熱を基板1に達す
る前に、ここで水平方向に拡散させてしまうためのもの
であり、そのため基板1はほとんど温度上昇することな
く変質を生じない、したがってこの場合第1の保護層2
も断熱層としての役割を果たすことになり、その適正な
厚さ範囲は前述の特願昭62−49337号に開示した
Xに関する不等式を適用することができる。
FIG. 4 is a schematic sectional view showing the structure. In FIG. 4, parts common to those in FIG. 3 are indicated by the same symbols, and the structure is exactly the same as in FIG. 3 except that a transparent cooling layer 7 is provided between the substrate 1 and the first protective layer 2. has been done. This transparent cooling layer 7 serves to horizontally diffuse the heat diffused from the laser spot formed on the optical recording material layer 3 through the first protective layer 2 before reaching the substrate 1. Therefore, the temperature of the substrate 1 hardly increases and the quality of the substrate 1 does not change. Therefore, in this case, the first protective layer 2
The layer also serves as a heat insulating layer, and its appropriate thickness range can be determined by applying the inequality regarding X disclosed in the aforementioned Japanese Patent Application No. 62-49337.

なお透明冷却層7を備えた第4図の光記録媒体では、こ
の透明冷却N7が光記録材料層3の結晶状態から非結晶
状態への変化に際して、冷却速度を高める働きもするの
で、冷却層5を省略することも可能である。
In the optical recording medium shown in FIG. 4 which includes the transparent cooling layer 7, the transparent cooling N7 also serves to increase the cooling rate when the optical recording material layer 3 changes from the crystalline state to the amorphous state. It is also possible to omit 5.

以上のような構造をもつ光記録媒体は、使用時にはレー
ザ光を基板1の光記録材料層3を有する側と反対の面か
ら入射させるのが普通である。そして実際に情報を書き
込むには、まず初期状態をフラッシュランプによる光照
射を行って光記録材料N3を結晶状態となし、次に情報
記録時にはこれに高出力、短パルスのレーザ光を1−φ
程度のスポット状に集光して照射し、光記録材料をスポ
ット状に溶融した後、レーザ光の照射を停止し、溶融ス
ポットを熱伝導により109〜10” t / see
の冷却速度で急冷して非結晶状態のスポットを形成する
。記録した情報を消去するときは、この非結晶状態のス
ポットを比較的低出力のレーザ光を用いて昇温し結晶状
態に戻す。このときの照射時間は光記録材料の結晶化速
度から定められる。
When an optical recording medium having the above structure is used, a laser beam is normally incident on the substrate 1 from the side opposite to the side on which the optical recording material layer 3 is provided. To actually write information, the optical recording material N3 is first irradiated with light using a flash lamp to bring it into a crystalline state, and then, when recording information, a high-power, short-pulse laser beam is applied to it for 1-φ.
After condensing and irradiating the optical recording material into a spot shape of about 100mm, the laser beam irradiation is stopped and the melted spot is heated to 109 to 10"t/see by thermal conduction.
The material is rapidly cooled at a cooling rate of 200 ml to form an amorphous spot. When erasing recorded information, this amorphous spot is heated using a relatively low-power laser beam to return it to a crystalline state. The irradiation time at this time is determined based on the crystallization rate of the optical recording material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

相変化方式の光記録媒体に用いる光記録材料にはこれま
で多くの材料が提案されているが、それらのうちGeT
eが結晶状態と非結晶状態との反射率差が大きく、記録
情報の安定性も高いことから有望と見られている。しか
しながら、本発明者らが検討した結果によれば、非結晶
状態のGeTe薄膜に、レーザ光を照射して完全に結晶
状態とするには最短でも0.5μsecのアニール時間
を要し、この材料を用いて光ディスクを作製し、ビーム
径が約1−φのレーザ光によって情報の消去を行う場合
にはディスクの周速を2m/sec以下としなければな
らない、しかるに一方で書き込み時の結晶状態から非結
晶状態への変化は0.1〜0.2μsecで行うことが
可能であり、これは周速10m/sec〜5m / 3
6cに相当する。これらのことから光ディスクの周速を
大きくしてデータの転送速度を高めるには光記録材料で
あるGeTeの結晶状態から非結晶状態とするアニール
時間すなわち消去時間を、結晶状態から非結晶状態への
変化時間すなわち書き込み時間と同程度にすることが望
ましい、そのためにはGeTe自体の結晶化速度をさら
に大きくしなければならない、またGeTeは固相状態
においても蒸気圧が高いので加熱、冷却を繰り返すと次
第に失われるようになり、書き込みと消去の繰り返し回
数が少なく 、1000回程度7あることも問題である
。そのほか結晶化速度、光吸収係数の大きいallTe
sが光記録材料としてすぐれた特性を有しているが、結
晶状態と非結晶状態の反射率差が小さく、光ディスクに
用いたときCN比を高くとれないという問題がある。
Many materials have been proposed for optical recording materials used in phase-change optical recording media, among which GeT
e is considered to be promising because there is a large difference in reflectance between the crystalline state and the amorphous state, and the stability of recorded information is also high. However, according to the results of studies conducted by the present inventors, it takes an annealing time of at least 0.5 μsec to completely transform an amorphous GeTe thin film into a crystalline state by irradiating it with laser light. When an optical disk is manufactured using a laser beam and information is erased using a laser beam with a beam diameter of approximately 1-φ, the circumferential speed of the disk must be 2 m/sec or less, but on the other hand, the crystal state during writing must be The change to the amorphous state can be performed in 0.1 to 0.2 μsec, which is at a circumferential speed of 10 m/sec to 5 m/3
Corresponds to 6c. Based on these facts, in order to increase the peripheral speed of the optical disk and increase the data transfer rate, it is necessary to change the annealing time, that is, the erasing time, from the crystalline state to the amorphous state of GeTe, which is an optical recording material, from the crystalline state to the amorphous state. It is desirable to make the change time, that is, the same as the writing time. To do this, the crystallization rate of GeTe itself must be further increased. Also, GeTe has a high vapor pressure even in the solid state, so repeated heating and cooling Another problem is that the data gradually gets lost, and the number of repetitions of writing and erasing is small, about 1,000 times7. In addition, allTe has a high crystallization speed and light absorption coefficient.
Although s has excellent properties as an optical recording material, there is a problem that the difference in reflectance between the crystalline state and the amorphous state is small, making it difficult to obtain a high CN ratio when used in an optical disc.

本発明は上述の点に鑑みてなされたものであり、その目
的は光記録材料の結晶化速度を大きくすることにより記
録情報の消去時間を短縮し、光ディスクのデータ転送速
度を高めるとともに、情報の書き込み、消去の繰り返し
回数を増加させることにある。
The present invention has been made in view of the above points, and its purpose is to shorten the erasing time of recorded information by increasing the crystallization speed of the optical recording material, increase the data transfer speed of the optical disc, and improve the speed of the information. The purpose is to increase the number of repetitions of writing and erasing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は光記録材料層が保護層を介して冷却層およびま
たは透明冷却層を備えた構造をもつ光記録媒体の光記録
材料層の平均化学組成が一般式%式% 前述のように光ディスク゛に情報を書き込む際には光記
録媒体の光記録材料層をレーザ光によりスポット状に加
熱し、ここで−旦溶融させた後、熱伝導により急冷して
非結晶状態とする。このとき、GeTeとB11Te5
を適量混合した本発明による光記録材料はこのB11T
8sが結晶成長の核となり非結晶状態から結晶状態への
変化速度を非常にはやくするので、冷却速度が十分に大
iくないと溶融状態からの冷却中に結晶化が進行して非
結晶状態が得られなくなる。したがって光記録材料に本
発明による材料組成のものを用いる限り、第3図、第4
図のような冷却層や透明冷却層を少なくとも一つ備えた
光記録媒体としなければならない、これらの冷却層をも
たない構造のものでは冷却速度が不十分であり、情報の
書き込みが困難となり、書き込むことができたとしても
その繰り返し回数が少なくなるからである。
The present invention provides an optical recording medium having a structure in which the optical recording material layer is provided with a cooling layer and/or a transparent cooling layer through a protective layer. When writing information on an optical recording medium, the optical recording material layer of the optical recording medium is heated in the form of a spot by a laser beam, where it is first melted and then rapidly cooled by thermal conduction to form an amorphous state. At this time, GeTe and B11Te5
The optical recording material according to the present invention containing an appropriate amount of B11T
Since 8s acts as a nucleus for crystal growth and speeds up the change from an amorphous state to a crystalline state, if the cooling rate is not sufficiently high, crystallization will progress during cooling from the molten state and the amorphous state will occur. will not be obtained. Therefore, as long as the material composition according to the present invention is used as an optical recording material, FIGS.
Optical recording media must have at least one cooling layer or transparent cooling layer as shown in the figure; structures without these cooling layers have insufficient cooling speed, making it difficult to write information. This is because even if writing is possible, the number of repetitions will be reduced.

本発明の光記録媒体に用いる光記録材料の組成は基本的
にはGeとToの1=1の化合物であるGeTeと81
gTe3を混合したものであり、結晶化速度を高めると
ともに材料粘性を高めて蒸気圧を小さくし、書き込み、
消去の繰り返しによる材料の消失を抑制する役割を果た
している。
The composition of the optical recording material used in the optical recording medium of the present invention is basically GeTe, which is a 1=1 compound of Ge and To, and 81
It is a mixture of gTe3, which increases the crystallization rate and increases the material viscosity to reduce the vapor pressure and write,
It plays a role in suppressing the loss of material due to repeated erasure.

〔実施例〕〔Example〕

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

本発明の光記録媒体は例えば第3図に示した構造のもの
とし、これに用いる光記録材料はGeTeとBitT@
sを混合したものである。この光記録材料の薄膜は通常
のRFマグネトロンスパッタにより容易に作製すること
ができる。再び第3図を参照して述べると、まず厚さ3
wm、直径130fiのポリカーボネート製基板lの上
に、厚さ0.1μの第1の保護層2 (Sins) +
 Ge5Bi qTeq ((GeTe) h (gt
zres) tに相当〕の組成をもつ厚さ0.07 −
の光記録材料層3゜厚さ0.2−の第2の保護層4 (
Sing)、厚さ0.2pのMの冷却層5の順にスパッ
タ形成し、最上層に2n厚の有機材料の表面保護層6を
形成した光記録媒体を作製する。
The optical recording medium of the present invention has the structure shown in FIG. 3, for example, and the optical recording materials used therein are GeTe and BitT@
It is a mixture of s. A thin film of this optical recording material can be easily produced by ordinary RF magnetron sputtering. Referring again to Figure 3, first, the thickness is 3.
wm, on a polycarbonate substrate l with a diameter of 130fi, a first protective layer 2 (Sins) + with a thickness of 0.1μ
Ge5Bi qTeq ((GeTe) h (gt
zres) t] thickness 0.07 -
an optical recording material layer 3° and a second protective layer 4 with a thickness of 0.2° (
A cooling layer 5 of M with a thickness of 0.2p is formed by sputtering in this order, and a surface protection layer 6 of an organic material with a thickness of 2n is formed as the top layer to produce an optical recording medium.

この光記録媒体を用いて周速gm/3eCで回転させな
がら、波長830nm、出力12wWのレーザ光を照射
した。光記録媒体面でのレーザスポット径は約1μであ
る。スパッタ直後の光記録材料層3は非結晶状態であり
、その光反射率は約25%であったがこのレーザ光照射
によって光反射率は約57%にまで上昇した0次に光記
録媒体の同じ個所を同様の条件で再度レーザ光を照射し
たが反射率は57%から変化が認められなかった0反射
率が25%から57%へ増大したのは光記録材料層3が
レーザスポットの個所で非結晶状態から結晶状態へ変化
したためであり、再度のレーザ光照射に対してその反射
率を保持しているのは、最初のレーザ光照射によって光
記録材料の結晶化が十分に行われていることを示すもの
である。
Using this optical recording medium, a laser beam having a wavelength of 830 nm and an output of 12 wW was irradiated while rotating at a circumferential speed of gm/3 eC. The diameter of the laser spot on the surface of the optical recording medium is approximately 1 μ. The optical recording material layer 3 immediately after sputtering was in an amorphous state, and its light reflectance was about 25%, but the light reflectance increased to about 57% by this laser beam irradiation. The same area was irradiated with laser light again under the same conditions, but no change was observed in the reflectance from 57%. The reason why the 0 reflectance increased from 25% to 57% was at the area where the optical recording material layer 3 was the laser spot. This is because the optical recording material changes from an amorphous state to a crystalline state during the first laser beam irradiation, and the reason why it retains its reflectance even after the second laser beam irradiation is because the optical recording material has been sufficiently crystallized by the first laser beam irradiation. This indicates that there is a

以上のことを確認するために、上記と同じ組成をもつ光
記録材料膜をガラス基板上に形成し、lO℃/winの
速度で昇温しながら、反射率を測定した。その結果を第
1図に示す、第1図は光記録材料膜の温度に対する反射
率変化を示した線図であり、第1図から反射率は150
℃付近で急激に上昇することがわかる。この温度前後に
おける光記録材料膜の結晶形態をX線回折により調べた
所、反射率の上昇後に光記録材料膜は結晶化しており、
結晶は主としてGeTeとBitTesが観測される0
反射率の値は上記の光記録媒体における反射率の値とほ
ぼ対応しており、光記録媒体における光記録材料の結晶
化が周速8m/secで可能であったことは結晶化に要
する時間が0.125μsec以下であることを示唆す
るものであり、これは前に述べた従来の0.5μsec
に比べて大きく改善されていることを意味する。情報の
書き込みを行った後、これを消去するときも同様に周速
8m/secで行うことができた。すなわち、周波数1
.5 MHzのパルス入力を書き込んだとき、CN比と
して50dBの値が得られたが、これを9m7secで
消去するとCN比は約5dBまで低下し、はぼ完全に消
去される。
In order to confirm the above, an optical recording material film having the same composition as above was formed on a glass substrate, and its reflectance was measured while increasing the temperature at a rate of 10° C./win. The results are shown in Figure 1. Figure 1 is a diagram showing the change in reflectance with respect to temperature of the optical recording material film, and from Figure 1, the reflectance is 150.
It can be seen that the temperature rises rapidly around ℃. When the crystal morphology of the optical recording material film was examined by X-ray diffraction before and after this temperature, it was found that the optical recording material film crystallized after the reflectance increased.
The crystals are mainly GeTe and BitTes.
The reflectance value almost corresponds to the reflectance value of the optical recording medium mentioned above, and the fact that the optical recording material in the optical recording medium could be crystallized at a circumferential speed of 8 m/sec indicates the time required for crystallization. This suggests that the time is less than 0.125μsec, which is lower than the conventional 0.5μsec mentioned earlier.
This means that it is greatly improved compared to . After writing information, it was also possible to erase it at a circumferential speed of 8 m/sec. That is, frequency 1
.. When a 5 MHz pulse input was written, a CN ratio of 50 dB was obtained, but when this was erased in 9 m7 seconds, the CN ratio decreased to about 5 dB, and was almost completely erased.

これは書き込みが結晶化した光記録材料にレーザ加熱に
よって非結晶状態のスポットを形成することであるとい
う点を考慮すれば至極当然であると言える。このように
本発明の光記録媒体は周速を従来の2m/secから1
3m/secへ増すことにより、データの転送速度を0
.24MB / secから0.98MB/secに高
めることができる。
This is quite natural considering that writing involves forming an amorphous spot on a crystallized optical recording material by laser heating. In this way, the optical recording medium of the present invention can increase the peripheral speed from the conventional 2 m/sec to 1 m/sec.
By increasing the data transfer speed to 3m/sec, the data transfer speed can be reduced to 0.
.. It can be increased from 24MB/sec to 0.98MB/sec.

第2図は光記録材料層3中のBi tTI3sの含有量
と消去時間の関係を示した線図である。第2図の曲線の
ようにBtzTesの含有量の増加とともに消去時間は
短くなる。また1lizTe3の含有量と前に述べた1
0℃/1linの速度で昇温したときの結晶化温度およ
び結晶−非結晶の繰り返し回数の関係を数値で第1表に
示す。
FIG. 2 is a diagram showing the relationship between the content of BitTI3s in the optical recording material layer 3 and erasing time. As shown by the curve in FIG. 2, the erasing time becomes shorter as the BtzTes content increases. In addition, the content of 1lizTe3 and the previously mentioned 1
Table 1 shows numerical values of the relationship between the crystallization temperature and the number of crystal-amorphous cycles when the temperature is raised at a rate of 0° C./1 lin.

第1表 第1表によればBitTesの含有量80%で結晶化温
度は100℃となる。この結晶化温度の低いことば光記
録媒体に書き込まれた非結晶のスポ7)の熱的安定性が
悪く結晶化しやすいものであることを意味し、100℃
という温度は結晶化温度としては下限値と見做される。
According to Table 1, the crystallization temperature is 100° C. when the BitTes content is 80%. This word with a low crystallization temperature means that the amorphous spot 7) written on the optical recording medium has poor thermal stability and is likely to crystallize.
This temperature is considered to be the lower limit of the crystallization temperature.

また繰り返し回数についてはBltTelの添加量が1
0%を超えると顕著な効果が認められるが80%以上に
なると逆に繰り返し回数は減少する傾向がある。これら
のことからGeTeに含有するBi、Te3の量を80
%より多くするのは実用的でないと言える。結晶状態と
非結晶状態の反射率差はB11Te5の含有量の増加と
ともに減少するがBitTes含有量80%でも反射率
差は15%はあるので十分である。
Regarding the number of repetitions, the amount of BltTel added is 1
When it exceeds 0%, a remarkable effect is observed, but when it exceeds 80%, the number of repetitions tends to decrease. Based on these facts, the amount of Bi and Te3 contained in GeTe is 80
It can be said that it is not practical to increase the value more than %. The difference in reflectance between the crystalline state and the amorphous state decreases as the content of B11Te5 increases, but even with a BitTes content of 80%, the difference in reflectance is 15%, which is sufficient.

以上の結果を綜合的に検討し、本発明の光記録媒体に用
いる光記録材料層の最適組成範囲は一般式でGet −
1181gxT1112*+と表わすとき、0<x≦0
゜8とするのが妥当であるとの結論を得た。
After comprehensively examining the above results, the optimum composition range of the optical recording material layer used in the optical recording medium of the present invention is determined by the general formula Get -
When expressed as 1181gxT1112*+, 0<x≦0
It was concluded that setting the temperature to 8° is appropriate.

〔発明の効果〕〔Effect of the invention〕

相変化方式の光記録媒体に用いる光記録材料はGeTe
が種々の点ですぐれているが、情報の消去時間を記録時
間と同じにまで速くしてさらにデータの転送速度をあげ
、記録−消去の繰り返し回数を増すことが望ましく、そ
のため本発明では実施例で述べたように光記録材料のG
eTe化合物とBizTes化合物を最適範囲を定めて
混合することにより、結晶化速度をこれらの単独のもの
より速くすることができ、同時にこの速い結晶化速度を
活かすために、光記録材料層をはさむ二つの保護層の少
なくとも一方に接して冷却速度を高める冷却層を備えた
構造の光記録媒体に適用して、光記録材料のレーザ加熱
スポットにおける溶融状態からの冷却速度と非結晶状態
からの結晶化速度とのマツチングがうまく行われるよう
にしたものであり、その結果、消去時間が短縮され、繰
り返し回数も増加させることが可能な光記録媒体を得る
ことができたのである。
The optical recording material used for phase change optical recording media is GeTe.
However, it is desirable to increase the data transfer speed by increasing the information erasing time to the same level as the recording time, and to increase the number of recording-erasing repetitions. As mentioned in , the G of optical recording material
By mixing the eTe compound and the BizTes compound in an optimal range, the crystallization rate can be made faster than that of these compounds alone.At the same time, in order to take advantage of this fast crystallization rate, the optical recording material layer is sandwiched between two layers. The present invention is applied to an optical recording medium having a structure including a cooling layer that is in contact with at least one of the two protective layers to increase the cooling rate, thereby reducing the cooling rate from the molten state and the crystallization from the amorphous state at the laser-heated spot of the optical recording material. As a result, it was possible to obtain an optical recording medium that can shorten the erasing time and increase the number of repetitions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いられる光記録材料の温度と反射率
の関係を表わす線図、第2図は本発明に用いられる光記
録材料のB1.To、含有量と消去時間の関係を示す線
図、第3図は冷却層を有する光記録媒体の模式断面図、
第4図は冷却層と透明冷却層を有する光記録媒体の模式
断面図である。 1:基板、2:第1の保護層、3:光記録材料層、4:
第2の保護層、5:冷却層、6:表面保護層、7:透明
冷却層。 ゝξ!− 1廖 (0C) 第1図 Bi2Te3  含有量(モル0ム) 第2図
FIG. 1 is a diagram showing the relationship between temperature and reflectance of the optical recording material used in the present invention, and FIG. 2 is a diagram showing the relationship between temperature and reflectance of the optical recording material used in the present invention. A diagram showing the relationship between To, content and erasing time, FIG. 3 is a schematic cross-sectional view of an optical recording medium having a cooling layer,
FIG. 4 is a schematic cross-sectional view of an optical recording medium having a cooling layer and a transparent cooling layer. 1: Substrate, 2: First protective layer, 3: Optical recording material layer, 4:
2nd protective layer, 5: cooling layer, 6: surface protective layer, 7: transparent cooling layer.ゝξ! - 1 Liao (0C) Fig. 1 Bi2Te3 content (mol 0m) Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1)基板上に第1の保護層、光記録材料層、第2の保護
層および表面保護層が形成される積層体に、前記基板と
前記第1の保護層との間に介在する透明冷却層と、前記
第2の保護層と前記表面保護層との間に介在する冷却層
の少なくとも一方を形成してなる光記録媒体であって、
前記光記録材料層の平均化学組成が一般式Ge_1_−
_xBi_2_xTe_2_x_+_1で表わされ、0
<x≦0.8とすることを特徴とする光記録媒体。
1) A transparent cooling layer interposed between the substrate and the first protective layer in a laminate in which a first protective layer, an optical recording material layer, a second protective layer, and a surface protective layer are formed on a substrate. and a cooling layer interposed between the second protective layer and the surface protective layer, the optical recording medium comprising:
The average chemical composition of the optical recording material layer has the general formula Ge_1_-
It is expressed as _xBi_2_xTe_2_x_+_1, and 0
An optical recording medium characterized in that <x≦0.8.
JP62323227A 1987-12-21 1987-12-21 Optical recording medium Expired - Lifetime JPH0822619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62323227A JPH0822619B2 (en) 1987-12-21 1987-12-21 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62323227A JPH0822619B2 (en) 1987-12-21 1987-12-21 Optical recording medium

Publications (2)

Publication Number Publication Date
JPH01165048A true JPH01165048A (en) 1989-06-29
JPH0822619B2 JPH0822619B2 (en) 1996-03-06

Family

ID=18152433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62323227A Expired - Lifetime JPH0822619B2 (en) 1987-12-21 1987-12-21 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH0822619B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283535B2 (en) 2009-02-20 2013-09-04 株式会社日立ハイテクサイエンス Differential scanning calorimeter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251290A (en) * 1987-04-08 1988-10-18 Hitachi Ltd Optical recording medium, method for regeneration and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251290A (en) * 1987-04-08 1988-10-18 Hitachi Ltd Optical recording medium, method for regeneration and application thereof

Also Published As

Publication number Publication date
JPH0822619B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
JPS63155436A (en) Information recording medium
JP2001319370A (en) Phase change optical disk
JPH01165048A (en) Optical recording medium
JPH01165046A (en) Optical recording medium
JP3138661B2 (en) Phase change optical disk
JPH025246A (en) Optical information recording/reproducing/erasing member and its production
JPH01165045A (en) Optical recording medium
JPH01165049A (en) Optical recording medium
JPH02128330A (en) Optical recording medium
JP3687264B2 (en) Optical information recording medium and manufacturing method thereof
JPH01165047A (en) Optical recording medium
JPH01165043A (en) Optical recording medium
JPS6329334A (en) Optical recording medium
JPH01165044A (en) Optical recording medium
JPH05144084A (en) Optical recording medium and production thereof
JPH037379A (en) Optical recording medium
JPH04119885A (en) Optical recording medium and preparation thereof
JP2639174B2 (en) Optical recording medium
JP2809818B2 (en) recoding media
JPH02139280A (en) Optical recording medium and manufacture thereof
JP2913759B2 (en) Optical recording medium
JPS6329333A (en) Optical recording medium
JPH02283493A (en) Optical recording medium
JPH01159839A (en) Optical recording medium
JPH03181029A (en) Information carrier disk