JPH01164950A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01164950A
JPH01164950A JP62323235A JP32323587A JPH01164950A JP H01164950 A JPH01164950 A JP H01164950A JP 62323235 A JP62323235 A JP 62323235A JP 32323587 A JP32323587 A JP 32323587A JP H01164950 A JPH01164950 A JP H01164950A
Authority
JP
Japan
Prior art keywords
group
charge
layer
photoreceptor
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62323235A
Other languages
Japanese (ja)
Inventor
Masami Kuroda
昌美 黒田
Yoichi Nakamura
洋一 中村
Noboru Kosho
古庄 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62323235A priority Critical patent/JPH01164950A/en
Publication of JPH01164950A publication Critical patent/JPH01164950A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • G03G5/067Dyes containing a methine or polymethine group containing only one methine or polymethine group containing hetero rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0627Heterocyclic compounds containing one hetero ring being five-membered
    • G03G5/0629Heterocyclic compounds containing one hetero ring being five-membered containing one hetero atom
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0661Heterocyclic compounds containing two or more hetero rings in different ring systems, each system containing at least one hetero ring

Abstract

PURPOSE:To obtain a photosensitive body for a copying machine and printer having a high sensitivity and excellent repeating characteristics by incorporating hydrazone compds. into a photosensitive layer formed on a conductive base body. CONSTITUTION:At least one kind of the hydrazone compds. expressed by either of the formulas I and II is incorporated into the photosensitive layer. In the formulas I and II, R1-R4 and R7 respectively denote a hydrogen atom., halogen atom., alkyl group, alkoxy group, hydroxy group, acyl group, nitro group, aryl group which may be substd., and amino group; R5 and R6 denotes an aryl group which may be substd. and (n) denotes either of 1 and 2. The photosensitive body having the high sensitivity and excellent repeating characteristics is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真用感光体に関し、詳しくは導電性基体
上に形成せしめた感光層の中に新規なヒドラゾン化合物
を含有することを特徴とする電子写真用感光体に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, and more specifically, it is characterized in that a novel hydrazone compound is contained in a photosensitive layer formed on a conductive substrate. The present invention relates to a photoreceptor for electrophotography.

〔従来の技術〕[Conventional technology]

従来より電子写真用感光体く以下感光体とも称する)の
感光材料としてはセレンまたはセレン合金などの無機光
導電性物質、酸化亜鉛あるいは硫化カドミウムなどの無
機光導電性物質を樹脂結着剤中に分散させたもの、ポ’
J−N−ビニルカルバゾールまたはポリビニルアントラ
センなどの有機光導電性物質、フタロシアニン化合物あ
るいはビスアゾ化合物などの有機光導電性物質を樹脂結
着剤中に分散させたものや真空蒸着させたものなどが利
用されている。
Conventionally, photosensitive materials for electrophotographic photoreceptors (hereinafter also referred to as photoreceptors) have been made using inorganic photoconductive substances such as selenium or selenium alloys, or inorganic photoconductive substances such as zinc oxide or cadmium sulfide in a resin binder. What is dispersed, po'
Organic photoconductive substances such as J-N-vinylcarbazole or polyvinylanthracene, phthalocyanine compounds, or bisazo compounds dispersed in a resin binder or vacuum-deposited are used. ing.

また感光体には暗所で表面電荷を保持する機能、光を受
容して電荷を発生する機能、同じく光を受容して電荷を
輸送する機能とが必要であるが、−つの層でこれらの機
能をあわせもったいわゆる単層型感光体と、主として電
荷発生に寄与する層と暗所での表面電荷の保持と光受容
時の電荷輸送に寄与する層とに機能分離した層を積層し
たいわゆる積層型感光体がある。これらの感光体を用い
た電子写真法による画像形成には、例えばカールソン方
式が適用される。この方式での画像形成は暗所での感光
体へのコロナ放電による帯電、帯電された感光体表面上
への、N光による原稿の文字や絵などの静電潜像の形成
、形成された静電潜像のトナーによる現像、現像された
トナー像の紙などの支持体への定着により行われ、トナ
ー像転写後の感光体は除電、残留トナーの除去、光除電
などを行った後、再使用に供される。
In addition, the photoreceptor must have the ability to retain surface charge in the dark, the ability to receive light and generate charge, and the function to receive light and transport charge. A so-called single-layer type photoreceptor that has both functions, and a so-called laminated layer with functionally separated layers: a layer that mainly contributes to charge generation, a layer that contributes to surface charge retention in the dark, and a layer that contributes to charge transport during light reception. There is a laminated type photoreceptor. For example, the Carlson method is applied to image formation by electrophotography using these photoreceptors. Image formation in this method involves charging the photoconductor in a dark place by corona discharge, and forming electrostatic latent images such as letters and pictures on the original using N light on the surface of the charged photoconductor. This is done by developing an electrostatic latent image with toner and fixing the developed toner image on a support such as paper.After the toner image has been transferred, the photoreceptor is subjected to static neutralization, removal of residual toner, photostatic static elimination, etc. Subject to reuse.

近年、可とう性、熱安定性、膜形成性などの利点により
、有機材料を用いた電子写真用感光体が実用化されてき
ている。例えば、ポIJN−ビニルカルバゾールと2.
4.7−ドリニトロフルオレンー9−オンとからなる感
光体く米国特許第3484237号明細書に記載)、有
機顔料を主成分とする感光体く特開昭47−37543
号公報に記載)、染料と樹脂とからなる共晶錯体を主成
分とする感光体(特開昭47−10735号公報に記載
)などである。さらに、新規ヒドラゾン化合物も数多く
実用化されている。
In recent years, electrophotographic photoreceptors using organic materials have been put into practical use due to their advantages such as flexibility, thermal stability, and film-forming properties. For example, polyJN-vinylcarbazole and 2.
4,7-dolinitrofluoren-9-one (described in US Pat. No. 3,484,237), and a photoreceptor containing organic pigment as a main component (JP-A-47-37543).
(described in Japanese Unexamined Patent Publication No. 10735/1983), and a photoreceptor whose main component is a eutectic complex consisting of a dye and a resin (described in Japanese Patent Application Laid-Open No. 10735/1983). Furthermore, many new hydrazone compounds have also been put into practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、有機材料は無機材料にない多くの長所を
持つが、また同時に電子写真用感光体に要求されるすべ
ての特性を充分に満足するものがまだ得られていないの
が現状であり、特に光感度および繰り返し連続使用時の
特性に問題があった。
As mentioned above, organic materials have many advantages that inorganic materials do not have, but at the same time, there is currently no material that fully satisfies all the characteristics required of electrophotographic photoreceptors. In particular, there were problems with photosensitivity and characteristics during repeated and continuous use.

本発明は、上述の点に鑑みてなされたものであって、感
光層に電荷輸送物質として今まで用いられたことのない
新しい有機材料を用いることにより、高感度で繰り返し
特性に優れた複写機用およびプリンタ用の電子写真用感
光体を提供することを目的とする。
The present invention has been made in view of the above points, and by using a new organic material that has never been used as a charge transport material in the photosensitive layer, a copying machine with high sensitivity and excellent repeatability can be achieved. The purpose of the present invention is to provide an electrophotographic photoreceptor for use in cameras and printers.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明によれば、下記一般
式(I)および(II)のいずれかで示されるヒドラゾ
ン化合物のうちの、少なくとも1種類を含む感光層を有
する電子写真用感光体とする。
In order to achieve the above object, the present invention provides an electrophotographic photoreceptor having a photosensitive layer containing at least one hydrazone compound represented by either of the following general formulas (I) and (II). shall be.

〔式(1)および(■)中、R1,R2,Rs、  R
sおよびR7はそれぞれ水素原子、ハロゲン原子、アル
キル基、アルコキシ基、ヒドロキシ基、アシル基。
[In formulas (1) and (■), R1, R2, Rs, R
s and R7 are each a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a hydroxy group, or an acyl group.

ニトロ基、置換してもよいアリール基、アミノ基を表し
、R2およびR6は置換してもよいアリール基を表す。
It represents a nitro group, an optionally substituted aryl group, or an amino group, and R2 and R6 represent an optionally substituted aryl group.

また、nは1および2のいずれかを表す。〕 〔作用〕 前記一般式(I)および(II)のいずれかで示される
ヒドラゾン化合物を感光層に用いた例は知られていない
。本発明者らは、前記目的を達成するために各種有機材
料について鋭意検討を進めるなかで、これらヒドラゾン
化合物について数多くの実験を行った結果、その技術的
解明はまだ充分なされてはいないが、このような前記一
般式(I)および(II)のいずれかで示される特定の
ヒドラゾン化合物を電荷輸送物質として使用することが
、電子写真特性の向上に極めて有効であることを見出し
、高感度で繰り返し特性の優れた感光体を得るに至った
のである。
Further, n represents either 1 or 2. ] [Function] There is no known example in which a hydrazone compound represented by either of the above general formulas (I) or (II) is used in a photosensitive layer. In order to achieve the above objective, the present inventors conducted a number of experiments on these hydrazone compounds while conducting intensive studies on various organic materials. It has been discovered that the use of a specific hydrazone compound represented by either of the above general formulas (I) or (II) as a charge transporting substance is extremely effective in improving electrophotographic properties, and has been repeatedly carried out with high sensitivity. A photoreceptor with excellent characteristics has been obtained.

〔実施例〕〔Example〕

本発明に用いられる前記一般式(I)および<II)の
いずれかのヒドラゾン化合物は、通常の方法により合成
することができる。すなわち、必要に応じて縮合剤とし
て少量の酸を用い、アルコールなどの適当な有機溶媒中
でアルデヒド類またはカルボニル化合物とヒドラジン類
を縮合させることにより得られる。
The hydrazone compound of any of the general formulas (I) and <II) used in the present invention can be synthesized by a conventional method. That is, it can be obtained by condensing aldehydes or carbonyl compounds with hydrazines in a suitable organic solvent such as alcohol, using a small amount of acid as a condensing agent if necessary.

こうして得られる一般式(1)および(II)のいずれ
かで表されるヒドラゾン化合物の具体例を例示化合物N
91 編4 坐5 化合物N96 化合物歯11 坐13 坐15 化合物N916 化合物N921 本発明の感光体は前述のようなヒドラゾン化合物を感光
層中に含有させたものであるが、これらヒドラゾン化合
物の応用の仕方によって、第1図。
A specific example of the hydrazone compound represented by either of the general formulas (1) or (II) obtained in this way is exemplified by the exemplified compound N.
91 Edition 4 Sitting 5 Compound N96 Compound Teeth 11 Sitting 13 Sitting 15 Compound N916 Compound N921 The photoreceptor of the present invention contains the above-mentioned hydrazone compound in the photosensitive layer, but how to apply these hydrazone compounds. According to Fig. 1.

第2図、あるいは第3図に示したごとくに用いることが
できる。
It can be used as shown in FIG. 2 or 3.

第1図〜第3図は本発明の感光体の概念的断面図で、1
は導電性基体、20.21.22は感光層、3は電荷発
生物質、4は電荷発生層、5は電荷輸送物質、6は電荷
輸送層、7は被覆層である。
1 to 3 are conceptual cross-sectional views of the photoreceptor of the present invention.
20, 21 and 22 are a conductive substrate, 20, 21 and 22 are photosensitive layers, 3 is a charge generating material, 4 is a charge generating layer, 5 is a charge transporting material, 6 is a charge transporting layer, and 7 is a coating layer.

第1図は、導電性基体1上に電荷発生物質3と電荷輸送
物質5であるヒドラゾン化合物を樹脂バインダー(結着
剤)中に分散した感光層20(通常単層型感光体と称せ
られる構成)が設けられたものである。
FIG. 1 shows a photosensitive layer 20 (commonly referred to as a single-layer photoreceptor) in which a charge generating substance 3 and a hydrazone compound as a charge transporting substance 5 are dispersed in a resin binder on a conductive substrate 1. ) is provided.

第2図は、導電性基体l上に電荷発生物質3を主体とす
る電荷発生層4と、電荷輸送物質5であるヒドラゾン化
合物を含有する電荷輸送層6との積層からなる感光層2
1(通常積層型感光体と称せられる構成)が設けられた
ものである。
FIG. 2 shows a photosensitive layer 2 consisting of a stack of a charge generation layer 4 mainly containing a charge generation substance 3 and a charge transport layer 6 containing a hydrazone compound as a charge transport substance 5 on a conductive substrate 1.
1 (a configuration commonly referred to as a laminated photoreceptor).

第3図は、第2図の逆の層構成のものである。FIG. 3 shows an inverse layer configuration to that in FIG.

第2図および第3図に示す2種類の層構成とする理由は
、負帯電方式として通常用いられる第°2図の層構成を
正帯電方式で用いようとしても、これに適合する電荷輸
送物質がまだ見つかっておらず、したがって、正帯電方
式の感光体としては、現段階では、第3図に示した層構
成とすることが必要なためである。
The reason for using the two types of layer configurations shown in Figures 2 and 3 is that even if the layer configuration shown in Figure 2, which is normally used for a negative charging system, is used for a positive charging system, a charge transport material that is compatible with the layer configuration shown in Figure 2 cannot be used for a positive charging system. This is because the layer structure shown in FIG. 3 is required for a positive charging type photoreceptor at this stage.

第1図の感光体は、電荷発生物質を電荷輸送物質および
樹脂バインダーを溶解した溶液中に分散せしめ、この分
散液を導電性基体上に塗布することによって作製できる
The photoreceptor shown in FIG. 1 can be produced by dispersing a charge generating material in a solution containing a charge transporting material and a resin binder, and applying this dispersion onto a conductive substrate.

第2図の感光体は、導電性基体上に電荷発生物質を真空
蒸着するか、あるいは電荷発生物質の粒子を溶剤または
樹脂バインダー中に分散して得た分散液を塗布、乾燥し
、その上に電荷輸送物質および樹脂バインダーを溶解し
た溶液を塗布、乾燥することにより作製できる。
The photoreceptor shown in Figure 2 is produced by vacuum-depositing a charge-generating substance on a conductive substrate, or by coating and drying a dispersion obtained by dispersing particles of a charge-generating substance in a solvent or resin binder, and then It can be produced by applying a solution containing a charge transporting substance and a resin binder to the surface of the substrate and drying the solution.

第3図の感光体は、電荷輸送物質および樹脂バインダー
を溶解した溶液を導電性基体上に塗布、乾燥し、その上
に電荷発生物質を真空蒸着するか、あるいは電荷発生物
質の粒子を溶剤または樹脂バインダー中に分散して得た
分散液を塗布、乾燥し、さらに被覆層を形成することに
より作製できる。
The photoreceptor shown in Figure 3 is produced by coating a conductive substrate with a solution containing a charge transporting substance and a resin binder and drying it, and then vacuum-depositing a charge generating substance thereon, or by depositing charge generating substance particles in a solvent or a solvent. It can be produced by applying a dispersion obtained by dispersing it in a resin binder, drying it, and further forming a coating layer.

導電性基体lは感光体の電極としての役目と同時に他の
各層の支持体となっており、円筒状、板状、フィルム状
のいずれでも良く、材質的にはアルミニウム、ステンレ
ス鋼、ニッケルなどの金属、あるいはガラス、樹脂など
の上に導電処理をほどこしたものでも良い。
The conductive substrate l serves as an electrode for the photoreceptor and at the same time serves as a support for the other layers, and may be cylindrical, plate-shaped, or film-shaped, and may be made of aluminum, stainless steel, nickel, etc. It may also be made of metal, glass, resin, or the like, which has been subjected to conductive treatment.

電荷発生層4は、前記したように電荷発生物質3の粒子
を樹脂バインダー中に分散させた材料を塗布するか、あ
るいは、真空蒸着などの方法により形成され、光を受容
して電荷を発生する。また、その電荷発生効率が高いこ
とと同時に発生した電荷の電荷輸送層6および被覆層7
への注入性が重要で、電場依存性が少なく低電場でも注
入の良いことが望ましい。電荷発生物質としては、無金
属フタロシアニン、チタニルフタロシアニンなどのフタ
ロシアニン化合物、各種アゾ、キノン、インジゴ顔料あ
るいは、シアニン、スクアリリウム。
The charge generation layer 4 is formed by applying a material in which particles of the charge generation substance 3 are dispersed in a resin binder as described above, or by a method such as vacuum deposition, and generates charges by receiving light. . In addition, the charge transport layer 6 and the coating layer 7 for the generated charges at the same time have a high charge generation efficiency.
It is important to have good injection properties even in low electric fields with little dependence on electric fields. Examples of the charge generating substance include phthalocyanine compounds such as metal-free phthalocyanine and titanyl phthalocyanine, various azo, quinone, and indigo pigments, or cyanine and squarylium.

アズレニウム、ピリリウム化合物などの染料や、セレン
またはセレン化合物などが用いられ、画像形成に使用さ
れる露光光源の光波長領域に応じて好適な物質を選ぶこ
とができる。電荷発生層は電荷発生機能を有すればよい
ので、その膜厚は電荷発生物質の光吸収係数より決まり
一般的には5μm以下であり、好適には1μm以下であ
る。電荷発生層は電荷発生物質を主体としてこれに電荷
輸送物質などを添加して使用することも可能である。
Dyes such as azulenium and pyrylium compounds, selenium or selenium compounds, and the like are used, and suitable substances can be selected depending on the light wavelength range of the exposure light source used for image formation. Since the charge generation layer only needs to have a charge generation function, its thickness is determined by the light absorption coefficient of the charge generation substance and is generally 5 μm or less, preferably 1 μm or less. The charge generation layer is mainly composed of a charge generation substance, and a charge transport substance or the like may be added thereto.

樹脂バインダーとしては、ポリカーボネート、ポリエス
テル、ポリアミド、ポリウレタン、エポキシ2 シリコ
ン樹脂、メタクリル酸エステルの重合体および共重合体
などを適宜組み合わせて使用することが可能である。
As the resin binder, polycarbonate, polyester, polyamide, polyurethane, epoxy 2 silicone resin, polymers and copolymers of methacrylic acid ester, etc. can be used in appropriate combinations.

電荷輸送層6は樹脂バインダー中に有機電荷輸送物質と
して前記−紋穴(I)および(II)のいずれかで示さ
れるヒドラゾン化合物を分散させた塗膜であり、暗所で
は絶縁体層として感光体の電荷を保持し、光受容時には
電荷発生層から注入される電荷を輸送する機能を発揮す
る。樹脂バインダーとしては、ポリカーボネート、ポリ
エステル、ポリアミド、ポリウレタン、エポキシ、シリ
コン樹脂、メタクリル酸エステルの重合体および共重合
体などを用いることができる。
The charge transport layer 6 is a coating film in which a hydrazone compound represented by either of the above-mentioned patterns (I) and (II) is dispersed as an organic charge transport substance in a resin binder, and is photosensitive as an insulating layer in a dark place. It functions to hold the body's charge and transport the charge injected from the charge generation layer when receiving light. As the resin binder, polycarbonate, polyester, polyamide, polyurethane, epoxy, silicone resin, polymers and copolymers of methacrylic acid ester, etc. can be used.

被覆層7は暗所ではコロナ放電の電荷を受容して保持す
る機能を有しており、かつ電荷発生層が感応する光を透
過する性能を有し、露光時に光を透過し、電荷発生層に
到達させ、発生した電荷の注入を受けて表面電荷を中和
消滅させることが必要である。被覆材料としては、ポリ
エステル、ポリアミドなどの有機絶縁性皮膜形成材料が
適用できる。また、これら有機材料とガラス樹脂、 5
i02などの組機材料さらには金属、金属酸化物などの
電気抵抗を低減せしめる材料とを混合して用いることも
できる。被覆材料としては有機絶縁性皮膜形成材料に限
定されることはな(Si02などの無機材料さらには金
属、金属酸化物などを蒸着、スパッタリングなどの方法
により形成することも可能である。被覆材料は前述のと
おり電荷発生物質の光の吸収極大の波長領域においてで
きるだけ透明であることが望ましい。
The coating layer 7 has the function of receiving and retaining the charge of corona discharge in a dark place, and has the ability to transmit the light to which the charge generation layer is sensitive, and transmits the light upon exposure, and the charge generation layer It is necessary to neutralize and eliminate the surface charges by injecting the generated charges. As the coating material, organic insulating film-forming materials such as polyester and polyamide can be used. In addition, these organic materials and glass resin, 5
It is also possible to use a combination of assembly materials such as i02 and materials that reduce electrical resistance such as metals and metal oxides. The coating material is not limited to organic insulating film forming materials (inorganic materials such as Si02, metals, metal oxides, etc. can also be formed by methods such as vapor deposition and sputtering.The coating material is As mentioned above, it is desirable that the charge generating material be as transparent as possible in the wavelength region where the light absorption is maximum.

被覆層自体の膜厚は被覆層の配合組成にも依存するが、
繰り返し連続使用したとき残留電位が増大するなどの悪
影響が出ない範囲で任意に設定できる。
The thickness of the coating layer itself depends on the composition of the coating layer, but
It can be set arbitrarily within a range that does not cause adverse effects such as an increase in residual potential when used repeatedly and continuously.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 ボールミルで150時間粉砕した無金属フタロシアニン
(東京化成製)50重量部と前記化合物k 1で示され
るヒドラゾン化合物100重量部をポリエステル樹脂(
商品名バイロン200:東洋紡製)100重量部とテト
ラヒドロフラン(THF)溶剤とともに3時間混合機に
より混練して塗布液を調整し、導電性基体であるアルミ
蒸着ポリエステルフィルム(八N−PET)上に、ワイ
ヤーバー法にて塗布して、乾燥後の膜厚が15μmにな
るように感光層を形成し、第1図に示した構成の感光体
を作製した。
Example 1 A polyester resin (
A coating solution was prepared by kneading 100 parts by weight (trade name: Vylon 200: manufactured by Toyobo) and a tetrahydrofuran (THF) solvent for 3 hours in a mixer, and then coated on an aluminum-deposited polyester film (8N-PET), which is a conductive substrate. A photosensitive layer was formed by coating using a wire bar method so that the film thickness after drying was 15 μm, and a photosensitive member having the structure shown in FIG. 1 was prepared.

実施例2 まず、α型無金属フタロシアニンを出発原料とし、二つ
のリニアモーターを対向して配置した間にα型無金属フ
タロシアニンと作用小片としてテフロン被覆磁性体ピー
スを内蔵した非磁性離体をおいて粉砕する電磁粉砕装置
(商品名LIMMAC=富士電機製)を用いて粉砕処理
を20分間行い微粉末化した。この微粉末化された試料
1重量部(!:DMF (N、N−ジメチルホルムアミ
ド)溶剤50重量部とを超音波分散処理を行った。その
後、試料とDMFとを分離濾過し、乾燥して無金属フタ
ロシアニンの処理を行った。
Example 2 First, α-type metal-free phthalocyanine was used as a starting material, and while two linear motors were placed facing each other, α-type metal-free phthalocyanine and a nonmagnetic separation body containing a Teflon-coated magnetic piece as a working piece were mixed. The mixture was pulverized for 20 minutes using an electromagnetic pulverizer (trade name: LIMMAC, manufactured by Fuji Electric) for pulverization. 1 part by weight of this finely powdered sample (!: 50 parts by weight of DMF (N,N-dimethylformamide) solvent) was subjected to ultrasonic dispersion treatment.Then, the sample and DMF were separated and filtered, and dried. Processing of metal-free phthalocyanine was carried out.

次に、前記化合物N11L2で示されるヒドラゾン化合
物100重量部をテトラヒドロフラン(THF)700
重量部に溶かした液とポリメタクリル酸メチルポリマー
(PMMA :東京化成製)100重量部をトルエン7
00重量部に溶かした液とを混合してできた塗液をアル
ミ蒸着ポリエステルフィルム基体上にワイヤーバー法に
て塗布し、乾燥後の膜厚が15μmになるように電荷輸
送層を形成した。このようにして得られた電荷輸送層上
に上記の処理をされた無金属フタロシアニン50重量部
、ポリエステル樹脂(商品名バイロン200:東洋紡製
)50重量部、P M M A50重量部をTHF溶剤
とともに3時間混合機により混練して塗布液を調整し、
ワイヤーバー法にて塗布し、乾燥後の膜厚が1μmにな
るように電荷発生層を形成し、第3図に示した構成に対
応する感光体を作製した。
Next, 100 parts by weight of the hydrazone compound represented by the compound N11L2 was added to 700 parts by weight of tetrahydrofuran (THF).
7 parts by weight of the solution and 100 parts by weight of polymethyl methacrylate polymer (PMMA: manufactured by Tokyo Kasei) were mixed with 7 parts by weight of toluene.
A coating solution prepared by mixing a solution of 0.00 parts by weight was applied onto an aluminum vapor-deposited polyester film substrate by a wire bar method to form a charge transport layer so that the film thickness after drying was 15 μm. On the charge transport layer thus obtained, 50 parts by weight of the above-treated metal-free phthalocyanine, 50 parts by weight of polyester resin (trade name: Vylon 200, manufactured by Toyobo Co., Ltd.), and 50 parts by weight of PMM A were added together with a THF solvent. Knead with a mixer for 3 hours to adjust the coating solution,
A charge generation layer was formed by coating using a wire bar method so that the film thickness after drying was 1 μm, and a photoreceptor having the structure shown in FIG. 3 was prepared.

実施例3 実施例1の感光層の組成を、無金属フタロシアニン50
重量部、化合物Nα3で示されるヒドラゾン化合物10
0重量部、ポリエステル樹脂(商品名バイロン200:
東洋紡製)50重量部・P M M A50重量部とに
変更して実施例1と同様に感光層を形成し感光体を作製
した。
Example 3 The composition of the photosensitive layer of Example 1 was changed to 50% metal-free phthalocyanine.
Part by weight, hydrazone compound 10 represented by compound Nα3
0 parts by weight, polyester resin (trade name Byron 200:
A photosensitive layer was formed in the same manner as in Example 1 except that 50 parts by weight of PMMA (manufactured by Toyobo) and 50 parts by weight of PMMA were used to prepare a photoreceptor.

実施例4 実施例3において、無金属フタロシアニンに変えて例え
ば特開昭47−37543に示されるようなどスアゾ顔
料であるクロログイアンブル−を用い実施例1と同様に
感光層を形成し感光体を作製した。
Example 4 In Example 3, a photosensitive layer was formed in the same manner as in Example 1 using chlorodiambre, which is a suazo pigment, as shown in JP-A-47-37543, instead of metal-free phthalocyanine, and a photoreceptor was formed. Created.

このようにして得られた感光体の電子写真特性を川口電
機製静電記録紙試験装置r S P−428Jを用いて
測定した。
The electrophotographic properties of the photoreceptor thus obtained were measured using an electrostatic recording paper tester RSP-428J manufactured by Kawaguchi Electric.

感光体の表面電位V言ボルト)は暗所で+6. OkV
のコロナ放電を10秒間行って感光体表面を正帯電せし
めたときの初期の表面電位であり、続いてコロナ放電を
中止した状態で2秒間暗所保持したときの表面電位V 
a (ボルト)を測定し、さらに続いて感光体表面に照
度2ルツクスの白色光を照射してV、が半分になるまで
の時間(秒)を求め半減衰露光量E1/2(ルックス・
秒)とした。また、照度2ルツクスの白色光を10秒間
照射したときの表面電位を残留電位Vr(ボルト)とし
た。また、フタロシアニン化合物を電荷発生物質とした
場合、長波長光での高感度が期待できるので、波長78
0nmの単色光を用いたときの電子写真特性も同時に測
″定した。すな属ち、V6 までは同様に測定し、次に
白色光の替わりに1μ−の単色光(780nm)を照射
して半減衰露光量(μJ/cIIl)を求め、また、こ
の光を10秒間感光体表面に照射したときの残留電位V
r(ボルト)を測定した。測定結果を第1表に示す。
The surface potential of the photoreceptor (volts) is +6. OkV
This is the initial surface potential when corona discharge is performed for 10 seconds to positively charge the surface of the photoreceptor, and then the surface potential is V when the corona discharge is stopped and the surface is held in the dark for 2 seconds.
Measure a (volts), and then irradiate the surface of the photoreceptor with white light with an illuminance of 2 lux to find the time (seconds) it takes for V to be halved, and calculate the half-attenuation exposure amount E1/2 (lux
seconds). Further, the surface potential when white light with an illuminance of 2 lux was irradiated for 10 seconds was defined as the residual potential Vr (volt). In addition, when a phthalocyanine compound is used as a charge generating substance, high sensitivity with long wavelength light can be expected.
The electrophotographic characteristics when using 0 nm monochromatic light were also measured at the same time.In other words, measurements were made in the same way up to V6, and then 1 μ-monochromatic light (780 nm) was irradiated instead of white light. The half-attenuation exposure amount (μJ/cIIl) is calculated using
r (volts) was measured. The measurement results are shown in Table 1.

第  1  表 第1表に見られるように、実施例1. 2.3゜4は半
減衰露光量、残留電位ともに互いに遜色はなく、また表
面電位でも良好な特性を示している。
Table 1 As seen in Table 1, Example 1. 2.3°4 has comparable half-attenuation exposure and residual potential, and also exhibits good characteristics in terms of surface potential.

また、電荷発生物質としてフタロシアニン化合物を用い
た実施例1,2.3は波長780nmの長波長光でも高
感度を示し、半導体レーザプリンタ用として充分使用可
能であることが判る。
Furthermore, Examples 1 and 2.3 in which a phthalocyanine compound was used as the charge generating substance showed high sensitivity even with long wavelength light of 780 nm, and it was found that they could be sufficiently used for semiconductor laser printers.

実施例5 厚さ500μmのアルミニウム板上に、セレンを厚さ1
.5μmに真空蒸着し電荷発生層を形成し、次に、化合
物Nα4で示されるヒドラゾン化合物100重量部をテ
トラヒドロフラン(THF)700重量部に溶かした液
とポリメタクリル酸メチルポリマー(PMMA :東京
化成製)100重量部をトルエン700重量部に溶かし
た液とを混合してできた塗液をワイヤーバー法にて塗布
し、乾燥後の膜厚が20μmになるように電荷輸送層を
形成し、第2図に示した構成の感光体を作製した。この
感光体に−6,tIkVのコロナ帯電を0.2秒間行っ
たところ、V、 =−620V。
Example 5 Selenium was deposited to a thickness of 1 on a 500 μm thick aluminum plate.
.. A charge generation layer was formed by vacuum evaporation to a thickness of 5 μm, and then a solution obtained by dissolving 100 parts by weight of a hydrazone compound represented by compound Nα4 in 700 parts by weight of tetrahydrofuran (THF) and polymethyl methacrylate polymer (PMMA: manufactured by Tokyo Kasei) were added. A coating solution prepared by mixing 100 parts by weight of toluene with 700 parts by weight of toluene was applied using a wire bar method to form a charge transport layer so that the film thickness after drying was 20 μm. A photoreceptor having the configuration shown in the figure was manufactured. When this photoreceptor was corona charged at -6,tIkV for 0.2 seconds, V = -620V.

Vr ”−40V、 E l/2 =4.9 ルー/ 
クス”秒と良好な結果が得られた。
Vr”-40V, E l/2 =4.9 Roux/
Good results were obtained in seconds.

実施例6 実施例1で処理された無金属フタロシアニン50重量部
、ポリエステル樹脂(商品名バイロン200:東洋紡製
)50重量部、PMMA50重量部をT I(F溶剤と
ともに3時間混合機により混練して塗布液を調整し、ア
ルミニウム支持体上に約1μmになるように塗布し、電
荷発生層を形成した。次に、化合物Nα5で示されるヒ
ドラゾン化合物100重量部、ポリカーボネート樹脂(
パンライトL−1250)100重量部、シリコンオイ
ル0.1重量部をTHF700重量部とトルエン700
重量部で混合し、電荷発生層の上に約15μmとなるよ
うに塗布し、電荷輸送層を形成した。
Example 6 50 parts by weight of the metal-free phthalocyanine treated in Example 1, 50 parts by weight of polyester resin (trade name Byron 200, manufactured by Toyobo), and 50 parts by weight of PMMA were kneaded together with T I (F solvent) in a mixer for 3 hours. A coating solution was prepared and coated on an aluminum support to a thickness of about 1 μm to form a charge generation layer.Next, 100 parts by weight of a hydrazone compound represented by compound Nα5 and a polycarbonate resin (
Panlite L-1250) 100 parts by weight, 0.1 parts by weight of silicone oil, 700 parts by weight of THF and 700 parts by weight of toluene.
They were mixed in parts by weight and coated on the charge generation layer to a thickness of about 15 μm to form a charge transport layer.

このようにして得られた感光体に実施例5と同様にして
、−6,OkVのコロナ帯電を0.2秒間行ったところ
、Vs’=−650V、  E l/2 =’6.6ル
ツクス・秒と良好な結果が得られた。
When the photoreceptor thus obtained was corona charged at -6, OkV for 0.2 seconds in the same manner as in Example 5, Vs' = -650V, E l/2 ='6.6 Lux.・Good results were obtained in seconds.

実施例7 化合物Nα6〜No、21それぞれについて実施例4と
同様、電荷発生層を作製しr S P−428Jを用い
て測定した結果を第2表に示す。この結果は、暗所で+
6. OkVのコロナ放電を10秒間行い正帯電せしめ
、照度2ルツクスの白色光を照射した場合の半減衰露光
mE+y□(ルックス・秒)で示した。
Example 7 Charge generation layers were prepared in the same manner as in Example 4 for each of Compounds Nα6 to No. 21 and measured using rSP-428J. Table 2 shows the results. This result is + in the dark.
6. Corona discharge at OkV was performed for 10 seconds to positively charge the sample, and the half-attenuation exposure mE+y□ (lux/second) was shown when white light with an illuminance of 2 lux was irradiated.

第  2  表 第2表に見られるように、前記ヒドラゾン化合物Nα6
〜Nα21を電荷輸送物質として用いた感光体について
も、半減衰露光量El/2は良好であった。
Table 2 As seen in Table 2, the hydrazone compound Nα6
The half-attenuation exposure amount El/2 was also good for the photoreceptor using ~Nα21 as the charge transport material.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、導電性基体上に電荷輸送物質として前
記−紋穴(I)および(n)のいずれかで示されるヒド
ラゾン化合物を用いることとしたため、正帯電および負
帯電においても高感度でしかも繰り返し特性の優れた感
光体を得ることができる。
According to the present invention, since the hydrazone compound represented by either of the above-mentioned patterns (I) and (n) is used as a charge transport substance on a conductive substrate, it is highly sensitive even in positive and negative charging. Moreover, a photoreceptor with excellent repeatability characteristics can be obtained.

また、電荷発生物質は露光光源の種類に対応して好適な
物質を選ぶことができ、−例をあげるとフタロシアニン
化合物およびある種のビスアゾ化合物を用いれば半導体
レーザプリンタに使用可能な感光体を得ることができる
。さらに、必要に応じて表面に被覆層を設置して耐久性
を向上することが可能である。
In addition, a suitable charge-generating substance can be selected depending on the type of exposure light source; for example, by using phthalocyanine compounds and certain bisazo compounds, a photoreceptor that can be used in semiconductor laser printers can be obtained. be able to. Furthermore, if necessary, it is possible to provide a coating layer on the surface to improve durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は本発明の感光体のそれぞ
れ異なる実施例を示す概念的断面図である。 l 導電性基体、3 電荷発生物質、4 電荷発生層、
5 電荷輸送物質、6 電荷輸送層、7被覆層、20.
21.22  感光層。 第1図 第2図 第3図
FIGS. 1, 2, and 3 are conceptual sectional views showing different embodiments of the photoreceptor of the present invention. 1 conductive substrate, 3 charge generation substance, 4 charge generation layer,
5 charge transport material, 6 charge transport layer, 7 coating layer, 20.
21.22 Photosensitive layer. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1)下記一般式( I )および(II)のいずれかで示さ
れるヒドラゾン化合物のうちの、少なくとも1種類を含
む感光層を有することを特徴とする電子写真用感光体。 ▲数式、化学式、表等があります▼・・・・・・・(
I ) ▲数式、化学式、表等があります▼・・・・・・・(I
I) 〔式( I )および(II)中、R_1、R_2、R_3
、R_4およびR_7はそれぞれ水素原子、ハロゲン原
子、アルキル基、アルコキシ基、ヒドロキシ基、アシル
基、ニトロ基、置換してもよいアリール基、アミノ基を
表し、R_5およびR_6は置換してもよいアリール基
を表す。また、nは1および2のいずれかを表す。〕
[Scope of Claims] 1) An electrophotographic photoreceptor comprising a photosensitive layer containing at least one hydrazone compound represented by either of the following general formulas (I) and (II). ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・・・・(
I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・・(I
I) [R_1, R_2, R_3 in formulas (I) and (II)
, R_4 and R_7 each represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a hydroxy group, an acyl group, a nitro group, an optionally substituted aryl group, and an amino group, and R_5 and R_6 represent an optionally substituted aryl group. represents a group. Further, n represents either 1 or 2. ]
JP62323235A 1987-12-21 1987-12-21 Electrophotographic sensitive body Pending JPH01164950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62323235A JPH01164950A (en) 1987-12-21 1987-12-21 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62323235A JPH01164950A (en) 1987-12-21 1987-12-21 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH01164950A true JPH01164950A (en) 1989-06-29

Family

ID=18152513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62323235A Pending JPH01164950A (en) 1987-12-21 1987-12-21 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01164950A (en)

Similar Documents

Publication Publication Date Title
JPH027061A (en) Electrophotographic sensitive body
JPH0279855A (en) Electrophotographic sensitive body
JPH01237555A (en) Electrophotographic sensitive body
JPH01102469A (en) Electrophotographic sensitive body
JPS63158560A (en) Electrophotographic sensitive body
JPH04119360A (en) Electrophotographic sensitive body
JPH032760A (en) Electrophotographic sensitive body
JPH0194349A (en) Electrophotographic sensitive body
JPH01273049A (en) Electrophotographic sensitive body
JPH01172965A (en) Electrophotographic sensitive body
JPS63157159A (en) Electrophotographic sensitive body
JPH01164950A (en) Electrophotographic sensitive body
JPH01107262A (en) Electrophotographic sensitive body
JPH01241561A (en) Electrophotographic sensitive body
JPH01172967A (en) Electrophotographic sensitive body
JPH0524505B2 (en)
JPH01107263A (en) Electrophotographic sensitive body
JPH01152463A (en) Electrophotographic sensitive body
JPH01107261A (en) Electrophotographic sensitive body
JPH01164952A (en) Electrophotographic sensitive body
JPH01170945A (en) Electrophotographic sensitive body
JPH01164951A (en) Electrophotographic sensitive body
JPH01159658A (en) Electrophotographic sensitive body
JPS63158557A (en) Electrophotographic sensitive body
JPH01170946A (en) Electrophotographic sensitive body