JPH01164740A - Production of optical fiber preform - Google Patents
Production of optical fiber preformInfo
- Publication number
- JPH01164740A JPH01164740A JP32295587A JP32295587A JPH01164740A JP H01164740 A JPH01164740 A JP H01164740A JP 32295587 A JP32295587 A JP 32295587A JP 32295587 A JP32295587 A JP 32295587A JP H01164740 A JPH01164740 A JP H01164740A
- Authority
- JP
- Japan
- Prior art keywords
- core
- optical fiber
- deposit
- gas
- fiber preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000007789 gas Substances 0.000 claims abstract description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 239000011261 inert gas Substances 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims abstract description 8
- 230000018044 dehydration Effects 0.000 claims description 19
- 238000006297 dehydration reaction Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 19
- 238000011282 treatment Methods 0.000 claims description 13
- 239000003638 chemical reducing agent Substances 0.000 claims description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims description 7
- 239000012024 dehydrating agents Substances 0.000 claims description 4
- 230000001603 reducing effect Effects 0.000 abstract description 10
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 abstract description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 7
- 239000001301 oxygen Substances 0.000 abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 abstract description 7
- 239000001257 hydrogen Substances 0.000 abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 6
- 238000002791 soaking Methods 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 239000008246 gaseous mixture Substances 0.000 abstract 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 33
- 239000011162 core material Substances 0.000 description 29
- 239000011521 glass Substances 0.000 description 21
- 208000005156 Dehydration Diseases 0.000 description 16
- 238000010521 absorption reaction Methods 0.000 description 12
- 239000004071 soot Substances 0.000 description 9
- 230000007547 defect Effects 0.000 description 6
- 101100392078 Caenorhabditis elegans cat-4 gene Proteins 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 101100161935 Caenorhabditis elegans act-4 gene Proteins 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000005373 porous glass Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004334 fluoridation Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229960003903 oxygen Drugs 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000011043 treated quartz Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕−
不発明は元ファイバ用母材の製造方法に関し、詳しくは
コアが実質的に純粋な石英ガラスからなる元ファイバの
コア用母材の製造方法に関するものでおる。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The invention relates to a method for manufacturing a base material for a base fiber, and more particularly, a method for manufacturing a base material for a core of a base fiber whose core is substantially pure quartz glass. This is about the method.
コアが実質的に純粋な石英(S10□)ガラスからなる
元ファイバは、コアにその屈折率を調整するための添加
液(最も一般的にはGe02) を含む元ファイバに
比べ、添加物の存在に起因する放射線或いは水素によシ
誘起される伝送損失の増加が少ないため、放射線環境下
或いは水素が拡散浸入する危険のある環境下で使用しう
る光フアイバケーブル用として信頼性が高く有用である
。さらに、放射線や水素への暴露のない初期状態におい
てもコアに添加物を含壕ないことによシレイリー散乱を
低く抑えることができ、低損失な元ファイバを実現でき
る。Original fibers whose cores are comprised of substantially pure quartz (S10□) glass are less susceptible to the presence of additives than original fibers whose cores contain additives (most commonly Ge02) to adjust their refractive index. Because there is little increase in transmission loss induced by radiation or hydrogen, it is highly reliable and useful for optical fiber cables that can be used in radiation environments or environments where there is a risk of hydrogen diffusion. . Furthermore, even in the initial state without exposure to radiation or hydrogen, by not including any additives in the core, Sileyl scattering can be suppressed to a low level, and a low-loss original fiber can be realized.
このような純粋石英コア元ファイバの構造の具体例を表
1に1とめる。クラッドとしてフッ紫伜加石英ガラス(
F−3iO□ガラス)或いは低屈折率樹脂を用いること
により、種々の構造の元ファイバを構成できる。A specific example of the structure of such a pure quartz core fiber is shown in Table 1. Fluorine-treated quartz glass as cladding (
By using F-3iO□ glass) or low refractive index resin, original fibers with various structures can be constructed.
従来、この種の元ファイバのコア部を合成する生産性に
優れた手段としては、VAD法のようにガラス原料の火
炎加水分解反応にょシ5in2ガラス微粒子の堆積体を
合成し、然る後に加熱脱水処理及び加熱透明化する方法
がある。Conventionally, as a highly productive means of synthesizing the core part of this type of original fiber, the VAD method has been used to synthesize a deposit of 5in2 glass particles using a flame hydrolysis reaction of a glass raw material, followed by heating. There are methods of dehydration and heating to make it transparent.
ところが、この棟の方法で作製したコア用母材を用いた
純粋石英(以下純5102とも称す)コア元ファイバに
おいては波長0.65μmにおける吸収が大きくなると
いう問題が生ずる場合があった。この波長は伝送用の元
波長とは異なるが、0.65μmにおける吸収はいわゆ
る非架橋酸素欠陥(NOI Bridging Oxy
gen associatedHal!e Cente
r:NBOHOと略す)の存在によると考えられておシ
、この存在は元ファイバの耐水素特性を悪化させて該フ
ァイバの長期安定性、信頼性の低下につながるものであ
るため元ファイバの実用化には重大な問題であった。However, in a pure quartz (hereinafter also referred to as pure 5102) core fiber using a core base material produced by this method, a problem sometimes arises in that absorption at a wavelength of 0.65 μm becomes large. This wavelength is different from the original wavelength for transmission, but the absorption at 0.65 μm is caused by so-called NOI Bridging Oxy
gen associatedHal! e Cente
This is thought to be due to the presence of r: NBOHO), which deteriorates the hydrogen resistance properties of the original fiber and leads to a decline in the long-term stability and reliability of the fiber, so it is difficult to put the original fiber into practical use. This was a serious problem.
本発明はこのような欠陥量の少ないコア用母材の作製方
法を意図してなされたものである。The present invention has been made with the intention of providing a method for producing a core base material with a small amount of defects.
本発明者らはコア用母材作製方法について、研究を重ね
、該欠陥量と、コア用ガラス微粒子堆積体の加熱脱水処
理時の雰囲気ガスの組成とに缶接な関係があることを見
出した。The present inventors have conducted repeated research on the method for producing the base material for the core, and have found that there is a close relationship between the amount of defects and the composition of the atmospheric gas during the heating dehydration treatment of the glass fine particle deposit for the core. .
即ち5102ガラスを高張力で線引すると0.65μm
に大きな吸収が発生する。このメカニズムは未だ明確で
ないが、有力な説として母材中の=Si−0−0−3i
=という結合が切れ、−=Si−0という欠陥を作ジ
これが0.63μm吸収となって表れるという説がある
。そこで、本発明者らはコア材中の= 5i−0−0−
8i ;結合を少なくするためにVAD法でコア材(純
5102ガラス微粒子堆積体)を作り、脱水、透明化処
理するときにガラス中の酸素含有量を減らすため還元雰
囲気とすることを考えつき、本発明に到達した。In other words, when 5102 glass is drawn with high tension, it is 0.65 μm.
A large absorption occurs. Although this mechanism is still unclear, a leading theory is that =Si-0-0-3i in the base material
There is a theory that the = bond is broken, creating a -=Si-0 defect, which appears as 0.63 μm absorption. Therefore, the present inventors calculated = 5i-0-0- in the core material.
8i; He came up with the idea of creating a core material (pure 5102 glass fine particle deposit) using the VAD method to reduce bonding, and creating a reducing atmosphere to reduce the oxygen content in the glass during dehydration and transparency treatment. invention has been achieved.
すなわち本発明は実質的に純粋な石英ガラスのコアを有
する元ファイバ用母材を作製するにあたり、コア用の純
石英ガラス微粒子堆積体を加熱によシ透明化する工程に
おいて、該堆積体を脱水・還元剤ガスを含む不活性ガス
雰囲気下、温度900〜1100℃の範囲内で加熱する
ことによシ脱水・還元処理した後透明化することを特徴
とする元ファイバ用母材の製造方法に関する。That is, the present invention involves dehydrating the pure silica glass fine particle deposit for the core in the process of making it transparent by heating when producing a base material for the original fiber having a core of substantially pure quartz glass.・Regarding a method for producing a base material for an original fiber, which is characterized by being made transparent after dehydration and reduction treatment by heating within a temperature range of 900 to 1100°C in an inert gas atmosphere containing a reducing agent gas. .
本発明における脱水・還元剤ガスとしては、Cat4及
び02からなるガス、口0及び02からなるガス、5O
Cl2,82CI!2 を用いることが特に好ましい
。またCC/4及び02からなるガスの場合は、両者の
モル濃度比が0.5≦027 GOla < 1の範囲
内のものを用いる必要がある。また不活性ガスとしては
Heガスを用いることが好ましい。The dehydrating/reducing agent gas in the present invention includes a gas consisting of Cat4 and 02, a gas consisting of Cat0 and 02, a gas consisting of Cat4 and Cat02, and a gas consisting of Cat4 and Cat02,
Cl2,82CI! It is particularly preferred to use 2. Further, in the case of gases consisting of CC/4 and 02, it is necessary to use gases in which the molar concentration ratio of both is within the range of 0.5≦027 GOla<1. Moreover, it is preferable to use He gas as the inert gas.
不発明においては、VAD法その他の公知技術により作
成したガラス微粒子堆積体(スート体)を還元性ガスと
脱水剤ガスの共存雰囲気で900〜1100℃の温度範
曲で加熱することによシ該スート体を脱水処理する。こ
の還元性ガスと脱水剤ガスの共存雰囲気とは、GCl4
と02、COと02,5OCl2又は82G/2 の
うちのいずれかとHe、Ar特の不活性ガス、好ましく
はHeからなる雰囲気である。aCt4と02の場合は
0.5≦027GCl4<1 の範囲内に両者の濃度
を調整して行なうが、この理由は作用の項で説明する。In the present invention, the glass particle deposit body (soot body) created by the VAD method or other known technology is heated in a temperature range of 900 to 1100°C in an atmosphere containing a reducing gas and a dehydrating agent gas. Dehydrate the soot body. This coexistence atmosphere of reducing gas and dehydrating gas is GCl4
The atmosphere consists of either 02, CO, 02,5OCl2 or 82G/2, and an inert gas such as He or Ar, preferably He. In the case of aCt4 and 02, the concentrations of both are adjusted within the range of 0.5≦027GCl4<1, and the reason for this will be explained in the section on effects.
脱水処理に要する時間はスート体の大きさに応じて適当
に選択することができる。加熱手段としては均熱炉、ゾ
ーン炉のいずれによってもよい。The time required for the dehydration treatment can be appropriately selected depending on the size of the soot body. The heating means may be either a soaking furnace or a zone furnace.
以上の脱水処理の後に、該スート体を1600℃程度の
高温に加熱して透明化し、コア用透明ガラス体(コア用
母材)を得る。このときの雰囲気は脱水処理の際の雰囲
気と同じ或いはHe等不活性ガスのみの雰囲気でも差し
つかえない。After the above dehydration treatment, the soot body is heated to a high temperature of about 1600° C. to make it transparent, thereby obtaining a transparent glass body for the core (base material for the core). The atmosphere at this time may be the same as the atmosphere during the dehydration treatment, or may be an atmosphere containing only an inert gas such as He.
第1図(Alに均熱炉を用いる場合を示すが、炉心管2
2の内部にスート体25を収容しておき、はyスート体
の全長にわたる長さを持つヒータ部24によシ加熱する
。雰囲気ガスは導入口28よシ供給され、流量計26、
バルブ27を経て排出口29により排気される。21は
支持棒、25は炉である。Figure 1 (shows the case where a soaking furnace is used for Al, the furnace core tube 2
A soot body 25 is housed inside the soot body 2, and is heated by a heater section 24 having a length spanning the entire length of the soot body. Atmospheric gas is supplied through the inlet 28, and the flow meter 26,
The air is exhausted through a valve 27 and an outlet 29 . 21 is a support rod, and 25 is a furnace.
ゾーン炉を用いる場合は、第1図(Blに示すように炉
心管22に収容したスート体25を所定の速度で引き上
げ又は引き下げて、短いヒータ部24を有する炉25を
通過させることにより加熱する。雰囲気ガス導入と排出
は第1図(Alの場合と同様でおる。When using a zone furnace, the soot body 25 housed in the furnace core tube 22 is pulled up or down at a predetermined speed as shown in FIG. The introduction and discharge of atmospheric gas are the same as in the case of Al shown in Fig. 1.
本発明の脱水工程における雰囲気ガスの作用をDo/4
と02からなる雰囲気の場合を例にして説明する。aC
t4と02を加熱炉に導入すると、cat4++ 02
→C0+2012−・−<11上記+11式のように還
元剤となるCOガスが発生する。このときのCat4と
02との比率は、流量比で下記(2)式の範囲内とする
ことが好ましい。The effect of atmospheric gas in the dehydration process of the present invention is Do/4
The case of an atmosphere consisting of and 02 will be explained as an example. aC
When t4 and 02 are introduced into the heating furnace, cat4++ 02
→C0+2012-.-<11 CO gas, which becomes a reducing agent, is generated as shown in equation +11 above. At this time, the ratio between Cat4 and Cat02 is preferably within the range of the following formula (2) in terms of flow rate ratio.
0.5≦027 CO/4 < 1 ・・・・・
・(2)o27aa14< 0.5では下記(3)式の
ように反応して、C(カーボン)が析出してスートに堆
積してし1う。0.5≦027 CO/4 < 1...
- (2) When o27aa14<0.5, a reaction occurs as shown in equation (3) below, and C (carbon) is precipitated and deposited on the soot.
(2+n)ccz4+02−)2 (lo+2(2−1
−n)O/2+n−C−(3)逆に02/GO/4)
1 では下記(4)式のように反応して、雰囲気中の
02 が過多になってしまう。(2+n)ccz4+02-)2 (lo+2(2-1
-n) O/2+n-C- (3) Conversely, 02/GO/4)
1, a reaction occurs as shown in equation (4) below, resulting in an excessive amount of 02 in the atmosphere.
CCl4+(1+n)02−+002+2C;/2+n
O2・+41このように脱水作用を有するat2ガスと
、還元作用のあるCOガスが共存する雰囲気で脱水・透
明化することによって、ガラス中の酸素含有量が低減さ
れ従来品エカも線引後の欠陥量が少ない元ファイバが得
られたと考えられる。CCl4+(1+n)02-+002+2C;/2+n
O2・+41 By dehydrating and making the glass transparent in an atmosphere where at2 gas, which has a dehydrating effect, and CO gas, which has a reducing effect, coexist, the oxygen content in the glass is reduced, and the conventional product is also It is considered that an original fiber with a small amount of defects was obtained.
実施例1
VAD法により作製したコア用軸S iO2ガラス微粒
子堆槓体を第1図+81に示すようなゾーン炉で表2の
条件で、酸素流量x(007分)を棟々質えて加熱処理
した。Example 1 A core shaft SiO2 glass particle pellet produced by the VAD method was heat-treated in a zone furnace as shown in Fig. 1+81 under the conditions shown in Table 2, with the oxygen flow rate x (007 minutes) set at a constant rate. did.
表 2
得られたコア用純51o2ガラス母材を電気抵抗炉で1
900℃に加熱して10μmに延伸した。Table 2 The obtained pure 51o2 glass base material for the core was heated in an electric resistance furnace.
It was heated to 900°C and stretched to 10 μm.
この母材を第2図に示す構成の出発材1としてその外周
部上に8102 のみからなる多孔質ガラス体2を形
成した。6は合成用バーナである。This base material was used as a starting material 1 having the structure shown in FIG. 2, and a porous glass body 2 consisting only of 8102 was formed on its outer peripheral portion. 6 is a synthesis burner.
この多孔質ガラス体部2に表3の条件で脱水、フッ素徐
加、透明化の加熱処理tl−施し透明ガラス化した。This porous glass body part 2 was subjected to dehydration, gradual addition of fluorine, and heat treatment for transparency under the conditions shown in Table 3 to form transparent glass.
表3
得られた透明ガラス体を′電気抵抗炉にて再度IQ+m
φに延伸し上記と同様の方法でスス付し、再度表5の条
件で脱水還元、フッ素添刀口、透明化の各処理を行なっ
た。得られた純石英コア・フッ素際加クラッドからなる
透明ガラス体音線速100 m 7分、張力fO/で外
径125 amのファイバに線引した。該ファイバの屈
折率分布は第5図に示すものであった。またそれぞれの
ファイバの0.63μmにおける吸収量Δαと、コア脱
水時の02流量X((X:;7分)との関係t−調べた
ところ、第4図に示すとおりであり、CC/4102が
1を越えると、急激にΔα が増加することがわかる。Table 3 The obtained transparent glass body was tested again at IQ+m in an electric resistance furnace.
It was stretched to φ and sooted in the same manner as above, and then subjected to dehydration reduction, fluoridation, and transparency treatments again under the conditions shown in Table 5. The resulting transparent glass body consisting of a pure quartz core and a fluorine-added cladding was drawn into a fiber having an outer diameter of 125 am at a sonic velocity of 100 m for 7 minutes and a tension of fO/. The refractive index distribution of the fiber was as shown in FIG. In addition, the relationship between the absorption amount Δα at 0.63 μm of each fiber and the 02 flow rate X ((X:;7 minutes) during core dehydration was investigated, and the result was as shown in Figure 4, and CC/4102 It can be seen that when Δα exceeds 1, Δα increases rapidly.
なお、0.65μmにおける吸収量Δα(dB /Km
)は、第5図に示すように欠陥等のない純5102
の場合の伝送損失口からの当該ファイバの伝送損失イ
の増加量である。In addition, the absorption amount Δα (dB /Km
) is pure 5102 without defects as shown in Figure 5.
This is the amount of increase in the transmission loss A of the fiber from the transmission loss port in the case of .
実施例2
実施例1と同様に作製したコア用ガラス微籾子堆積体の
脱水、透明化を還元処理剤として「CCl4と02」の
代りに5oG122000c/分を用いてその他の条件
は表2と同じ行なった。Example 2 Dehydration and transparency of a glass fine rice grain deposit for a core prepared in the same manner as in Example 1 was performed using 5oG122000c/min instead of "CCl4 and 02" as a reducing treatment agent, and other conditions were as shown in Table 2. I did the same thing.
以下は実施例1と同様にして元ファイバ用母材を作製し
、ファイバ化した。得られたファイバはΔa = 1.
OclB /Kmであった。A base material for the original fiber was prepared in the same manner as in Example 1, and the fiber was made into a fiber. The obtained fiber has Δa = 1.
OclB/Km.
実施例6
実施例1と同様に作製したコア用ガラス微粒子堆積体の
脱水・透明化を、還元処理剤として「CGl!4と02
」の代わシに、cosoacc7分、Cl2600cc
/分を用いて、その他の条件は表2と同じで行なった。Example 6 Dehydration and transparency of a core glass particle deposit prepared in the same manner as in Example 1 was carried out using “CGl!4 and 02” as a reducing treatment agent.
”, cosoac 7 minutes, Cl2600cc
/min, and the other conditions were the same as in Table 2.
以下は実施例1と同様にして元ファイバ用母材を作製し
、ファイバ化したところ、このもののΔaは1.5dB
/kff+であった。Below, a base material for the original fiber was prepared in the same manner as in Example 1 and made into a fiber, and the Δa of this material was 1.5 dB.
/kff+.
実施例4
実施例2.5と同様に表2の条件のうち1CCl4と0
2」のみを52G12200cc/分に代え、その他は
実施例1と同じにしてファイバを得た。このファイバの
Δαは0.7dB/−と非常に低いものであった。Example 4 Same as Example 2.5, 1 CCl4 and 0 among the conditions in Table 2
A fiber was obtained in the same manner as in Example 1 except that only 2'' was replaced with 52G12200 cc/min. The Δα of this fiber was very low at 0.7 dB/-.
比較例1
実施例1において、表2の「CCl4と02」に代えて
at2600cc1分を用いた以外は同じにしてファイ
バを得た。このもののΔαは506B/KnIと高かっ
た。Comparative Example 1 A fiber was obtained in the same manner as in Example 1 except that at2600cc1 was used in place of "CCl4 and 02" in Table 2. The Δα of this product was as high as 506B/KnI.
比較例2
実施例1において、表2の「act4と02」に代えて
、Cl26000c/分と02600cc/分とを用い
て以外は同じにしてファイバを得た。Comparative Example 2 A fiber was obtained in the same manner as in Example 1 except that Cl26000c/min and 02600cc/min were used instead of "act4 and 02" in Table 2.
このもののΔαは606B/kmと非常に高かった。The Δα of this product was extremely high at 606 B/km.
以上のように本発明による還元・脱水処理を行ったコア
用母材を用いた実施例1〜4のファイバはいずれも0゜
63μmにおける吸収が低減されているが、従来のat
2/ He 雰囲気による比較例1は0゜65μmに
おける吸収が高く、さらに酸化雰囲気での脱水処理をし
た比較例2は0.65μmにおける吸収が非常に高い。As described above, the fibers of Examples 1 to 4 using the core base material subjected to the reduction and dehydration treatment according to the present invention all have reduced absorption at 0°63 μm, but compared to the conventional at
2/ Comparative Example 1 using a He atmosphere has a high absorption at 0°65 μm, and Comparative Example 2, which is subjected to dehydration treatment in an oxidizing atmosphere, has a very high absorption at 0.65 μm.
この結果から本発明の方法が欠陥量の少ない元ファイバ
用母材を製造できることは明らかである。From these results, it is clear that the method of the present invention can produce an original fiber base material with a small amount of defects.
本発明はコア用の純5102ガラス微粒子堆積体を還元
性雰囲気で加熱して脱水処理するので、ガラス中の酸素
量が減り、0.65μmにおける吸収を少なくできると
いう利点がある。その結果、本発明は耐水素特性に優れ
た信頼性のある元ファイバ用母材を製造できる。Since the present invention dehydrates the pure 5102 glass particle deposit for the core by heating it in a reducing atmosphere, there is an advantage that the amount of oxygen in the glass is reduced and the absorption at 0.65 μm can be reduced. As a result, the present invention can produce a reliable base material for original fibers with excellent hydrogen resistance properties.
第1図(1!及び(Blは本発明の実施態様を説明する
概略断面図であって、第1図(A)は均熱炉の場合、同
CB+はゾーン炉の場合を示す。第2図は本発明の実施
例におけるクラッド部のスート付は工程の概略説明図で
あシ、第5図は実施例1で得たファイバの屈折率分布構
造を示す図である。
第4図は実施例1におけるコア母材の脱水・還元処理工
程で、酸素量(XCC/分)を変えて、027CC/4
比を変えたときの、0.65 μrn での吸収f
t(Δα)の変化を示す図であり、第5図は0.65μ
mにおける吸収量(Δα)を説明する図である。Figure 1 (1! and (Bl) are schematic cross-sectional views for explaining embodiments of the present invention, in which Figure 1 (A) shows the case of a soaking furnace, and CB+ shows the case of a zone furnace. The figure is a schematic explanatory diagram of the process of sooting the cladding part in an example of the present invention, and FIG. 5 is a diagram showing the refractive index distribution structure of the fiber obtained in Example 1. In the dehydration/reduction treatment process of the core base material in Example 1, the amount of oxygen (XCC/min) was changed to 027CC/4
Absorption f at 0.65 μrn when changing the ratio
This is a diagram showing changes in t(Δα), and FIG. 5 is 0.65 μ
It is a figure explaining the amount of absorption (Δα) in m.
Claims (6)
イバ用母材を作製するにあたり、コア用の純石英ガラス
微粒子堆積体を加熱により透明化する工程において、該
堆積体を脱水・還元剤ガスを含む不活性ガス雰囲気下、
温度900〜1100℃の範囲内で加熱することにより
脱水・還元処理した後透明化することを特徴とする光フ
ァイバ用母材の製造方法。(1) When producing an optical fiber base material having a core of substantially pure quartz glass, in the step of making the pure silica glass particle deposit for the core transparent by heating, the deposit is dehydrated and treated with a reducing agent. Under an inert gas atmosphere containing gas,
1. A method for producing an optical fiber preform, characterized in that the preform is made transparent after being subjected to dehydration and reduction treatment by heating within a temperature range of 900 to 1100°C.
りかつ両者のモル濃度比が0.5≦O_2/CCl_4
<1の範囲内のものである特許請求の範囲第1項記載の
光ファイバ用コア母材の製造方法。(2) The dehydration/reducing agent gas consists of CCl_4 and O_2, and the molar concentration ratio of both is 0.5≦O_2/CCl_4
The method for manufacturing a core preform for an optical fiber according to claim 1, wherein the preform is within the range of <1.
のである特許請求の範囲第1項記載の光ファイバ用母材
の製造方法。(3) The method for manufacturing an optical fiber preform according to claim 1, wherein the dehydrating/reducing agent gas is composed of CO and Cl_2.
の範囲第1項記載の光ファイバ用母材の製造方法。(4) The method for manufacturing an optical fiber preform according to claim 1, wherein the dehydrating/reducing agent gas is SOCl_2.
求の範囲第1項記載の光ファイバ用母材の製造方法。(5) The method for manufacturing an optical fiber preform according to claim 1, wherein the dehydration/reducing agent gas is S_2Cl_2.
し第5項のいずれかに記載される光ファイバ用母材の製
造方法。(6) A method for manufacturing an optical fiber preform according to any one of claims 1 to 5, wherein the inert gas is He.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32295587A JPH01164740A (en) | 1987-12-22 | 1987-12-22 | Production of optical fiber preform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32295587A JPH01164740A (en) | 1987-12-22 | 1987-12-22 | Production of optical fiber preform |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01164740A true JPH01164740A (en) | 1989-06-28 |
Family
ID=18149505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32295587A Pending JPH01164740A (en) | 1987-12-22 | 1987-12-22 | Production of optical fiber preform |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01164740A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0968972A1 (en) * | 1998-07-02 | 2000-01-05 | Lucent Technologies Inc. | Process for fabricating optical fiber |
WO2002026645A1 (en) * | 2000-09-27 | 2002-04-04 | Corning Incorporated | Process for drying porous glass preforms |
EP1351897A4 (en) * | 2000-12-22 | 2005-06-15 | Corning Inc | Treating soot preforms with a reducing agent |
US8020411B2 (en) | 2001-07-30 | 2011-09-20 | The Furukawa Electric Co., Ltd. | Method of manufacturing single mode optical fiber |
WO2012021317A1 (en) * | 2010-08-12 | 2012-02-16 | Corning Incorporated | Treatment of silica based soot or an article made of silica based soot |
-
1987
- 1987-12-22 JP JP32295587A patent/JPH01164740A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0968972A1 (en) * | 1998-07-02 | 2000-01-05 | Lucent Technologies Inc. | Process for fabricating optical fiber |
US6334338B1 (en) | 1998-07-02 | 2002-01-01 | Lucent Technologies Inc. | Sol gel process of making a fiber preform with removal of oxide particles |
US6748767B2 (en) | 1998-07-02 | 2004-06-15 | Lucent Technologies Inc. | Drawing an optical fiber from a sol-gel preform treated with a non-oxygenated sulfur halide |
WO2002026645A1 (en) * | 2000-09-27 | 2002-04-04 | Corning Incorporated | Process for drying porous glass preforms |
WO2002026646A3 (en) * | 2000-09-27 | 2002-10-31 | Corning Inc | Process for drying porous glass preforms |
EP1351897A4 (en) * | 2000-12-22 | 2005-06-15 | Corning Inc | Treating soot preforms with a reducing agent |
KR100819581B1 (en) * | 2000-12-22 | 2008-04-04 | 코닝 인코포레이티드 | Treating soot preforms with a reducing agent |
US8020411B2 (en) | 2001-07-30 | 2011-09-20 | The Furukawa Electric Co., Ltd. | Method of manufacturing single mode optical fiber |
WO2012021317A1 (en) * | 2010-08-12 | 2012-02-16 | Corning Incorporated | Treatment of silica based soot or an article made of silica based soot |
CN103068754A (en) * | 2010-08-12 | 2013-04-24 | 康宁股份有限公司 | Treatment of silica based soot or an article made of silica based soot |
JP2013535404A (en) * | 2010-08-12 | 2013-09-12 | コーニング インコーポレイテッド | Treatment of silica-based soot or articles made of silica-based soot |
US10829403B2 (en) | 2010-08-12 | 2020-11-10 | Corning Incorporated | Treatment of silica based soot or an article made of silica based soot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6038345B2 (en) | Manufacturing method of glass material for optical transmission | |
JPS61247633A (en) | Production of glass base material for optical fiber | |
JPS60260434A (en) | Manufacture of anhydrous glass preform for optical transmission | |
US4902325A (en) | Method for producing glass preform for optical fiber | |
US4880452A (en) | Method for producing glass preform for optical fiber containing fluorine in cladding | |
RU2380326C2 (en) | Method of preparing optical fibres and workpieces thereof | |
JPH01164740A (en) | Production of optical fiber preform | |
JPH0477327A (en) | Production of optical fiber | |
CA1305375C (en) | Method of manufacturing fiber preform for single-mode fibers | |
JPH06263468A (en) | Production of glass base material | |
JPS6289B2 (en) | ||
JPH01126236A (en) | Production of optical fiber preform | |
JPS6177628A (en) | Manufacture of aerosol stream | |
JPS61117128A (en) | Preparation of parent material for optical fiber | |
JPS60239334A (en) | Manufacture of base material for optical fiber | |
JPH0450130A (en) | Production of preform for optical fiber | |
JPS63190734A (en) | Production of optical fiber base material | |
JPH0416428B2 (en) | ||
JPS6283323A (en) | Production of glass | |
JPS61174136A (en) | Production of optical fiber | |
JPS6283331A (en) | Production of glass base material for optical fiber | |
JPS591218B2 (en) | Manufacturing method of glass base material for optical fiber | |
JPH03232732A (en) | Production of glass preform for hydrogen-resistant optical fiber | |
JPH038743A (en) | Optical fiber preform and preparation thereof | |
JPH1059730A (en) | Production of synthetic quartz glass |