JPH01163605A - Three-dimensional measuring instrument equipped with measurement procedure teaching means - Google Patents

Three-dimensional measuring instrument equipped with measurement procedure teaching means

Info

Publication number
JPH01163605A
JPH01163605A JP62042149A JP4214987A JPH01163605A JP H01163605 A JPH01163605 A JP H01163605A JP 62042149 A JP62042149 A JP 62042149A JP 4214987 A JP4214987 A JP 4214987A JP H01163605 A JPH01163605 A JP H01163605A
Authority
JP
Japan
Prior art keywords
measurement
shape
measurement procedure
dimensional
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62042149A
Other languages
Japanese (ja)
Inventor
Hideo Iwano
岩野 秀夫
Soichi Kadowaki
聰一 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP62042149A priority Critical patent/JPH01163605A/en
Priority to GB8803603A priority patent/GB2202659B/en
Priority to US07/158,292 priority patent/US4901253A/en
Priority to DE3805500A priority patent/DE3805500A1/en
Publication of JPH01163605A publication Critical patent/JPH01163605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To speedily take a measurement by providing an automatic interference evaluating function which evaluates whether or not interference occurs according to a substituted simple shape when a measuring element and a body to be measured move relatively. CONSTITUTION:Design data from an auxiliary means 60 including a CAD system 61 is inputted through the operation of an input device 1 and a CAD part 22 generates a three-dimensional shape figure corresponding to the shape of the body to be measured. A measurement part 24 while operating organically with the part 22 evaluates whether or not the measuring element and object interfere with each other by the automatic interference evaluating function according to set basic conditions, the purpose of measurement evaluation, the number of measurement points, and a measurement range, so a reliable movement path is established. Thus, the measurement procedure teaching means 10 outputs instructions for three-dimensional measuring instrument processing to a controller 51 through a postprocessor 29 while editing practical measurement information and converting it into the instructions by a CAD data base 26, and then the three-dimensional measuring instrument 30 measures and inspects the object speedily and accurately according to the measurement procedure from the means 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 設計データから測定子と測定対象物との相対移動手順を
含む測定手順を生成するとともにこれを教示する測定手
順教示手段を備えた三次元測定機の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] Three-dimensional measurement equipped with a measurement procedure teaching means that generates a measurement procedure including a procedure of relative movement between a probe and an object to be measured from design data and teaches the same. Regarding improvements to the machine.

〔背景技術とその問題点〕[Background technology and its problems]

従来の三次元測定機の1つの形態は、測定子と測定対象
物とを三次元軸方向に相対移動させつつその相対移動量
を検出する本体と、内蔵する測定手順プログラムによっ
て所定の手順に従ってその両者を相対移動するために本
体を駆動制御するとともに前記相対移動量等から測定対
象物の形状寸法を求めるための制御装置とから構成され
、測定プログラムは基準測定対象物を用いて希望する実
際の測定手順を行いつつ取り込んだデータから作成する
いわゆるプレイバック方式によって作成されていた。従
って、精巧な基準測定対象物の製作が必須となりかつそ
の製作後でなければ測定手順プログラムを作成できない
ので極めて時間的、経済的損失の大きい欠点を有してい
た。
One type of conventional coordinate measuring machine includes a main body that moves the probe and the object to be measured relative to each other in the three-dimensional axis direction and detects the amount of relative movement, and a built-in measurement procedure program that detects the relative movement amount according to a predetermined procedure. It is composed of a control device that drives and controls the main body to move the two relatively, and a control device that determines the shape and dimensions of the object to be measured from the amount of relative movement.The measurement program uses the reference object to measure the actual desired value. It was created using the so-called playback method, in which it was created from data captured while performing the measurement procedure. Therefore, it is necessary to manufacture a sophisticated reference measurement object, and a measurement procedure program cannot be created until after the reference measurement object has been manufactured, resulting in an extremely large loss of time and economy.

ここに、本出願人はその欠点除去のために基準測定対象
物を製作しなくとも測定手順プログラムを作成すること
ができるような測定手順教示手段を備えた三次元測定機
を先に提案した。
In order to eliminate this defect, the present applicant has previously proposed a three-dimensional measuring machine equipped with a measurement procedure teaching means that allows a measurement procedure program to be created without producing a reference measurement object.

しかしながら、測定手順教示手段において三次元図形デ
ータを生成しつつ測定子と測定対象物との相対移動系路
等を含む測定手順を生成しこれを教示しても実際に三次
元測定機を利用する場合に測定子と測定対象物とが不用
意に関与(タッチ信号プローブの場合には両者の当接)
してしまってはその実用性に欠ける。すなわち、測定手
順教示手段において、迅速な両者相対移動を行なえるよ
うするにはその移動系路を最短とすることが望ましいが
測定対象物の形状は非常に複雑であり、かつ測定子の形
状も交換変化することを考えると短時間でその糸路決定
から両者の干渉をチエツク(評価)するまでを完遂する
ことが困難である。
However, even if the measurement procedure teaching means generates three-dimensional figure data and also generates and teaches a measurement procedure including the relative movement path between the measuring head and the object to be measured, it is difficult to actually use the three-dimensional measuring machine. If the probe and the object to be measured are inadvertently involved (in the case of a touch signal probe, contact between the two)
Otherwise, it lacks practicality. In other words, in the measurement procedure teaching means, it is desirable to make the movement path as short as possible in order to be able to quickly move relative to each other, but the shape of the object to be measured is very complex, and the shape of the probe also changes with exchange. Considering this, it is difficult to complete the process from determining the yarn route to checking (evaluating) interference between the two in a short period of time.

従って、時間と熟練とをもって決定したとしても加工公
差等から測定対象物の形状が大きいときに測定子との干
渉が生じてしまうことがある。これは高価な測定子を含
むタッチ信号プローブ等を欠損する不都合を生し測定も
中段しなればならない。
Therefore, even if it is determined with time and skill, interference with the probe may occur when the shape of the object to be measured is large due to processing tolerances, etc. This causes the inconvenience that the touch signal probe including the expensive measuring element is lost, and the measurement must also be carried out in the middle.

一方、かかる不都合を回避すべく測定対象物に対し大き
な空間をもって測定子が相対移動するよう移動系路を決
定すると測定時間が非常に長くなり全体として生産能率
を低下させてしまうという問題がある。三次元測定機に
おいて作業能率を向上させるにはそれらの相対移動に要
する時間を短くすることが重要であるという周知事項か
ら明らかである。このように、測定手順教示手段を備え
た三次元測定機の実効を期するためにその移動系路の決
定ないしその評価の方法改善が強く望まれていた。
On the other hand, if the movement path is determined so that the probe moves relative to the object to be measured in a large space in order to avoid such inconvenience, there is a problem that the measurement time becomes extremely long and the overall production efficiency is reduced. It is clear from the well-known fact that in order to improve the work efficiency of three-dimensional measuring machines, it is important to shorten the time required for their relative movements. Thus, in order to ensure the effectiveness of a three-dimensional measuring machine equipped with a measurement procedure teaching means, it has been strongly desired to improve the method of determining and evaluating the movement path of the three-dimensional measuring machine.

〔発明の目的〕[Purpose of the invention]

本発明は、自動干渉評価機能を設は最短の移動系路を決
定することによって迅速な測定を達成できる測定手順教
示手段を備えた三次元測定機を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a three-dimensional measuring machine equipped with an automatic interference evaluation function and a measurement procedure teaching means capable of achieving rapid measurement by determining the shortest moving path.

〔問題点を解決するための手段および作用〕本発明は、
測定手順教示手段の実効を期するには測定対象物形状相
当の形状図形の迅速生成と測定子と測定対象物との最適
な移動系路の決定が重要事項であると認識し、その後者
すなわち信頬性の高い移動系路の達成を図るものである
[Means and effects for solving the problems] The present invention has the following features:
In order to ensure the effectiveness of the measurement procedure teaching means, we recognize that it is important to quickly generate a shape figure corresponding to the shape of the object to be measured and to determine the optimal movement path between the probe and the object to be measured. The aim is to achieve a highly reliable transportation route.

これがため、設計データから測定子と測定対象物との相
対移動手順を含む測定手順を生成するとともにこれを教
示する測定手順教示手段を備えた三次元測定機において
、 前記測定手順教示手段に前記測定子と測定対象物との形
状をそれぞれ単純な形状図形に置換する形状図形置換機
能と置換された形状図形に基づいて測定子と測定対象物
との相対移動時における干渉の有無を評価する自動干渉
評価機能とを設けた構成とし前記目的を達成するもので
ある。
For this reason, in a coordinate measuring machine equipped with a measurement procedure teaching means for generating and teaching a measurement procedure including a relative movement procedure between a probe and a measuring object from design data, the measurement procedure teaching means is configured to A shape/figure replacement function that replaces the shapes of the probe and the object to be measured with simple figures, and automatic interference that evaluates the presence or absence of interference during relative movement between the probe and the object based on the replaced shapes. The above purpose is achieved by having a configuration including an evaluation function.

従って、測定子と測定対象物との各形状図形を形状図形
置換機能によって単純な形状図形に置換し、この後の単
純な形状図形によって部分的、全体的に測定子と測定対
象物との決定された移動系路を自動評価できるので干渉
のない移動系路を確実にすることができる。
Therefore, each shape figure of the measuring head and the object to be measured is replaced with a simple shape figure by the shape figure replacement function, and the measuring element and the measuring object are determined partially and entirely using the subsequent simple shape figures. Since it is possible to automatically evaluate the movement path that has been created, it is possible to ensure that the movement path is interference-free.

〔実施例〕〔Example〕

本発明に係る測定手順教示手段を備えた三次元測定機の
一実施例を図面を参照しながら詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a three-dimensional measuring machine equipped with a measurement procedure teaching means according to the present invention will be described in detail with reference to the drawings.

本実施例では第3図、第4図に示したように本体31と
制御装置51と測定手順教示手段10とから三次元測定
l!30が構成され、また測定手順教示手段10に設計
データを入力する手段としての補助手段60が設けられ
ている。
In this embodiment, as shown in FIGS. 3 and 4, the main body 31, the control device 51, and the measurement procedure teaching means 10 perform three-dimensional measurement. 30, and an auxiliary means 60 is provided as a means for inputting design data into the measurement procedure teaching means 10.

まず、本体31は、基台32と、基台32の両側に立設
された支柱34.34と、支柱34,34間に渡架され
た梁部材35と、この梁部材35を図でX方向に摺動自
在に装着されたXスライダ36と、このXスライダ36
に一体的に取り付けられたZ案内ボックス37と、Z案
内ボックス37に図でZ方向に摺動案内されたスピンド
ル38と、基台1上を図でY方向に往復移動可能に設け
られた載物台42と、載物台42の下方に収容された主
にY方向駆動手段やY方向変位検出器等の防塵を行うた
めの側板33,33、蛇腹46と、スピンドル38の下
端側に取り付けられる測定子45を有するタッチ信号プ
ローブ44とから形成されていた。なお、43は複数種
のタッチ信号プローブ44,44.44.・・・を保持
するためのプローブ支持枠であり、この例示では図示省
略したプローブ自動着脱装置によってスピンドル38に
タッチ信号プローブ44が自動交換されるものとされて
いる。
First, the main body 31 consists of a base 32, columns 34 and 34 erected on both sides of the base 32, a beam member 35 spanned between the columns 34 and 34, and this beam member 35 as shown in the figure. The X slider 36 is mounted so as to be slidable in the direction;
A spindle 38 is slidably guided by the Z guide box 37 in the Z direction as shown in the figure, and a mounting is provided so as to be movable back and forth in the Y direction on the base 1. Attached to the lower end side of the object stand 42, the side plates 33, 33, bellows 46, and the spindle 38 for dustproofing the Y-direction driving means, Y-direction displacement detector, etc. housed below the object stand 42. It was formed from a touch signal probe 44 having a measuring element 45 that can be used as a touch signal probe. Note that 43 indicates a plurality of types of touch signal probes 44, 44.44. . . . In this example, the touch signal probe 44 is automatically replaced with the spindle 38 by an automatic probe attachment/detachment device (not shown).

また、制御装置51は模式的に表現した制御ユニット5
2と各種設定、指令等を行うためのコンソール(図示省
略)と、測定結果を出力するタイプライタ、CRT等か
ら形成された出力装置54とから形成され、制御ユニッ
ト52には測定子45と載物台42に取り付けられた測
定対象物1との関係すなわち、両者45,1との関与位
置や点数、両者45.1の相対移動変位量から形状、寸
法の測定値を求める所定の測定手順プログラムが格納さ
れていた。
In addition, the control device 51 is a control unit 5 schematically expressed.
2, a console (not shown) for making various settings, commands, etc., and an output device 54 formed from a typewriter, CRT, etc. for outputting measurement results. A predetermined measurement procedure program that calculates the measured values of the shape and dimensions from the relationship with the measurement object 1 attached to the table 42, that is, the position and number of points involved with both 45.1, and the amount of relative movement displacement between both 45.1. was stored.

従って、載物台42に測定対象物1を取り付けるととも
に制御装置51の制御ユニット52に当該測定対象物1
に対応する測定手順プログラムをセットした後自動運転
を開始すると、載物台42、Xスライダ36、スピンド
ル38が所定の手順で駆動され、測定子45と測定対象
物1は三次元(X、Y、Z)方向に相対移動されつつ所
定の測定面において両者45,1が順次関与(この例示
ではタッチ信号プローブ44ゆえ、両者45,1が当接
されること)とする。ここに、制御装置51では、両者
45,1が関与したときにプローブ44から発生される
タッチ信号に基づいて両者45.1の相対移動量を特定
するとともに測定手順プログラムに従って測定対象物1
の形状、寸法等の測定値を高精度で求めることができる
よう構成されている。
Therefore, the object to be measured 1 is attached to the stage 42, and the object to be measured 1 is attached to the control unit 52 of the control device 51.
When automatic operation is started after setting a measurement procedure program corresponding to , Z), both 45, 1 are sequentially involved on a predetermined measurement surface (in this example, both 45, 1 are brought into contact because of the touch signal probe 44). Here, the control device 51 specifies the amount of relative movement between the two 45.1 based on the touch signal generated from the probe 44 when the two 45.1 are involved, and also determines the relative movement amount of the object 1 to be measured according to the measurement procedure program.
The structure is such that the measured values of the shape, dimensions, etc. can be determined with high precision.

なお、例えば、載物台42が固定の場合、測定子45が
光学式非接触方式の場合等本体31の形式が異なった場
合にも機能的には同様に構成される。
Note that even when the main body 31 has a different type, for example, when the stage 42 is fixed, when the measuring stylus 45 is an optical non-contact type, the structure is functionally the same.

さて、測定手順教示手段10は基準測定対象物を利用し
て見本測定を行わなくとも制御装置51で測定手順プロ
グラムを作成することのできるようなデータすなわち測
定情報を生成しかつ出力するもので、大別して入力装置
11と三次元測定支援装W 21とから形成されている
Now, the measurement procedure teaching means 10 generates and outputs data, that is, measurement information that allows the control device 51 to create a measurement procedure program without performing sample measurements using a reference measurement object. It is broadly divided into an input device 11 and a three-dimensional measurement support device W21.

そして、三次元測定支援装W 21は、この実施例では
中央処理システムとして有機的、一体的に形成されたC
ADパート22および測定パート24と、各種データベ
ース26,27.28と、制御装置51と接続されたポ
ストプロセッサ29とから構成されている。
In this embodiment, the three-dimensional measurement support system W 21 is an organic and integrally formed central processing system.
It is composed of an AD part 22, a measurement part 24, various databases 26, 27, 28, and a post processor 29 connected to a control device 51.

ここに、CADパート22は、設計データを変換して測
定対象物1の形状相当の形状図形データを生成するため
の図形処理機能を有する。すなわち、従来の如く基準測
定対象物を製作しなくとも当該測定対象物の形状と等し
い形状図形を生成しようとするもので、後記の測定パー
ト24と独立的に機能することができる。つまり測定デ
ータベースを作成するものである。具体的には、立体形
状図形生成機能、面形状図形生成機能、パラメトリック
図形生成機能を含み図形処理機能が形成されている。ま
た、公差属性機能等が付設されている。
Here, the CAD part 22 has a graphic processing function for converting the design data to generate shape and graphic data corresponding to the shape of the object to be measured 1. In other words, the present invention attempts to generate a shape having the same shape as the measurement object without producing a reference measurement object as in the conventional method, and can function independently of the measurement part 24 described later. In other words, it creates a measurement database. Specifically, the figure processing function includes a three-dimensional figure generation function, a surface figure generation function, and a parametric figure generation function. It also has a tolerance attribute function, etc.

さて、面形状生成機能は、直線、直線と曲線との組合せ
あるいは曲線からなる基本線80を第6図(A)に示し
た如く平行移動させあるいは同(B)の如く回転させる
ことによって掃引し、基本的な測定面に相当する面形状
図形を生成するものである。従って、第6図に示す形状
図形の他、第7図(A)〜(D)に例示したような二次
元、三次元的な多様な面形状図形を生成することができ
る。なお、図示省略したが面形状図形生成機能には点や
線を結んで面形状図形を生成する連結方式の機能をもが
備えられ、生成すべき図形によって上記掃引方法と選択
的または組み合わせて使用することができる。また、立
体形状図形生成機能は、面形状図形を適宜選択組み合わ
せて、例えば、第8図に示されたように直方体形状2と
円筒形状3との組み合わせの如く、直径りの貫通穴が設
けられた測定対象物形状相当の立体形状図形を構築生成
することができる。
Now, the surface shape generation function sweeps by translating the basic line 80 consisting of a straight line, a combination of a straight line and a curved line, or a curved line as shown in FIG. 6(A) or rotating it as shown in FIG. 6(B). , which generates a surface shape figure corresponding to the basic measurement surface. Therefore, in addition to the shape figure shown in FIG. 6, various two-dimensional and three-dimensional surface shape figures such as those illustrated in FIGS. 7(A) to (D) can be generated. Although not shown, the surface shape figure generation function is also equipped with a function of a connection method that generates a surface shape figure by connecting points and lines, and can be used selectively or in combination with the above sweep method depending on the figure to be generated. can do. In addition, the three-dimensional figure generation function selects and combines surface figures as appropriate, for example, as shown in FIG. It is possible to construct and generate a three-dimensional figure corresponding to the shape of the object to be measured.

また、この実施例では、実際の測定対象物1の一部分ま
たは全体の形状には類似形ないし拡大、縮小形の多いこ
とに着目し迅速処理の実効を期して上記パラメトリック
図形生成機能が設けられ、この機能は寸法がパラメータ
とされた基本図形(パラメトリック図形)を登録してお
き、そのパラメータ変更設定を行い類似形を生成するこ
とができる。例えば、第9図(A)に示した直方体2は
矩形平面(aXbXc)5を基本図形とし、これにパラ
メータCを指定することによって生成され、同(B)は
輪または円板6を基本図形としパラメータZを指定する
ことによって円柱体または円筒外周面を生成する例であ
る。またこの機能は同(C)に示したように複数の基本
図形を組み合わせたものについても適用ある。さらに、
基本図形の多くは前記面形状図形生成機能で生成される
In addition, in this embodiment, the above-mentioned parametric figure generation function is provided in order to realize rapid processing, paying attention to the fact that there are many similar, enlarged, or reduced shapes in the shape of a part or the whole of the actual measurement object 1. This function allows you to register basic figures (parametric figures) whose dimensions are parameters, change the parameters, and generate similar figures. For example, the rectangular parallelepiped 2 shown in FIG. 9(A) is generated by using the rectangular plane (aXbXc) 5 as the basic figure and specifying the parameter C thereto, and the rectangular parallelepiped 2 shown in FIG. This is an example of generating a cylindrical body or a cylindrical outer peripheral surface by specifying a parameter Z. This function is also applicable to combinations of a plurality of basic figures as shown in (C). moreover,
Most of the basic figures are generated by the surface shape figure generation function.

また、公差属性機能は、前記各機能では幾何学的な図形
を完成することができるが、これのみによっては実際の
測定対象物1の形状と合一しない場合があり得ることを
考慮して、測定対象物1の寸法・角度公差あるいはJI
Sで定められた幾何公差等を容易かつ有機的に付加でき
るようして実際的、図形を生成しようとするものである
。従って、公差相当の寸法が異なる図形の全てを都度に
生成する必要が省ける。なお、公差情報の検索もできる
In addition, the tolerance attribute function can complete a geometric figure with each of the above functions, but considering that it may not match the shape of the actual measurement object 1 by using only this function, Dimension/angular tolerance of measurement object 1 or JI
The purpose is to generate practical figures by making it possible to easily and organically add geometrical tolerances defined by S. Therefore, it is not necessary to generate all figures having different dimensions corresponding to the tolerance each time. It is also possible to search for tolerance information.

一方、測定パート24は、CADパート22と独立的に
作動可能であるとともに密接な連関をもちCADバート
22で生成された測定対象物形状相当の形状図形や公差
情報を参照しつつ、詳細後記の入力装置11から設定さ
れた測定評価目的、測定位置、測定点数等々の測定条件
に基づいて測定子45と測定対象物1との相対移動系路
等を含む測定情報を生成する。つまり、ポストブロセッ
ザ29を介し制御装置51に出力すれば制御装置51で
は従来のプレイハック方式等により基準測定対象物を利
用して作成したと同様な測定手順プログラムを作成でき
るに十分な測定情報を生成することができる。
On the other hand, the measurement part 24 can operate independently of the CAD part 22 and has a close relationship with it, and refers to the shape figures and tolerance information corresponding to the shape of the object to be measured generated by the CAD part 22. Measurement information including the relative movement path between the measuring stylus 45 and the measuring object 1 is generated based on measurement conditions such as the measurement evaluation purpose, measurement position, number of measurement points, etc. set from the input device 11. In other words, by outputting it to the control device 51 via the post processor 29, the control device 51 generates enough measurement information to create a measurement procedure program similar to that created using the reference measurement object using the conventional play hack method etc. can do.

とりわけ、この実施例の測定パート24には測定子動作
シュミレーション機能、自動干渉評価機能、情報編集機
能、測定点数自動配置機能および測定マクロ機能が設け
られている。測定子動作シュミレーション機能は入力装
置11の一部であるデイスプレィ12に前記移動系路等
を表現出力できるとともにキーボード13等の操作によ
りその移動系路を修正等することもできる。
In particular, the measurement part 24 of this embodiment is provided with a probe operation simulation function, an automatic interference evaluation function, an information editing function, an automatic measurement point arrangement function, and a measurement macro function. The probe motion simulation function is capable of displaying and outputting the movement path on the display 12, which is a part of the input device 11, and also allows the movement path to be modified by operating the keyboard 13 or the like.

ここに、本発明の特徴的事項である自動干渉評価機能は
以下の目的で設けられている。−船釣に測定点数が1o
oo点に近い多数であること、測定対象物1の形状は複
雑多岐であること、測定子45を含むタッチ信号プロー
ブ44の形状も交換変更されること等を勘案するといか
に慎重に最短移動系路を決定しても測定の実際にあって
は測定子45と測定対象物1とが衝突、接触等干渉する
場合がある。干渉が生じたのでは測定子等を破損するば
かりか測定を中断しなければならない。このことは測定
能率を向上させるには測定子45と測定対象物1との相
対移動速度ないし時間を最短とずべしとする周知事項を
遵守するときに比較的生じ易い問題である。ここに、本
実施例では、前記CADパート22で生成された測定対
象物1の形状相当の立体図形(形状図形)および測定子
等形状をそれぞれ一層単純な形状図形に置換し、この単
純形状図形同志により両者45,1の干渉の有無を評価
できるよう自動干渉評価機能が形成されている。これを
第1図、第2図を参照して詳述すると、第1図(A)が
測定子45およびスピンドル38の実際形状、同(B)
が測定対象物1の実際形状とされると、第2図に示した
如く単純形状8゜9と置換し両者45,1等の干渉をチ
エツク(評価)できる。つまり、第1図に示された実際
形状で凹凸等があり、これに習って干渉チエツクをした
のでは時間労力が膨大となってしまう。そこで、例えば
、第2図の如く測定子45の形状をその軸線8で置換し
、測定対象物1の形状を基準三次元(X、Y、Z)座標
軸に平行な面から形成された直方体9で置換してチエツ
クできるようにすれば安全確実な評価を迅速に行うこと
ができるわけである。なお、置換すべき形状は測定対象
物等の形態により任意に選択できる。また、測定点数自
動配置機能は複数の測定点があるときに所定の精度で測
定できる最適な位置で両者45.1が関与できる。よう
自動的に配置しようとするものである。
The automatic interference evaluation function, which is a characteristic feature of the present invention, is provided for the following purposes. -The number of measurement points for boat fishing is 1o.
Considering the fact that the number of objects to be measured is close to point oo, the shape of the object to be measured 1 is complex and diverse, and the shape of the touch signal probe 44 including the contact point 45 is also replaced and changed, how can we carefully determine the shortest movement path? Even if this is determined, in actual measurement, there may be interference between the probe 45 and the object 1 to be measured, such as collision or contact. If interference occurs, not only will the probe be damaged, but the measurement will have to be interrupted. This is a problem that is relatively likely to occur when observing the well-known rule that the relative moving speed or time between the probe 45 and the object to be measured 1 should be minimized in order to improve measurement efficiency. Here, in this embodiment, the three-dimensional figure (shape figure) corresponding to the shape of the measuring object 1 generated in the CAD part 22 and the shape of the measuring tip etc. are each replaced with a simpler shape figure, and this simple figure An automatic interference evaluation function is formed so that comrades can evaluate the presence or absence of interference between both 45,1. This will be explained in detail with reference to Figs. 1 and 2. Fig. 1 (A) shows the actual shape of the probe 45 and spindle 38, and Fig. 1 (B)
When is taken as the actual shape of the object to be measured 1, interference between the two 45, 1, etc. can be checked (evaluated) by replacing it with the simple shape 8°9 as shown in FIG. In other words, the actual shape shown in FIG. 1 has unevenness, etc., and if an interference check were conducted based on this, it would take an enormous amount of time and effort. Therefore, for example, the shape of the measuring element 45 is replaced by its axis 8 as shown in FIG. If it is possible to check by replacing it with , a safe and reliable evaluation can be performed quickly. Note that the shape to be replaced can be arbitrarily selected depending on the form of the object to be measured. In addition, when there are a plurality of measurement points, the automatic measurement point arrangement function allows both 45.1 to participate in the optimum position where measurement can be performed with a predetermined accuracy. It is intended to be placed automatically.

例えば、穴の直径およびその軸心を求めるときに三点法
による3つの測定点数を指示すれば穴の内側に120度
間隔で自動配置される。情報編集機能は、箇々にあるい
はグループとして生成された測定情報を測定の実際に応
じ、多くは時系列的に編集するa能である。さらに、測
定マクロ機能は同一、類似等形状の測定手順をマクロと
して登録しておきそれを繰り返し利用することによって
測定情報の迅速作成を達成するものである。これは使用
者の固有的な測定基準に合った測定位置や点数の決定方
法、その他ノウハウ等をもデシジョン・ルールとして登
録利用することにも利用できる。
For example, when determining the diameter of a hole and its axis, if you specify three measurement points using the three-point method, they will be automatically placed at 120 degree intervals inside the hole. The information editing function is a function that edits measurement information generated individually or as a group according to the actual measurement, often in chronological order. Furthermore, the measurement macro function is for quickly creating measurement information by registering measurement procedures of the same or similar shapes as macros and repeatedly using them. This can also be used to register and utilize measurement positions and score determination methods that meet the user's unique measurement standards, as well as other know-how, as decision rules.

なお、CADデータベース26、マクロデータベース2
7、測定データベース28は全体として処理の簡単化、
迅速化ならびに記憶要素として機能させるためのもので
ある。
In addition, CAD database 26, macro database 2
7. The measurement database 28 simplifies processing as a whole;
It is for speeding up and functioning as a storage element.

一方、入力装置11は、CADパート22、測定パート
24を一体的とした中央処理システムと会話方式によっ
てそれらパート22.24を所定動作させるための諸元
諸量を選択、指令、設定ならびに確認するためのもので
あり、第4図、第5図に示したようにキーボード13、
入力板16、入力ペン17等から構成される。従って、
測定評価目的、測定位置、測定点数等を設定等すること
ができる。入力板16と人力ペン17による設定等の機
能は第5図に示す如くである。また、デイスプレィ12
に表示された図形を直接ヒツトしたりすることができる
On the other hand, the input device 11 selects, commands, sets, and confirms specifications for operating the CAD part 22 and measurement part 24 in a predetermined manner through a conversation method with a central processing system that integrates the CAD part 22 and the measurement part 24. As shown in FIGS. 4 and 5, the keyboard 13,
It is composed of an input board 16, an input pen 17, and the like. Therefore,
It is possible to set the measurement evaluation purpose, measurement position, number of measurement points, etc. Functions such as settings using the input board 16 and the manual pen 17 are as shown in FIG. Also, display 12
You can directly hit the shape displayed on the screen.

また、補助手段60は、−船釣な設計工程、加工工程に
関する処理を行うCADシステム61、データベース6
2および補助ファイル63からなす、本実施例において
は数字、記号で表現されたような具体的図形でない設計
データを直接的に三次元測定支援装置21に入力できる
よう設けられたものである。測定工程に関する処理を含
まない一般的市販品につき詳細説明は省略する。
In addition, the auxiliary means 60 includes a CAD system 61 and a database 6 for processing related to boat fishing design processes and processing processes.
2 and an auxiliary file 63, which in this embodiment is provided so that design data, which is not a concrete figure expressed by numbers or symbols, can be directly input into the three-dimensional measurement support device 21. Detailed explanation will be omitted as this is a general commercially available product that does not include any treatment related to the measurement process.

次にこの実施例の作用について説明する。Next, the operation of this embodiment will be explained.

なお、便宜的に時間要素は省略し構成要素に関連して説
明するものとする。
Note that, for convenience, the time element will be omitted and the explanation will be made in relation to the constituent elements.

(設定等) 測定手順教示手段10の入力装置11によって行う。(Settings, etc.) This is performed using the input device 11 of the measurement procedure teaching means 10.

キーボード13、入力板16と入力ペン17を操作し、
またときにデイスプレィ12も利用する。
Operate the keyboard 13, input board 16 and input pen 17,
The display 12 is also sometimes used.

(1)測定開始条件の設定 新規に測定情報を作成するときには測定データベース2
8から当該データを、また追加、挿入等の場合には編集
の対象である既存のデータを呼び出し宣言することによ
りオペレーション開始条件が成立する。
(1) Setting measurement start conditions When creating new measurement information, use the measurement database 2.
8, the operation start condition is established by calling and declaring the data, or in the case of addition, insertion, etc., the existing data to be edited.

(2)基本条件の設定 測定作業に必要な形式等測定機や測定子に係る情報、座
標系の情報、公差等級の情報等の基本条件を選択、設定
する。
(2) Setting of basic conditions Select and set the basic conditions necessary for measurement work, such as information on the type of measuring machine and probe, coordinate system information, tolerance class information, etc.

(3)測定評価目的の設定 測定対象物の測定面を指定するとともに評価目的を設定
する。代表的な測定評価目的を挙げれば下記の通りであ
る。
(3) Setting the purpose of measurement and evaluation Specify the measurement surface of the object to be measured and set the purpose of evaluation. Typical measurement and evaluation purposes are listed below.

(a)位置、位置差 (b)距離(投影距離、空間距離) (C)角度(実角度、投影角度、空間角度)(d)固有
量照合(径、円錐テーパー角度)(e)幾何偏差照合(
真直度、平面度等々)(f)姿勢偏差照合(平行度、面
角度等々)〔(2)振れ偏差照合(円周振れ) (4)測定方法の設定 上記で設定された測定評価情報を測定子45と測定対象
物1とを相対移動させる移動系路を決定するために、さ
らに以下のような具体的事項を設定、指令等する。
(a) Position, position difference (b) Distance (projected distance, spatial distance) (C) Angle (real angle, projected angle, spatial angle) (d) Eigen quantity verification (diameter, conical taper angle) (e) Geometric deviation Matching (
Straightness, flatness, etc.) (f) Posture deviation verification (parallelism, surface angle, etc.) [(2) Runout deviation verification (circumferential runout) (4) Setting measurement method Measure the measurement evaluation information set above. In order to determine the movement path for relatively moving the child 45 and the measurement object 1, the following specific matters are further set and commanded.

(a)測定点数の設定 (b)測定範囲の指定 これは、加工により生じまたは生じる虞れのある測定対
象物の゛だれ°°、パかえり”′、“中高°′あるいは
“中門゛等領域に対する処置束として有効である。
(a) Setting the number of measurement points (b) Specifying the measurement range It is effective as a treatment bundle for the area.

(C)測定位置の決定および指示 (d)測定子の誘導条件の指示 (e)干渉評価機能を選択、指定 (5)測定情報の編集 (形状図形の作成) 入力装置11の操作により、CADシステム61を含む
補助手段60からの設計データ(図形イメージ)を入力
とし図形処理機能(面形状図形生成機能、立体形状図形
生成機能、パラメトリック図形生成機能、公差属性機能
)でそれを変換しつつ測定データベースである測定面す
なわち測定対象物1の形状相当の三次元的形状図形をC
ADパート22によって作成する。
(C) Determining and instructing the measurement position (d) Instructing the guidance conditions of the probe (e) Selecting and specifying the interference evaluation function (5) Editing the measurement information (creating the shape figure) By operating the input device 11, the CAD Design data (figure images) from the auxiliary means 60 including the system 61 are input, and the data is converted and measured using the figure processing functions (surface shape figure generation function, solid shape figure generation function, parametric figure generation function, tolerance attribute function). C
Created by AD Part 22.

すなわち、登録された直線、曲線あるいは直線と曲線と
の組み合わせからなる基本線80を第6図(A)に示し
たように平行移動させあるいは同(B)に示したように
回転させることによって掃引し基本的な測定面に相当す
るところの第6図に示す形状図形の他、第7図(A)〜
(D)に例示したような各種の測定面形状図形を面形状
図形生成機能で生成する。次いで、立体形状図形生成機
能によって複数の測定面形状を適宜選択しつつ組み合わ
せ、例えば第8図に示したように直方体形状2と円筒形
状3との組み合わせの如く直径りの貫通穴が設けられた
測定対象物形状相当の立方形状図形を構築生成する。こ
のように単純な基本線80を掃引して部分的要素である
測定面形状図形を簡単に生成しこれら測定面形状図形の
組み合わせによって正確な測定対象物の形状相当の形状
図形データを迅速に構築することができる。
In other words, the basic line 80, which is a registered straight line, curved line, or a combination of a straight line and a curved line, is translated in parallel as shown in FIG. 6(A), or rotated as shown in FIG. 6(B) to sweep. In addition to the shapes shown in FIG. 6, which correspond to the basic measurement surface, the shapes shown in FIGS.
Various measurement surface shape figures such as those illustrated in (D) are generated by the surface shape figure generation function. Next, a plurality of measurement surface shapes are selected and combined as appropriate using the three-dimensional shape figure generation function, and a through hole with a diameter is provided, for example, in the combination of rectangular parallelepiped shape 2 and cylindrical shape 3 as shown in FIG. A cubic figure corresponding to the shape of the object to be measured is constructed and generated. In this way, by sweeping the simple basic line 80, measurement surface shape figures that are partial elements are easily generated, and by combining these measurement surface shape figures, shape figure data corresponding to the accurate shape of the object to be measured can be quickly constructed. can do.

さらに、測定対象物1の一部分(測定面)または全体の
形状が類似形状あるいは拡大、縮小形を多く含む場合に
はパラメトリック図形生成機能を利用して能率のよい測
定面形状図形ないし立体形状図形を生成する。これは第
9図に示したように登録された基本図形(パラメトリッ
ク図形)のバラメークである寸法を設定することにより
、例えば第9図(A)に示した矩形平面(aXbXc)
5のパラメータCを設定し直方体2を生成する。
Furthermore, if a part (measurement surface) or the entire shape of the measurement object 1 includes many similar shapes or enlarged or reduced shapes, the parametric shape generation function can be used to efficiently create a measurement surface shape figure or a three-dimensional shape figure. generate. For example, by setting dimensions that are variations of the basic figure (parametric figure) registered as shown in Fig. 9, it is possible to create a rectangular plane (aXbXc) shown in Fig. 9 (A).
Parameter C of 5 is set to generate rectangular parallelepiped 2.

同様に同(B)に示したように輪または円板6とされた
基本図形のパラメータZを設定して円柱体(または円筒
外周面)を生成する。また同(C)に示したように複数
の基本図形を組み合わせて一層複雑な具体的立体図形を
生成することができる。
Similarly, as shown in (B), the parameter Z of the basic figure which is a ring or a disk 6 is set to generate a cylindrical body (or a cylindrical outer peripheral surface). Further, as shown in (C), a more complex concrete three-dimensional figure can be generated by combining a plurality of basic figures.

(測定情報の作成) 測定情報は、入力装置11の前記測定条件に基づきかつ
各データベース26,27.28のデータを適宜利用し
ながら測定パート24によって作成する。
(Creation of measurement information) Measurement information is created by the measurement part 24 based on the measurement conditions of the input device 11 and using data in each database 26, 27, 28 as appropriate.

測定パート24では、CADパート22と有機的に作用
しつつ設定された前記基本条件、測定評価目的、測定点
数、測定範囲等に基づいて与えられた測定点数を満足す
るように測定範囲内に測定位置を自動欠点するとともに
測定子45と測定対象物1(相当形状図形)との移動系
路(プローブ・パス)の決定を行う。これは、前記測定
子45の誘導条件の指示により“イニシャル平面”、゛
リトラクト平面゛等の中間経由平面を利用して効率的に
行われる。また、異なる測定評価でも部分的移動系路を
共有し作業能率を上げながら実行できる。この際、移動
糸路決定に対しては、アニメーション機能を有するプロ
ーブ動作シュミレーション機能を利用することが有効で
ある。グラフィック・デイスプレィ12を利用して目視
確認もできる。
The measurement part 24 works organically with the CAD part 22 to measure within the measurement range so as to satisfy the given number of measurement points based on the basic conditions, purpose of measurement evaluation, number of measurement points, measurement range, etc. The position is automatically determined, and the moving path (probe path) between the measuring stylus 45 and the measuring object 1 (equivalent shape figure) is determined. This is efficiently performed by using intermediate passing planes such as an "initial plane" and a "retract plane" according to the guidance conditions of the probe 45. In addition, different measurement evaluations can be performed while sharing a partial movement path and improving work efficiency. At this time, it is effective to use a probe motion simulation function having an animation function for determining the moving yarn path. Visual confirmation can also be made using the graphic display 12.

′さて、自動干渉評価機能により測定子45と測定対象
物1の干渉の有無が評価(チエツク)されるので実用的
信頼性の高い移動系路が確立できる。
'Now, since the automatic interference evaluation function evaluates (checks) the presence or absence of interference between the probe 45 and the object to be measured 1, a movement path with high practical reliability can be established.

なお、自動干渉評価機能には全体としであるいは段階的
なチエツクもすることができ、さらに目視確認、自動計
算等によっても静的および動的なチエツクができるよう
形成されているので要部を重点的に能率よくチエツクで
きる。
In addition, the automatic interference evaluation function can be checked as a whole or in stages, and it is also designed to perform static and dynamic checks using visual confirmation, automatic calculation, etc., so it is important to focus on important parts. can be checked efficiently.

すなわち、第1図に示したように複雑な測定子45(タ
ッチ信号プローブ45、スピンドル38も同様)および
測定対象物1の形状をそれぞれ第2図に示したように測
定子45の軸線8と直方体9の組み合わせのように単純
形状とすれば簡単にかつ迅速に移動系路をチエツク(評
価)することができる。従って、第1図(B)に示した
ように3つの円筒部分の周面を結ぶ単純形状とすること
は最短の移動系路を確立できるとともに信頼性の高さを
保障できる。
That is, as shown in FIG. 1, the shape of the complex probe 45 (the touch signal probe 45 and the spindle 38 are also the same) and the measurement object 1 are adjusted to the axis 8 of the probe 45 as shown in FIG. By using a simple shape such as the combination of rectangular parallelepipeds 9, the movement path can be easily and quickly checked (evaluated). Therefore, by forming a simple shape connecting the circumferential surfaces of the three cylindrical parts as shown in FIG. 1(B), the shortest moving path can be established and high reliability can be ensured.

このようにして、測定手順教示手段10は前記編集操作
により測定情報データの時系列管理を利用して、変更、
削除、挿入等を行い実用的測定情報を編集し、その後C
ADデータベース26で当該三次元測定機処理系の命令
に変換しつつポストプロセッサ29を介し出力すれば、
これを受けた制御ユニッ1−52に測定手順プログラム
を格納することすなわぢ測定手順を教示することができ
る。
In this way, the measurement procedure teaching means 10 utilizes the time-series management of measurement information data through the editing operation to change,
Edit the practical measurement information by deleting, inserting, etc., and then
If it is converted into commands for the processing system of the three-dimensional measuring machine in the AD database 26 and outputted via the post processor 29,
By storing the measurement procedure program in the control unit 1-52 that receives this, it is possible to teach the measurement procedure.

かくして、三次元測定機30は、基準測定対象物ないし
実際の測定対象物を製作し利用しないで作成された測定
手順教示手段10から教示された測定子、順に基づいて
迅速で正確な測定対象物Iの測定、検査を行うことがで
きる。
In this way, the three-dimensional measuring machine 30 can quickly and accurately measure a measuring object based on the measuring stylus taught by the measurement procedure teaching means 10, which is created without manufacturing or using a reference measuring object or an actual measuring object. It is possible to measure and inspect I.

従って、この実施例によれば、測定対象物形状相当の形
状図形データを利用して移動系路を決定できるにとどま
らず測定パート24に形状図形置換機能と自動干渉評価
機能とが設けられているから実測定において測定子と測
定対象物との衝突等干渉のない信頼性の高い移動系路を
確立することができる。このことは最短の移動系路を決
定できることに直結するので高能率の測定を保障できる
測定情報を創成することができる。
Therefore, according to this embodiment, it is not only possible to determine the movement path by using shape and figure data corresponding to the shape of the object to be measured, but also the measurement part 24 is provided with a shape and figure replacement function and an automatic interference evaluation function. From this, it is possible to establish a highly reliable movement path free from interference such as collision between the probe and the object to be measured in actual measurements. This is directly linked to being able to determine the shortest travel path, so it is possible to create measurement information that ensures highly efficient measurement.

また、自動干渉評価機能はCADパート22における図
形処理機能と相俟って測定情報の重要部分を迅速に完成
できるから(基準)測定対象物を利用しなくとも測定手
順プログラムを完成させるための測定情報を教示すると
いう測定手順教示手段10の実用性を飛躍的に向上する
ことができる。
In addition, the automatic interference evaluation function, in combination with the graphic processing function in CAD Part 22, allows important parts of measurement information to be completed quickly (standard), so it is possible to complete measurements to complete the measurement procedure program without using the measurement target (standard). The practicality of the measurement procedure teaching means 10 for teaching information can be dramatically improved.

なお、以上の実施例では測定子の形状をその軸線8にま
た測定対象物の形状を直方体9に置換するものとされた
が置換形状はその開示範囲に限定されず移動系路の態様
や測定子等の形態に即し干渉回避の観点から任意に選択
することができる。
In the above embodiments, the shape of the probe was replaced with its axis 8, and the shape of the object to be measured was replaced with a rectangular parallelepiped 9. However, the replaced shape is not limited to the disclosed range, and may vary depending on the mode of the movement path and the measurement. It can be arbitrarily selected from the viewpoint of avoiding interference depending on the form of the child, etc.

〔発明の効果〕〔Effect of the invention〕

本発明は、測定子と測定対象物との移動系路の信頼性を
保障できるとともに結果として測定手順教示手段の実効
と高能率の測定作業を達成できるという優れた効果を有
する。
The present invention has the excellent effect that it is possible to guarantee the reliability of the moving path between the probe and the object to be measured, and as a result, the effectiveness of the measurement procedure teaching means and highly efficient measurement work can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明に係る測定手順教示手段を備え
た三次元測定機の一実施例を示す説明図であって、第1
図は原形状を示し、第2図は置換した後の単純形状を示
す。第3図は本発明に係る測定手順教示手段を備えた三
次元測定機の全体構成を示すブロック図、第4図は同じ
く全体構成を示す外観斜視図、第5図は同じく入力装置
の入力板の平面図、第6図は同じく形状図形データ生成
方法の実施例を示す説明図であって(A)は平行移動に
よる掃引の場合、(B)は回転による掃引の場合を示す
、第7図は同じ< CADパートで生成した形状図形を
示す外観図、第8図は同しくCADパートにおける組合
方式により生成された形状図形を示す外観図および第9
図は同じくパラメトリック図形生成機能に基づく形状図
形データ生成方法の実施例を示す説明図である。 1・・・測定対象物、5・・・基本図形である矩形平面
、6・・・基本図形である輪または円板、8・・・単純
図形である軸線、9・・・単純図形である直方体、10
・・・測定手順教示手段、11・・・入力装置、21・
・・三次元測定支援装置、22・・・CADパート、2
4・・・測定バート、30・・・三次元測定機、31・
・・本体、45・・・測定子、51・・・制御装置、8
0・・・基本線。
1 and 2 are explanatory diagrams showing one embodiment of a three-dimensional measuring machine equipped with a measurement procedure teaching means according to the present invention.
The figure shows the original shape, and FIG. 2 shows the simple shape after replacement. FIG. 3 is a block diagram showing the overall configuration of a three-dimensional measuring machine equipped with a measuring procedure teaching means according to the present invention, FIG. 4 is an external perspective view showing the overall configuration, and FIG. 5 is an input board of the input device. FIG. 6 is an explanatory diagram showing an embodiment of the shape/figure data generation method, in which (A) shows the case of sweep by parallel movement, and (B) shows the case of sweep by rotation. are the same < Fig. 8 is an external view showing the shape figures generated in the CAD part, Figure 8 is an external view showing the shape figures generated by the combination method in the CAD part, and Fig. 9
The figure is an explanatory diagram showing an embodiment of the shape graphic data generation method based on the parametric graphic generation function. 1... Object to be measured, 5... Rectangular plane as a basic figure, 6... Ring or disk as a basic figure, 8... Axis line as a simple figure, 9... Simple figure Rectangular parallelepiped, 10
...Measurement procedure teaching means, 11...Input device, 21.
...Three-dimensional measurement support device, 22...CAD part, 2
4...Measuring bart, 30...3D measuring machine, 31.
...Main body, 45...Measure head, 51...Control device, 8
0...Basic line.

Claims (3)

【特許請求の範囲】[Claims] (1)設計データから測定子と測定対象物との相対移動
手順を含む測定手順を生成するとともにこれを教示する
測定手順教示手段を備えた三次元測定機において、 前記測定手順教示手段に前記測定子と測定対象物との形
状をそれぞれ単純な形状図形に置換する形状図形置換機
能と置換された形状図形に基づいて測定子と測定対象物
との相対移動時における干渉の有無を評価する自動干渉
評価機能とを設けたことを特徴とする測定手順教示手段
を備えた三次元測定機。
(1) In a three-dimensional measuring machine equipped with a measurement procedure teaching means for generating and teaching a measurement procedure including a procedure for relative movement between a probe and a measuring object from design data, the measurement procedure teaching means is configured to perform the measurement. A shape/figure replacement function that replaces the shapes of the probe and the object to be measured with simple figures, and automatic interference that evaluates the presence or absence of interference during relative movement between the probe and the object based on the replaced shapes. A three-dimensional measuring machine equipped with a measurement procedure teaching means, characterized in that it is provided with an evaluation function.
(2)前記特許請求の範囲第1項において、前記形状図
形置換機能が前記測定子の形状をその軸線で置換するも
のとされている測定手順教示手段を備えた三次元測定機
(2) A three-dimensional measuring machine according to claim 1, comprising measurement procedure teaching means, wherein the shape/figure replacement function replaces the shape of the measuring stylus with its axis.
(3)前記特許請求の範囲第2項において、前記形状図
形置換機能が前記測定対象物の形状を基準三次元(X、
Y、Z)座標軸に平行な面から形成された直方体で置換
するものとされている測定手順教示手段を備えた三次元
測定機。
(3) In claim 2, the shape/figure replacement function converts the shape of the measurement object into a reference three-dimensional (X,
(Y, Z) A three-dimensional measuring machine equipped with a measurement procedure teaching means that replaces the coordinates with a rectangular parallelepiped formed from planes parallel to the coordinate axes.
JP62042149A 1987-02-23 1987-02-24 Three-dimensional measuring instrument equipped with measurement procedure teaching means Pending JPH01163605A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62042149A JPH01163605A (en) 1987-02-24 1987-02-24 Three-dimensional measuring instrument equipped with measurement procedure teaching means
GB8803603A GB2202659B (en) 1987-02-23 1988-02-17 Coordinate measuring instrument and method of generating pattern data concerning shape of work to be measured
US07/158,292 US4901253A (en) 1987-02-23 1988-02-19 Coordinate measuring instrument and method of generating pattern data concerning shape of work to be measured
DE3805500A DE3805500A1 (en) 1987-02-23 1988-02-22 COORDINATE MEASURING INSTRUMENT AND METHOD FOR GENERATING PATTERN DATA ABOUT THE FORM OF THE WORKPIECE TO BE MEASURED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62042149A JPH01163605A (en) 1987-02-24 1987-02-24 Three-dimensional measuring instrument equipped with measurement procedure teaching means

Publications (1)

Publication Number Publication Date
JPH01163605A true JPH01163605A (en) 1989-06-27

Family

ID=12627884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62042149A Pending JPH01163605A (en) 1987-02-23 1987-02-24 Three-dimensional measuring instrument equipped with measurement procedure teaching means

Country Status (1)

Country Link
JP (1) JPH01163605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190633A (en) * 2009-02-17 2010-09-02 Mitsutoyo Corp Measurement system and interferometer
JP2015046128A (en) * 2013-08-29 2015-03-12 富士通株式会社 Model measurement device, model measurement method and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190633A (en) * 2009-02-17 2010-09-02 Mitsutoyo Corp Measurement system and interferometer
JP2015046128A (en) * 2013-08-29 2015-03-12 富士通株式会社 Model measurement device, model measurement method and program

Similar Documents

Publication Publication Date Title
US4901253A (en) Coordinate measuring instrument and method of generating pattern data concerning shape of work to be measured
JP6731478B2 (en) Inspection program editing environment including integrated alignment program planning and editing functions
Zexiao et al. Complete 3D measurement in reverse engineering using a multi-probe system
EP2185983B1 (en) Determination of the course of motion of a scanning probe
US8212993B2 (en) Method and apparatus for surveying actual measurement data of a component
US20130278725A1 (en) Integrated Structured Light 3D Scanner
JP2018520332A (en) Inspection program editing environment providing a collision avoidance area defined by the user
JP6516865B2 (en) Method and apparatus for determining dimensional characteristics of an object to be measured
CN102197274A (en) Measurement method
US6611786B1 (en) Apparatus and method concerning analysis and generation of part program for measuring coordinates and surface properties
US10990075B2 (en) Context sensitive relational feature/measurement command menu display in coordinate measurement machine (CMM) user interface
JPH0650749A (en) Coordinate measuring machine and its measurement
JPH10300457A (en) Measurement support system
CN108645359A (en) A kind of rotary body wall thickness detection method
US20210263057A1 (en) Method and Device for Software-Based Planning of a Dimensional Measurement
Barai et al. Design and development of a component by reverse engineering
JPS63206607A (en) Three-dimensional measuring machine
JPH01163605A (en) Three-dimensional measuring instrument equipped with measurement procedure teaching means
JP6933603B2 (en) Machine tool measurement capability evaluation method and program
JP2559113B2 (en) Method of generating measurement information in coordinate measuring machine
JP2000161942A (en) Measuring machine and method for deciding its moving path
CN114996778A (en) Three-dimensional simulation system of three-coordinate measuring machine
Artkin CMM machines and industrial applications
JPH08159746A (en) Method for preparing measurement information for multi-dimensional shape measuring device
Van Thiel Feature based automated part inspection