JPS63206607A - Three-dimensional measuring machine - Google Patents

Three-dimensional measuring machine

Info

Publication number
JPS63206607A
JPS63206607A JP62040565A JP4056587A JPS63206607A JP S63206607 A JPS63206607 A JP S63206607A JP 62040565 A JP62040565 A JP 62040565A JP 4056587 A JP4056587 A JP 4056587A JP S63206607 A JPS63206607 A JP S63206607A
Authority
JP
Japan
Prior art keywords
measurement
shape
measured
dimensional
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62040565A
Other languages
Japanese (ja)
Inventor
Hideo Iwano
岩野 秀夫
Soichi Kadowaki
聰一 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP62040565A priority Critical patent/JPS63206607A/en
Priority to GB8803603A priority patent/GB2202659B/en
Priority to US07/158,292 priority patent/US4901253A/en
Priority to DE3805500A priority patent/DE3805500A1/en
Publication of JPS63206607A publication Critical patent/JPS63206607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To enable the rapid and reliable preparation of a measuring procedure program while generating configurational graphic equivalent to the shape of an object of measurement, by providing a CAD part having a graphic processing function, a measuring part generating measurement information, etc. CONSTITUTION:A three-dimensional measurement backup apparatus 21 is composed of a CAD part 22, a measuring part 24, various data bases 26-28 and a post-processor 29 connected to a control unit 51, which are formed organically and integrally as a central processing system. The CAD part 22 has a graphic processing function for generating configurational graphic data equivalent to the shape of an object of measurement by the conversion of design data. Meanwhile, the measuring part 24, referring to configurational graphic and tolerance information equivalent to the shape of the object of measurement, generates measurement information including a relative transfer route of a measurer and the object of measurement and others on the basis of measuring conditions set by an input unit 11. By outputting these pieces of measurement information to the control unit 51 through the post-processor 29, a measuring procedure program can be prepared by the unit 51.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は測定対象物と測定子とを三次元方向に相対移動
可能に形成された本体とこの本体を所定の手順で駆動す
るとともに測定対象物と測定子との相対移動変位量を利
用して測定対象物の形状、寸法を測定する制御装置とか
ら構成された三次元測定機に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a main body formed so that an object to be measured and a probe can be moved relative to each other in a three-dimensional direction, and a main body that is driven in a predetermined procedure to move the object to be measured. The present invention relates to a three-dimensional measuring machine that includes a control device that measures the shape and dimensions of an object by using the amount of relative displacement between the object and a measuring element.

〔背景技術とその問題点〕[Background technology and its problems]

従来の一般的な三次元測定機は、第10図に示すように
本体31と制御装置51とから構成されていた。第10
図において、本体31は基台32と、基台32の両側に
立設された支柱34.34と、支柱34.34間に渡架
された梁部材35と、この梁部材35を図でZ方向に摺
動自在に装着されたXスライダ36と、このXスライダ
36に一体的に取り付けられたZ案内ボックス37と、
Z案内ボックス37に図でZ方向に摺動案内されたスピ
ンドル38と、基台1上を図でY方向に往復移動可能に
設けられた載物台42と、載物台42の下方に収容され
た主にY方向駆動手段やY方向変位検出器等の防塵を行
うための側板33,33、蛇腹46と、スピンドル38
の下端側に取り付けられる測定子45を有するタッチ信
号プローブ44とから形成されていた。なお、43は複
数種のタッチ信号プローブ44,44,44.・・・を
保持するためのプローブ支持枠であり、この例示では図
示省略したプローブ自動着脱装置によってスピンドル3
8にタッチ信号プローブ44が自動交換されるものとさ
れている。
A conventional general three-dimensional measuring machine is comprised of a main body 31 and a control device 51, as shown in FIG. 10th
In the figure, the main body 31 consists of a base 32, columns 34, 34 erected on both sides of the base 32, a beam member 35 spanned between the columns 34, 34, and this beam member 35 in the figure. an X slider 36 mounted so as to be slidable in the direction; a Z guide box 37 integrally attached to the X slider 36;
A spindle 38 is slidably guided in the Z direction in the figure by a Z guide box 37, a workpiece table 42 is provided to be movable back and forth in the Y direction on the base 1, and a workpiece table 42 is housed below the workpiece table 42. The side plates 33, 33, bellows 46, and spindle 38 are mainly used for dustproofing the Y-direction drive means, Y-direction displacement detector, etc.
It was formed from a touch signal probe 44 having a measuring tip 45 attached to the lower end side of the touch signal probe 44. Note that 43 indicates a plurality of types of touch signal probes 44, 44, 44 . ..., and in this example, the spindle 3 is attached by an automatic probe attachment/detachment device (not shown).
8, the touch signal probe 44 is automatically replaced.

また、制御装置51は模式的に表現した制御ユニット5
2と各種設定、指令等を行うためのコンソール53と、
測定結果を出力するタイプライタ、CRT等から形成さ
れた出力装置54とから形成され、制御ユニット52に
は測定子45と載物台42に取り付けられた測定対象物
1との関係すなわち、両者45.1との関与位置や点数
、両者45.1の相対移動変位量から形状、寸法の測定
値を求める所定の測定手順プログラムが格納されていた
In addition, the control device 51 is a control unit 5 schematically expressed.
2 and a console 53 for making various settings, commands, etc.
The control unit 52 includes an output device 54 formed from a typewriter, CRT, etc. that outputs measurement results, and the control unit 52 controls the relationship between the measuring stylus 45 and the measuring object 1 attached to the stage 42, that is, the relationship between the measuring stylus 45 and the measuring object 1 attached to the stage 42. A predetermined measurement procedure program was stored that calculates the measured values of the shape and dimensions from the position and number of points involved with .1 and the amount of relative movement and displacement of both 45.1.

従って、載物台42に測定対象物1を取り付けるととも
に制御装置51の制御ユニット52に当該測定対象物1
に対応する測定手順プログラムをセットした後自動運転
を開始すると、載物台42、Xスライダ36、スピンド
ル3日が所定の手順で駆動され、測定子45と測定対象
物1は三次元(X、Y、Z)方向に相対移動されつつ所
定の測定面において両者45,1が順次関与(この例示
ではタッチ信号プローブ44ゆえ、両者45.1が当接
されること)とする。ここに、制御装置51では、両者
45,1が関与したときにプローブ44から発生される
タッチ信号に基づいて両者45.1の相対移動量を特定
するとともに測定手順プログラムに従って測定対象物l
の形状、寸法等の測定値を高精度で求めることができた
Therefore, the object to be measured 1 is attached to the stage 42, and the object to be measured 1 is attached to the control unit 52 of the control device 51.
When automatic operation is started after setting a measurement procedure program corresponding to Both 45.1 are sequentially involved in a predetermined measurement plane while being relatively moved in the Y, Z) directions (in this example, both 45.1 are brought into contact because of the touch signal probe 44). Here, the control device 51 specifies the amount of relative movement between both 45.1 based on the touch signal generated from the probe 44 when both 45.1 are involved, and also determines the relative movement amount of the object to be measured l according to the measurement procedure program.
We were able to obtain the measured values of shape, dimensions, etc. with high precision.

なお、例えば、載物台42が固定の場合、測定子45が
光学式非接触方式の場合等本体31の形式が異なった場
合にも機能的には同様であった。
Note that the functions are the same even when the format of the main body 31 is different, for example, when the stage 42 is fixed, when the probe 45 is of an optical non-contact type, etc.

しかしながら、上記従来の三次元測定機30には次のよ
うな問題点を有していた。
However, the conventional three-dimensional measuring machine 30 has the following problems.

すなわち、三次元測定機を自動運転し迅速かつ正確な検
査、測定を行うには、とりわけ当該測定対象物1に対応
した測定手順プログラムを作成しなければならない。測
定手順プログラムの従来作成方法はいわゆるティーチン
グ方法ないしプレイバック方式が採用されているので、
まず、測定対象物1のモデルである精巧な基準測定対象
物を製作し、これを載物台42にセットとする。そして
本体31を手動、半自動で駆動して基準測定対象物と測
定子45とを相対移動、当接させつつ実際の測定手順を
実行し両者1,45の相対移動量や当接点数等諸量諸元
を読み取ることによって測定手順プログラムを作成して
いたのである。従って、測定手順プログラムを作成する
には基準測定対象物の製作が前提となるから実際の運用
までに相当長い時間を必要とするばかりか基準測定対象
物を多数製作しなければならないという経済的負担も大
きくまた作業能率が悪いという欠点を有していた。
That is, in order to automatically operate the three-dimensional measuring machine and perform quick and accurate inspections and measurements, it is necessary to create a measurement procedure program that specifically corresponds to the object to be measured 1. Conventional methods for creating measurement procedure programs employ the so-called teaching method or playback method.
First, an elaborate reference measurement object that is a model of the measurement object 1 is manufactured, and this is set on the stage 42. Then, the main body 31 is manually or semi-automatically driven to relatively move and contact the reference measurement object and the probe 45 while executing the actual measurement procedure, and various quantities such as the amount of relative movement of both 1 and 45 and the number of contact points are executed. A measurement procedure program was created by reading the specifications. Therefore, in order to create a measurement procedure program, the production of a reference measurement object is a prerequisite, which not only requires a considerable amount of time until actual operation, but also imposes an economic burden of having to manufacture a large number of reference measurement objects. It also had the disadvantage of being large and having poor work efficiency.

また、測定対象物たる製品の設計工程、加工工程に重点
をおいたいわゆるCAD/CAMシステムが普及してい
るが測定、検査工程については使用者側特殊事情等から
別個のものとされているためにそれらデータの有効利用
ができないので全体として生産能率が低いという問題が
あり、測定対象物の形態等によっては三次元測定機の利
用ができないという事態をも招来する場合があった。
In addition, so-called CAD/CAM systems that focus on the design process and processing process of the product being measured are widespread, but the measurement and inspection processes are considered separate due to special circumstances on the user's side. However, since the data cannot be used effectively, there is a problem in that the overall production efficiency is low, and depending on the shape of the object to be measured, there are cases where the three-dimensional measuring machine cannot be used.

さらに、測定対象物毎に測定手順プログラムを基準測定
対象物を用いて作成しなければならないから基準測定対
象物を目前にした現実においては、作業者によっては測
定手順プログラムのバラツキが生じ精度と能率の点で不
備を招くという問題があり、また類似測定対象物におい
ても各測定手順プログラムを作成しなければならないと
いう重複作業をしいられるという問題もあった。
Furthermore, since a measurement procedure program must be created for each measurement object using the reference measurement object, in reality when the reference measurement object is at hand, the measurement procedure program may vary depending on the operator, resulting in improved accuracy and efficiency. There is also the problem of causing inadequacies in this respect, and there is also the problem of duplication of work in that each measurement procedure program must be created even for similar measurement objects.

〔発明の目的〕[Purpose of the invention]

本発明は、実際に測定対象物を製作しなく七も当該測定
対象物の形状相当の形状図形データを生成しつつ迅速か
つ正確な測定手順プログラムを作成できる測定手順教示
手段を備えた三次元測定機を提供することを目的とする
The present invention provides a three-dimensional measurement system equipped with a measurement procedure teaching means that can quickly and accurately create a measurement procedure program while generating geometrical data corresponding to the shape of the object to be measured without actually manufacturing the object. The purpose is to provide a machine.

〔問題点を解決するための手段および作用〕本発明は、
上記従来の問題点が基準測定対象物を利用して測定手順
プログラムを作成していたことに起因していたことに着
目し、基準測定対象物を製作しなくとも、測定対象物の
製作以前においても当該測定対象物に対応した測定手順
プログラムが作成できるよう形成したものである。
[Means and effects for solving the problems] The present invention has the following features:
Focusing on the fact that the above-mentioned conventional problems were due to the fact that the measurement procedure program was created using the reference measurement object, we realized that even if the reference measurement object is not manufactured, it is possible to It is also designed so that a measurement procedure program corresponding to the object to be measured can be created.

これがため、測定対象物と測定子とを三次元方向に相対
移動可能に形成された本体とこの本体を所定の手順で駆
動するとともに測定対象物と測定子との相対移動変位量
を利用して測定対象物の形状、寸法を測定する制御装置
とから構成された三次元測定機において、 設計データを変換して測定対象物の形状相当の形状図形
データを生成するための図形処理機能を有するCADパ
ートとこのCADパートで生成された形状図形データを
基に測定条件を加味して前記制御装置へ出力する測定手
順を教示するための測定情報を生成する測定パートとを
含み形成された三次元測定支援装置と、この三次元測定
支援装置に前記測定条件等を設定、指令等するための入
力装置とから構成された測定手順教示手段を備え、基準
測定対象物がなくとも当該測定対象物の測定手順プログ
ラムを作成できるよう構成し前記目的を達成するのであ
る。
For this reason, the main body is formed so that the object to be measured and the measuring point can be moved relative to each other in three-dimensional directions, and this main body is driven according to a predetermined procedure, and the amount of relative movement displacement between the object to be measured and the measuring point is utilized. In a three-dimensional measuring machine consisting of a control device that measures the shape and dimensions of an object to be measured, a CAD has a graphic processing function to convert design data and generate geometric data corresponding to the shape of the object to be measured. A three-dimensional measurement part that includes a part and a measurement part that generates measurement information for teaching the measurement procedure to be output to the control device based on the shape and figure data generated by this CAD part and taking measurement conditions into account. It is equipped with a measurement procedure teaching means consisting of a support device and an input device for setting and commanding the measurement conditions, etc. to the three-dimensional measurement support device, and is capable of measuring the measurement object even when there is no reference measurement object. The above purpose is achieved by configuring the system so that a procedural program can be created.

従って、この発明によれば、CAD/CAM等から設計
データたる図形イメージを読み取りかつ入力装置から測
定評価目的、測定位置、測定点数等を設定、指示等すれ
ば、そのCADパートが図形処理機能によって測定対象
物の形状相当の形状図形データを作成するとともに測定
パートで形状図形データを利用しつ測定子と測定対象物
との移動系路等を含む測定情報を生成することができる
Therefore, according to the present invention, if a graphic image as design data is read from a CAD/CAM or the like and the measurement evaluation purpose, measurement position, number of measurement points, etc. are set and instructed from the input device, the CAD part is processed by the graphic processing function. It is possible to create shape and figure data corresponding to the shape of the object to be measured, and to use the shape and figure data in the measurement part to generate measurement information including the movement path between the probe and the object to be measured.

従って、三次元測定支援装置からの測定情報に基づいて
三次元測定機では基準および実際の測定対象物を利用す
ることなく測定手順プログラムを作成することができる
Therefore, based on the measurement information from the three-dimensional measurement support device, the three-dimensional measuring machine can create a measurement procedure program without using the reference or the actual object to be measured.

〔実施例〕〔Example〕

本発明に係る三次元測定機の一実施例を図面を参照して
詳細に説明する。
An embodiment of the coordinate measuring machine according to the present invention will be described in detail with reference to the drawings.

本実施例は第1図に示したように本体31と制御装置5
1と測定手順教示手段lOとから三次元測定機30が構
成され、また測定手順教示手段10に設計データを入力
する手段としての補助手段60が設けられている。なお
、本体31および制御装置51の基本的構成は前出第1
0図に示した従来の三次元測定機とかわらないものとさ
れているので同一の構成部分には同一の符号を付すると
ともに説明を簡略または省略する。
This embodiment has a main body 31 and a control device 5 as shown in FIG.
A three-dimensional measuring machine 30 is composed of the measurement procedure teaching means 10 and the measurement procedure teaching means 10, and an auxiliary means 60 is provided as a means for inputting design data to the measurement procedure teaching means 10. The basic configuration of the main body 31 and the control device 51 is the same as the above-mentioned No. 1.
Since this is the same as the conventional three-dimensional measuring machine shown in FIG.

まず、本発明の特徴的構成要件である測定手順教示手段
10は基準測定対象物を利用して見本測定を行わなくと
も制御装置51で測定手順プログラムを作成することの
できるようなデータすなわち測定情報を生成しかつ出力
するもので、大別して入力装置11と三次元測定支援装
置21とから形成されている。
First, the measurement procedure teaching means 10, which is a characteristic component of the present invention, provides data, that is, measurement information, that allows the control device 51 to create a measurement procedure program without performing sample measurements using a reference measurement object. The three-dimensional measurement support device 21 is roughly divided into an input device 11 and a three-dimensional measurement support device 21.

そして、三次元測定支援装W21は、この実施例では中
央処理システムとして有機的、一体的に形成されたCA
Dパート22および測定パート24と、各種データベー
ス26,27.28と、制御装置51と接続されたポス
トプロセッサ29とから構成されている。
In this embodiment, the three-dimensional measurement support device W21 is a CA system that is organically and integrally formed as a central processing system.
It is composed of a D part 22, a measurement part 24, various databases 26, 27, 28, and a post processor 29 connected to a control device 51.

ここに、CADバート22は、設計データを変換して測
定対象物1の形状相当の形状図形データを生成するため
の図形処理機能を有する。すなわち、従来の如く基準測
定対象物を製作しなくとも当該測定対象物の形状と等し
い形状図形を生成しようとするもので、後記の測定パー
ト24と独立的に機能することができる。つまり測定デ
ータベースを作成するものである。具体的には、立体形
状図形生成機能、面形状図形生成機能、パラメトリック
図形生成機能、公差属性機能等を含み図形処理機能が形
成されている。
Here, the CAD bart 22 has a graphic processing function for converting design data to generate shape and graphic data corresponding to the shape of the object 1 to be measured. In other words, the present invention attempts to generate a shape having the same shape as the measurement object without producing a reference measurement object as in the conventional method, and can function independently of the measurement part 24 described later. In other words, it creates a measurement database. Specifically, the figure processing function includes a three-dimensional figure generation function, a surface figure generation function, a parametric figure generation function, a tolerance attribute function, and the like.

さて、面形状生成機能は、直線、直線と曲線との組合せ
あるいは曲線からなる基本線80を第5図(A)に示し
た如く平行移動させあるいは同(B)の如く回転させる
ことによって掃引し、基末的な測定面に相当する面形状
図形を生成するものである。従って、第5図に示す形状
図形の他、第4図(A)〜(D)に例示したような二次
元、三次元的な多様な面形状図形を生成することができ
る。なお、図示省略したが面形状図形生成機能には点や
線を結んで面形状図形を生成する連結方式の機能をもが
備えられ、生成すべき図形によって上記掃引方法と選択
的または組み合わせて使用することができる。
Now, the surface shape generation function sweeps by translating the basic line 80 consisting of a straight line, a combination of a straight line and a curved line, or a curved line as shown in FIG. 5(A) or rotating it as shown in FIG. 5(B). , which generates a surface shape figure corresponding to the basic measurement surface. Therefore, in addition to the shape figure shown in FIG. 5, various two-dimensional and three-dimensional surface shape figures such as those illustrated in FIGS. 4(A) to 4(D) can be generated. Although not shown, the surface shape figure generation function is also equipped with a function of a connection method that generates a surface shape figure by connecting points and lines, and can be used selectively or in combination with the above sweep method depending on the figure to be generated. can do.

また、立体形状図形生成機能は、面形状図形を適宜選択
組み合わせて、例えば、第6図に示されたように直方体
形状2と円筒形状3との組み合わせの如く、直径りの貫
通穴が設けられた測定対象物形状相当の立体形状図形を
生成することができる。さらに、この実施例では、実際
の測定対象物lの一部分または全体の形状には類似形な
いし拡大、縮小形の多いことに着目し迅速処理の実効を
期して上記パラメトリック図形生成機能が設けられ、こ
の機能は寸法がパラメータとされた基本図形(パラメト
リック図形)を登録しておき、そのパラメータ変更設定
を行い類似形を生成することができる。例えば、第7図
(A)に示した直方体2は矩形平面(aXbXc)5を
基本図形とし、これにパラメータCを指定することによ
って生成され、同(B)は輪または円板6を基本図形と
しパラメータZを指定することによって円柱体または円
筒外周面を生成する例である。またこの機能は同(C)
に示したように複数の基本図形を組み合わせたものにつ
いても適用ある。さらに、基本図形の多くは前記面形状
図形生成機能で生成される。
In addition, the three-dimensional figure generation function selects and combines surface figures as appropriate, for example, as shown in FIG. A three-dimensional figure corresponding to the shape of the object to be measured can be generated. Furthermore, in this embodiment, the above-mentioned parametric figure generation function is provided in order to realize rapid processing, paying attention to the fact that there are many similar, enlarged, or reduced shapes in the shape of a part or the whole of the actual measurement object l. This function allows you to register basic figures (parametric figures) whose dimensions are parameters, change the parameters, and generate similar figures. For example, the rectangular parallelepiped 2 shown in FIG. 7(A) is generated by using the rectangular plane (aXbXc) 5 as the basic figure and specifying the parameter C thereto, and the rectangular parallelepiped 2 shown in FIG. This is an example of generating a cylindrical body or a cylindrical outer peripheral surface by specifying a parameter Z. Also, this function is the same (C)
It is also applicable to combinations of multiple basic figures as shown in . Furthermore, many of the basic figures are generated by the surface shape figure generation function.

また、公差属性機能は、前記各機能では幾何学的な図形
を完成することができるが、これのみによっては実際の
測定対象物1の形状と合一しなし)場合があり得ること
を考慮して、測定対象物1の寸法・角度公差あるいはJ
ISで定められた幾何公差等を容易かつ有機的に付加で
きるようして実際的、図形を生成しようとするものであ
る。従って、公差相当の寸法が異なる図形の全てを都度
に生成する必要が省ける。なお、公差情報の検索もでき
る。
In addition, the tolerance attribute function takes into consideration that although each of the above functions can complete a geometric figure, there may be cases where the shape does not match the actual shape of the object to be measured 1. The dimension/angular tolerance of the object to be measured 1 or J
The purpose is to generate practical figures by making it possible to easily and organically add geometrical tolerances defined by IS. Therefore, it is not necessary to generate all figures having different dimensions corresponding to the tolerance each time. It is also possible to search for tolerance information.

一方、測定パート24は、CADパート22と独立的に
作動可能であるとともに密接な連関をもちCADパート
22で生成された測定対象物形状相当の形状図形や公差
情報を参照しつつ、詳細後記の入力装置11から設定さ
れた測定評価目的、測定位置、測定点数等々の測定条件
に基づいて測定子45と測定対象物1との相対移動系路
等を含む測定情報を生成する。つまり、ポストプロセッ
サ29を介し制御装置51に出力すれば制御装置51で
は従来のプレイバック方式等により基準測定対象物を利
用して作成しなと同様な測定手順プログラムを作成でき
るに十分な測定情報を生成することができる。
On the other hand, the measurement part 24 can operate independently of the CAD part 22 and has a close relationship with it, and while referring to the shape and tolerance information corresponding to the shape of the object to be measured generated by the CAD part 22, Measurement information including the relative movement path between the measuring stylus 45 and the measuring object 1 is generated based on measurement conditions such as the measurement evaluation purpose, measurement position, number of measurement points, etc. set from the input device 11. In other words, if output to the control device 51 via the post-processor 29, the control device 51 has enough measurement information to create a measurement procedure program similar to that created using the reference measurement object using the conventional playback method. can be generated.

とりわけ、この実施例の測定バート24には測定子動作
シュミレーション機能、自動干渉チェック機、能、情報
編集機能、測定点数自動配置機能および測定マクロ機能
が設けられている。測定子動作シュミレーション機能は
入力装置11の一部であるディスプレイ12に前記移動
系路等を表現出力できるとともにキーボード13等の操
作によりその移動系路を修正等することもできる。自動
干渉チェック機能は以下の目的で設けられている。
In particular, the measurement bar 24 of this embodiment is provided with a probe operation simulation function, an automatic interference check function, an information editing function, an automatic measurement point arrangement function, and a measurement macro function. The probe motion simulation function is capable of displaying and outputting the movement path on the display 12, which is a part of the input device 11, and also allows the movement path to be modified by operating the keyboard 13 or the like. The automatic interference check function is provided for the following purposes.

一般的に測定点数が1000点に近い多数であること、
測定対象物1の形状は複雑多岐であること、測定子45
を含むタッチ信号プローブ44の形状も交換変更される
こと等を勘案するといかに慎重に最短移動系路を決定し
ても測定の実際にあっては測定子45と測定対象物1と
が衝突、接触等干渉する場合がある。干渉が生じたので
は測定子等を破損するばかりか測定を中断しなければな
らない。
Generally, the number of measurement points is large, close to 1000 points,
The shape of the object to be measured 1 is complex and diverse, and the measuring point 45
Considering the fact that the shape of the touch signal probe 44 including the touch signal probe 44 is also replaced and changed, no matter how carefully the shortest movement path is determined, in actual measurement, the contact point 45 and the object to be measured 1 may collide or come into contact. There may be interference. If interference occurs, not only will the probe be damaged, but the measurement will have to be interrupted.

このことは測定能率を向上させるには測定子45と測定
対象物1との相対移動速度ないし時間を最短とすべしと
する周知事項を遵守するときに比較的生じ易い問題であ
る。ここに、本実施例では、前記CADパート22で生
成された測定対象物1の形状相当の立体図形(形状図形
)および測定子等形状をそれぞれ一層単純な形状図形に
置換し、この単純形状図形同志により両者45.1の干
渉の有無を評価できるよう自動干渉チェック機能が形成
されている。これを第8図、第9図を参照して詳述する
と、第8[m(A)が測定子45およびスピンドル38
の実際形状、同(B)が測定対象物1の実際形状とされ
ると、第9図に示した如く単純形状8,9と置換し両者
45,1等の干渉をチェックできる。つまり、第8図に
示された実際形状で凹凸等があり、これに習って干渉チ
ェックをしたのでは時間労力が膨大となってしまう。そ
こで、例えば、第9図の如く測定子45の形状をその軸
線8で置換し、測定対象物1の形状を基準三次元(X、
Y、Z)座標軸に平行な面から形成された直方体9で置
換してチェックできるようにすれば安全確実な評価を迅
速に行うことができるわけである。なお、置換すべき形
状は測定対象物等の形態により任意に選択できる。また
、測定点数自動配置機能は複数の測定点があるときに所
定の精度で測定できる最適な位置で両者45,1が関与
できるよう自動的に配置しようとするものである。例え
ば、穴の直径およびその軸心を求めるときに三点法によ
る3つの測定点数を指示すればされた測定情報を測定の
実際に応じ、多くは時系列的に編集する機能である。さ
らに、測定マクロ機能は同一、類似等形状の測定手順を
マクロとして登録しておきそれを繰り返し利用すること
によって測定情報の迅速作成を達成するものである。
This is a problem that is relatively likely to occur when observing the well-known rule that the relative movement speed or time between the probe 45 and the object to be measured 1 should be minimized in order to improve measurement efficiency. Here, in this embodiment, the three-dimensional figure (shape figure) corresponding to the shape of the measuring object 1 generated in the CAD part 22 and the shape of the measuring tip etc. are each replaced with a simpler shape figure, and this simple figure An automatic interference check function is formed so that comrades can evaluate the presence or absence of interference between both parties 45.1. This will be explained in detail with reference to FIGS. 8 and 9.
If the actual shape (B) is taken as the actual shape of the object to be measured 1, interference between the two 45, 1, etc. can be checked by replacing it with the simple shapes 8, 9 as shown in FIG. In other words, the actual shape shown in FIG. 8 has unevenness, etc., and it would take a huge amount of time and effort to check for interference based on this example. Therefore, for example, by replacing the shape of the measuring element 45 with its axis 8 as shown in FIG.
If the rectangular parallelepiped 9 formed from planes parallel to the Y, Z) coordinate axes can be used for checking, safe and reliable evaluation can be performed quickly. Note that the shape to be replaced can be arbitrarily selected depending on the form of the object to be measured. Furthermore, when there are a plurality of measurement points, the automatic measurement point arrangement function attempts to automatically arrange them at optimal positions where measurement can be performed with a predetermined accuracy so that both 45, 1 can participate. For example, when determining the diameter of a hole and its axis, if you specify three measurement points using the three-point method, the function edits the measurement information according to the actual measurement, often in chronological order. Furthermore, the measurement macro function is for quickly creating measurement information by registering measurement procedures of the same or similar shapes as macros and repeatedly using them.

これは使用者の固有的な測定基準に合った測定値−,シ 置や点数の決定方法、その他ノウノλつ等をもア嫌ジョ
ン・ルールとして登録利用することにも利用できる。
This can also be used to register and use measured values, positioning, scoring methods, and other know-how that meet the user's unique measurement standards as dislike rules.

なお、CADデータベース26、マクロデータベース2
7、測定データベース28は全体として処理の簡単化、
迅速化ならびに記憶要素として機能させるためのもので
ある。
In addition, CAD database 26, macro database 2
7. The measurement database 28 simplifies processing as a whole;
It is for speeding up and functioning as a storage element.

一方、人力装置11は、CADパート22、測定バート
24を一体的とした中央処理システムと会話方式によっ
てそれらバー)22.24を所定動作させるための諸元
諸量を選択、指令、設定ならびに確認するためのもので
あり、第1図、第2図に示したようにキーボード13、
入力板16、入力ペン17等から構成される。従って、
測定評価目的、測定位置、測定点数等を設定等すること
ができる。入力板16と入力ペン17による設定等の機
能は第3図に示す如くである。また、ディスプレイ12
に表示された図形を直接ヒツトしたりすることができる
On the other hand, the human-powered device 11 selects, commands, sets, and confirms specifications for operating the bars 22 and 24 in a predetermined manner using a conversation method and a central processing system that integrates the CAD part 22 and the measurement bar 24. As shown in FIGS. 1 and 2, the keyboard 13,
It is composed of an input board 16, an input pen 17, and the like. Therefore,
It is possible to set the measurement evaluation purpose, measurement position, number of measurement points, etc. Functions such as settings by the input board 16 and input pen 17 are as shown in FIG. In addition, the display 12
You can directly hit the shape displayed on the screen.

また、補助手段60は、一般的な設計工程、加工工程に
関する処理を行うCADシステム61、データベース6
2および補助ファイル63からなり、本実施例において
は数字、記号で表現されたような具体的図形でない設計
データを直接的に三次元測定支援装置21に入力できる
よう設けられたものである。測定工程に関する処理を含
まない一般的市販品につき詳細説明は省略する。
Further, the auxiliary means 60 includes a CAD system 61 and a database 6 that perform processing related to general design processes and processing processes.
2 and an auxiliary file 63, and in this embodiment, it is provided so that design data, which is not a concrete figure expressed by numbers or symbols, can be directly input into the three-dimensional measurement support device 21. Detailed explanation will be omitted as this is a general commercially available product that does not include any treatment related to the measurement process.

次にこの実施例の作用について説明する。Next, the operation of this embodiment will be explained.

なお、便宜的に時間要素は省略し構成要素に関連して説
明するものとする。
Note that, for convenience, the time element will be omitted and the explanation will be made in relation to the constituent elements.

(設定等) 測定手順教示手段10の入力装置11によって行う。(Settings, etc.) This is performed using the input device 11 of the measurement procedure teaching means 10.

キーボード13、入力板16と入力ペン17を操作し、
またときにディスプレイ12も利用する。
Operate the keyboard 13, input board 16 and input pen 17,
The display 12 is also sometimes used.

(1)測定開始条件の設定 新規に測定情報を作成するときには測定データベース2
8から当該データを、また追加、挿入等の場合には編集
の対象である既存のデータを呼び出し宣言することによ
りオペレーション開始条件が成立する。
(1) Setting measurement start conditions When creating new measurement information, use the measurement database 2.
8, the operation start condition is established by calling and declaring the data, or in the case of addition, insertion, etc., the existing data to be edited.

(2)基本条件の設定 測定作業に必要な形式等測定機や測定子に係る情報、座
標系の情報、公差等級の情報等の基本条件を選択、設定
する。
(2) Setting of basic conditions Select and set the basic conditions necessary for measurement work, such as information on the type of measuring machine and probe, coordinate system information, tolerance class information, etc.

(3)測定評価目的の設定 測定対象物の測定面を指定するとともに評価目的を設定
する。代表的な測定評価目的を挙げれば下記の通りであ
る。
(3) Setting the purpose of measurement and evaluation Specify the measurement surface of the object to be measured and set the purpose of evaluation. Typical measurement and evaluation purposes are listed below.

(a)位置、位置差 (ロ)距離(投影距離、空間距離) (C)角度(実角度、投影角度、空間角度)(d)固有
量照合(径、円錐テーパー角度)(e) M何偏差照合
(真直度、平面度等々)(f)姿勢偏差照合(平行度、
直角度等々)(ロ)振れ偏差照合(円周振れ) (4)測定方法の設定 上記で設定された測定評価情報を測定子45と測定対象
物1とを相対移動させる移動系路を決定するために、さ
らに以下のような具体的事項を設定、指令等する。
(a) Position, position difference (b) Distance (projected distance, spatial distance) (C) Angle (actual angle, projected angle, spatial angle) (d) Specific quantity verification (diameter, conical taper angle) (e) M Deviation verification (straightness, flatness, etc.) (f) Posture deviation verification (parallelism,
perpendicularity, etc.) (b) Runout deviation comparison (circumferential runout) (4) Setting of measurement method Determine the movement path for moving the measuring head 45 and the measurement object 1 relative to each other based on the measurement evaluation information set above. In order to do so, the following specific matters will be set and ordered.

(a)測定点数の設定 (b)測定範囲の指定 これは、加工により生じまたは生じる虞れのある測定対
象物の″だれ″、′°がえり゛、°゛中高′あるいは“
°中門′°等領域に対する処置策として有効である。
(a) Setting the number of measurement points (b) Specifying the measurement range
It is effective as a treatment for areas such as the middle gate.

(C)測定位置の決定および指示 (d)測定子の誘導条件の指示 (e)干渉チェック機能を選択、指定 (5)測定情報の編集 (形状図形の作成) 入力装置IIの操作により、CADシステム61を含む
補助手段60からの設計データ(図形イメージ)を入力
きし図形処理機能(面形状図形生成機能、立体形状図形
生成機能、パラメトリック図形生成機能、公差属性機能
)でそれを変換しつつ測定データベースである測定面す
なわち測定対象物1の形状相当の三次元的形状図形をC
ADバート22によって作成する。
(C) Determining and instructing the measurement position (d) Instructing the guidance conditions of the probe (e) Selecting and specifying the interference check function (5) Editing the measurement information (creating the shape figure) Design data (figure images) from the auxiliary means 60 including the system 61 are input and converted using the figure processing functions (surface shape figure generation function, solid shape figure generation function, parametric figure generation function, tolerance attribute function). C
Created by AD Bart22.

(測定情報の作成) 測定情報は、入力装置11の前記測定条件に基づきかつ
各データベース26,27.28のデータを適宜利用し
ながら測定パート24によって作成する。
(Creation of measurement information) Measurement information is created by the measurement part 24 based on the measurement conditions of the input device 11 and using data in each database 26, 27, 28 as appropriate.

測定パート24では、CADパート22と有機的に作用
しつつ設定された前記基本条件、測定評価目的、測定点
数、測定範囲等に基づいて与えられた測定点数を満足す
るように測定範囲内に測定位置を自動決定するとともに
測定子45と測定対象物1(相当形状図形)との移動系
路(プローブ・バス)の決定を行う。これは、前記測定
子45の誘導条件の指示により“イニシャル平面°゛、
°“リトラクト平面°゛等の中間経由平面を利用して効
率的に行われる。また、異なる測定評価でも部分的移動
系路を共有し作業能率を上げながら実行できる。この際
、移動糸路決定に対しては、アニメーション機能を有す
るプローブ動作シュミレーション機能を利用することが
有効である。グラフィック・ディスプレイ12を利用し
て目視確認もできる。
The measurement part 24 works organically with the CAD part 22 to measure within the measurement range so as to satisfy the given number of measurement points based on the basic conditions, purpose of measurement evaluation, number of measurement points, measurement range, etc. The position is automatically determined, and the moving path (probe bus) between the probe 45 and the object 1 (corresponding shape figure) to be measured is determined. This is determined by the instruction of the guiding conditions of the probe 45.
This is carried out efficiently by using an intermediate passing plane such as the retract plane.In addition, different measurement evaluations can be carried out while sharing a partial movement path and improving work efficiency.In this case, the movement yarn path can be determined For this purpose, it is effective to use a probe motion simulation function that has an animation function.Visual confirmation can also be performed using the graphic display 12.

また、自動干渉チェック機能により測定子45と測定対
象物1の干渉の有無がチェックされるので実用的信転性
の高い移動系路が確立できる。なお、自動干渉チェック
機能には全体としであるいは段階的なチェックもするこ
とができ、さらに目視確認、自動計算等によっても静的
および動的なチェックができるよう形成されているので
要部を重点的に能率よくチェックできる。
Further, since the automatic interference check function checks whether there is any interference between the probe 45 and the object to be measured 1, a movement path with high practical reliability can be established. In addition, the automatic interference check function can check the whole thing or step by step, and it is also designed to perform static and dynamic checks by visual confirmation, automatic calculation, etc., so it is possible to focus on important parts. can be checked efficiently.

このようにして、測定手順教示手段1oは前記編集操作
により測定情報データの時系列管理を利用して、変更、
削除、挿入等を行い実用的測定情報を編集し、その後C
ADデータベース26で当該三次元測定機処理系の命令
に変換しつつポストプロセッサ29を介し出力すれば、
これを受けた制御ユニット52に測定手順プログラムを
格納することすなわち測定手順を教示することができる
In this way, the measurement procedure teaching means 1o utilizes the time-series management of measurement information data through the editing operation to change,
Edit the practical measurement information by deleting, inserting, etc., and then
If it is converted into commands for the processing system of the three-dimensional measuring machine in the AD database 26 and outputted via the post processor 29,
The control unit 52 that receives this can store the measurement procedure program, that is, teach the measurement procedure.

かくして、三次元測定IIa30は、基準測定対象物な
いし実際の測定対象物を製作し利用しないで作成された
測定手順教示手段10から教示された測定手順に基づい
て迅速で正確な測定対象物1の測定、検査を行うことが
できる。
In this way, the three-dimensional measurement IIa 30 quickly and accurately measures the measurement object 1 based on the measurement procedure taught by the measurement procedure teaching means 10, which is created without manufacturing or using a reference measurement object or an actual measurement object. Can perform measurements and inspections.

従って、この実施例によれば、三次元測定機30は測定
手順教示手段10を備え構成され、かつ測定手順教示手
段10では基準測定対象物を利用しなくとも当該測定対
象物に対応した測定手順を予め作成することができるか
ら従来の如く経済的、時間的、人材的な過大負担と不利
不便をしいられることなく迅速で正確な測定、検査をす
ることができる。このことは多品種少量生産においても
全体として生産能率を飛躍的に向上させることができる
とともに、この種三次元測定機の普及を一段と拡大する
ことができることを意味するものである。
Therefore, according to this embodiment, the coordinate measuring machine 30 is configured to include the measurement procedure teaching means 10, and the measurement procedure teaching means 10 can perform the measurement procedure corresponding to the measurement object without using the reference measurement object. Because it can be prepared in advance, rapid and accurate measurements and inspections can be carried out without the excessive financial, time, and human resources burdens and inconveniences required in the past. This means that overall production efficiency can be dramatically improved even in high-mix, low-volume production, and that the spread of this type of three-dimensional measuring machine can be further expanded.

また、測定手順教示手段10は、入力装置11と三次元
測定支援装W21とから形成され、ディスプレイ12等
を利用した会話方式に構成されているから能率よく測定
情報を作成できるとともに設計工程、加工工程に力点を
おいた市販CADシステムの抽象的図形データをそのま
ま基本データと利用できるよう構成されているから設計
データの有効利用が達成でき設計−製品完成までを一貫
的に迅速に完遂することができる。
In addition, the measurement procedure teaching means 10 is formed of an input device 11 and a three-dimensional measurement support device W21, and is structured in a conversational manner using a display 12, etc., so that measurement information can be efficiently created, and the design process and processing It is structured so that the abstract graphical data of a commercially available CAD system that emphasizes the process can be used as basic data as is, so it is possible to achieve effective use of design data and to consistently and quickly complete the process from design to product completion. can.

さらに、三次元測定支援装置21はCADパート22と
測定パート24等から形成され、CADバート22では
設計データから直接的に測定対象物の形状相当の形状図
形を作成できる。しかも測定パート22とは独立的に機
能できるから何時でも設計データさえあれば各種三次元
的形状図形を作成しておくことができる。また、測定パ
ート24はCADパニト22で作成された具体的図形を
巧みに利用して測定位置の決定から移動系路の決定なら
びに干渉チェック等が行なえるので、測定精度の向上を
確約できるとともに最短時間の測定を安全確実に達成す
ることができる。
Further, the three-dimensional measurement support device 21 is formed of a CAD part 22, a measurement part 24, etc., and the CAD part 22 can directly create a shape corresponding to the shape of the object to be measured from the design data. Moreover, since it can function independently of the measurement part 22, various three-dimensional shapes can be created at any time as long as design data is available. In addition, the measurement part 24 skillfully utilizes specific figures created with the CAD panito 22 to determine the measurement position, determine the movement path, and check for interference, so it is possible to ensure improved measurement accuracy and to ensure the shortest possible time. Time measurement can be achieved safely and reliably.

なお、以上の実施例では測定手順教示手段10を制御装
置51とは別個独立に構成したが、要は基準測定対象物
を製作しなくともそれを利用して作成した測定手順プロ
グラムを作成できる測定情報を教示する機能を設ければ
よいからハード構成上は両者10.51を一体的に形成
してもよい。
In addition, in the above embodiment, the measurement procedure teaching means 10 was configured separately and independently from the control device 51, but the point is that the measurement procedure teaching means 10 is configured separately and independently from the control device 51, but the point is that the measurement procedure program can be created using the reference measurement object without producing it. Since it is sufficient to provide a function for teaching information, both 10 and 51 may be formed integrally in terms of hardware configuration.

ただし、実施例のように形成すると制御装置51により
測定を実施しつつ、これと別個独立して他の測定対象物
1に対応する測定情報を作成することができるシステム
形成が容易となる利点を有する。
However, if formed as in the embodiment, the advantage is that it is easy to form a system that can perform measurement using the control device 51 and create measurement information corresponding to other measurement objects 1 separately and independently. have

もとより本体31は載物台42の移動型としたが測定子
45と測定対象物1とを三次元方向に相対移動して測定
するものであればその構成は限定されずに本発明が適用
される。因みに、測定子45とは上記実施例は検出器た
るタッチ信号プローブ44に一体的に設けられたもので
あったが、光学的な検出器とする場合にはその光軸の如
く機械式、接触式のものに限定されない。さらに、本発
明においては、測定手順教示手段10に設計データを入
力できればよいから汎用的なCAD/CAMシステムを
必須の構成要件とするものではない。
Although the main body 31 is of a movable type with the stage 42, the present invention is applicable to any structure as long as the measuring element 45 and the object 1 to be measured are moved relative to each other in a three-dimensional direction for measurement. Ru. Incidentally, in the above embodiment, the probe 45 was provided integrally with the touch signal probe 44 as a detector, but in the case of an optical detector, it may be mechanical or contact like the optical axis. It is not limited to formulas. Furthermore, the present invention does not require a general-purpose CAD/CAM system as an essential component since it is sufficient to be able to input design data into the measurement procedure teaching means 10.

〔発明の効果〕〔Effect of the invention〕

本発明は、実際に測定対象物を製作しなくとも当該測定
対象物の形状相当の形状図形を生成しつつ迅速かつ正確
に測定手順プログラムを作成できるという優れた効果を
有する。
The present invention has an excellent effect in that a measurement procedure program can be quickly and accurately created while generating a shape corresponding to the shape of the object to be measured without actually manufacturing the object to be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る三次元測定機の全体構成図、第2
図は同じく測定手順教示手段の全体構成を示す外観斜視
図、第3図は同じく入力装置の入力板の平面図、第4図
は同じ< CADパートで生成した形状図形を示す外観
図、第5図は同じくCADパートにおける形状図形の生
成方法を示す説明図、第6図は同しく CADパートに
おける組合せ方式により生成された形状図形を示す外観
図、第7図は同じ(CADパートにおけるパラメトリツ
ク図形機能に基づく形状図形の生成方法を示す説明図、
第8図は同じく測定子および測定対象物の外観斜視図、
第9図は同じく第8図に対応させた置換後の外観斜視図
および第10図は従来の三次元測定機の全体構成図であ
る。 1・・・測定対象物、10・・・測定手順教示手段、1
1・・・入力装置、21・・・三次元測定支援装置、2
2・・・CADパート、24・・・測定パート、30・
・・三次元測定機、31・・・本体、45・・・測定子
、51・・・制御装置。
Fig. 1 is an overall configuration diagram of the coordinate measuring machine according to the present invention, Fig. 2
Similarly, the figure is an external perspective view showing the overall configuration of the measurement procedure teaching means, FIG. 3 is a plan view of the input board of the input device, FIG. Figure 6 is an explanatory diagram showing the method of generating shape figures in the CAD part, Figure 6 is an external view showing the shape figures generated by the combination method in the CAD part, and Figure 7 is the same (parametric figures in the CAD part). An explanatory diagram showing a method of generating shape figures based on functions,
FIG. 8 is a perspective view of the external appearance of the probe and the object to be measured;
FIG. 9 is a perspective view of the exterior after replacement, corresponding to FIG. 8, and FIG. 10 is an overall configuration diagram of a conventional three-dimensional measuring machine. 1... Measurement object, 10... Measurement procedure teaching means, 1
1... Input device, 21... Three-dimensional measurement support device, 2
2...CAD part, 24...Measurement part, 30.
... Three-dimensional measuring machine, 31... Main body, 45... Measuring head, 51... Control device.

Claims (1)

【特許請求の範囲】[Claims] (1)測定対象物と測定子とを三次元方向に相対移動可
能に形成された本体とこの本体を所定の手順で駆動する
とともに測定対象物と測定子との相対移動変位量を利用
して測定対象物の形状、寸法を測定する制御装置とから
構成された三次元測定機において、 設計データを変換して測定対象物の形状相当の形状図形
データを生成するための図形処理機能を有するCADパ
ートとこのCADパートで生成された形状図形データを
基に測定条件を加味して前記制御装置へ出力する測定手
順を教示するための測定情報を生成する測定パートとを
含み形成された三次元測定支援装置とこの三次元測定支
援装置に前記測定条件等を設定、指令等するための入力
装置とから構成された測定手順教示手段を備え、基準測
定対象物がなくとも当該測定対象物の測定手順プログラ
ムを作成できるよう構成したことを特徴とする三次元測
定機。
(1) The main body is formed so that the object to be measured and the measuring point can be moved relative to each other in a three-dimensional direction, and this main body is driven according to a predetermined procedure, and the amount of relative movement displacement between the object to be measured and the measuring point is utilized. In a three-dimensional measuring machine consisting of a control device that measures the shape and dimensions of an object to be measured, a CAD has a graphic processing function to convert design data and generate geometric data corresponding to the shape of the object to be measured. A three-dimensional measurement part that includes a part and a measurement part that generates measurement information for teaching the measurement procedure to be output to the control device based on the shape and figure data generated by this CAD part and taking measurement conditions into account. Equipped with a measurement procedure teaching means composed of a support device and an input device for setting and commanding the measurement conditions etc. to the three-dimensional measurement support device, the measurement procedure teaching means can be used to teach the measurement procedure of the measurement object even if there is no reference measurement object. A three-dimensional measuring machine characterized by being configured so that programs can be created.
JP62040565A 1987-02-23 1987-02-23 Three-dimensional measuring machine Pending JPS63206607A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62040565A JPS63206607A (en) 1987-02-23 1987-02-23 Three-dimensional measuring machine
GB8803603A GB2202659B (en) 1987-02-23 1988-02-17 Coordinate measuring instrument and method of generating pattern data concerning shape of work to be measured
US07/158,292 US4901253A (en) 1987-02-23 1988-02-19 Coordinate measuring instrument and method of generating pattern data concerning shape of work to be measured
DE3805500A DE3805500A1 (en) 1987-02-23 1988-02-22 COORDINATE MEASURING INSTRUMENT AND METHOD FOR GENERATING PATTERN DATA ABOUT THE FORM OF THE WORKPIECE TO BE MEASURED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62040565A JPS63206607A (en) 1987-02-23 1987-02-23 Three-dimensional measuring machine

Publications (1)

Publication Number Publication Date
JPS63206607A true JPS63206607A (en) 1988-08-25

Family

ID=12583992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62040565A Pending JPS63206607A (en) 1987-02-23 1987-02-23 Three-dimensional measuring machine

Country Status (1)

Country Link
JP (1) JPS63206607A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119489A (en) * 1988-10-28 1990-05-07 Matsushita Electric Ind Co Ltd Television receiver
US7069175B2 (en) 2002-09-17 2006-06-27 Mitutoyo Corporation Method and apparatus for supporting measurement of object to be measured
JP2006201111A (en) * 2005-01-24 2006-08-03 Mitsui Zosen System Research Inc Program generation device for noncontact measuring machine
JP2006343311A (en) * 2005-06-10 2006-12-21 Inus Technology Inc Three-dimensional measurement data inspection method using parametric tolerance
WO2007107776A1 (en) * 2006-03-23 2007-09-27 Renishaw Plc Apparatus and method of measuring workpieces
JP2008111770A (en) * 2006-10-31 2008-05-15 Makino Milling Mach Co Ltd Measurement display method and machine equipped with measuring display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108907A (en) * 1984-11-01 1986-05-27 Hitachi Seiki Co Ltd Numerical control device having automatic measuring function

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108907A (en) * 1984-11-01 1986-05-27 Hitachi Seiki Co Ltd Numerical control device having automatic measuring function

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119489A (en) * 1988-10-28 1990-05-07 Matsushita Electric Ind Co Ltd Television receiver
US7069175B2 (en) 2002-09-17 2006-06-27 Mitutoyo Corporation Method and apparatus for supporting measurement of object to be measured
JP2006201111A (en) * 2005-01-24 2006-08-03 Mitsui Zosen System Research Inc Program generation device for noncontact measuring machine
JP2006343311A (en) * 2005-06-10 2006-12-21 Inus Technology Inc Three-dimensional measurement data inspection method using parametric tolerance
JP4704897B2 (en) * 2005-06-10 2011-06-22 株式会社 アイナス技術 3D measurement data inspection method using parametric tolerance
WO2007107776A1 (en) * 2006-03-23 2007-09-27 Renishaw Plc Apparatus and method of measuring workpieces
US7809523B2 (en) 2006-03-23 2010-10-05 Renishaw Plc Apparatus and method of measuring workpieces
US8302321B2 (en) 2006-03-23 2012-11-06 Renishaw Plc Apparatus and method of measuring workpieces
JP2008111770A (en) * 2006-10-31 2008-05-15 Makino Milling Mach Co Ltd Measurement display method and machine equipped with measuring display device

Similar Documents

Publication Publication Date Title
US4901253A (en) Coordinate measuring instrument and method of generating pattern data concerning shape of work to be measured
JP6731478B2 (en) Inspection program editing environment including integrated alignment program planning and editing functions
US20130278725A1 (en) Integrated Structured Light 3D Scanner
JP3455391B2 (en) Measurement support system
US8212993B2 (en) Method and apparatus for surveying actual measurement data of a component
JP6516865B2 (en) Method and apparatus for determining dimensional characteristics of an object to be measured
WO2000012964A1 (en) Apparatus and method concerning analysis and generation of part program for measuring coordinates and surface properties
JPS63206607A (en) Three-dimensional measuring machine
KR100604501B1 (en) Automated measurements and visualization system
JP3989108B2 (en) Measuring machine and moving path determination method thereof
JP2559113B2 (en) Method of generating measurement information in coordinate measuring machine
JPH01163605A (en) Three-dimensional measuring instrument equipped with measurement procedure teaching means
JP3616187B2 (en) Sample shape measurement and inspection method and apparatus therefor
Artkin CMM machines and industrial applications
JPH08159746A (en) Method for preparing measurement information for multi-dimensional shape measuring device
Van Thiel Feature based automated part inspection
JP2544225B2 (en) Character line measuring method and apparatus
JP2005172487A (en) Flatness measurement method and flatness measurement program
JP2006201111A (en) Program generation device for noncontact measuring machine
Augustsson Automated process of morphing a CAD geometry based on a measured point cloud
JPH08338717A (en) Three-dimensional coordinates measuring device
CN114996778A (en) Three-dimensional simulation system of three-coordinate measuring machine
JP3134026B2 (en) CAD / CAM equipment
JP2024061276A (en) Measurement program creation method and three-dimensional coordinate measuring machine
JPH1145107A (en) Measuring method for calculating virtual pin corner position at curved surface corner part