JPH01163439A - Fuel control device for engine - Google Patents

Fuel control device for engine

Info

Publication number
JPH01163439A
JPH01163439A JP32346687A JP32346687A JPH01163439A JP H01163439 A JPH01163439 A JP H01163439A JP 32346687 A JP32346687 A JP 32346687A JP 32346687 A JP32346687 A JP 32346687A JP H01163439 A JPH01163439 A JP H01163439A
Authority
JP
Japan
Prior art keywords
fuel
engine
acceleration
timing
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32346687A
Other languages
Japanese (ja)
Other versions
JP2653802B2 (en
Inventor
Yuji Shitani
志谷 有司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP62323466A priority Critical patent/JP2653802B2/en
Publication of JPH01163439A publication Critical patent/JPH01163439A/en
Application granted granted Critical
Publication of JP2653802B2 publication Critical patent/JP2653802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the occurrence of failure in ignition during acceleration of an engine, by a method wherein, during acceleration of the engine, the computing timing and the injection timing of a fuel amount are advanced, and in which case, when a suction pressure is changed to a value higher than a set value, the computing and injecting timings are set to a value delaying than the advanced computing and injection timings. CONSTITUTION:The acceleration state of an engine 1 is detected by an acceleration detecting means 26, and the computing and injecting timings of a fuel amount are advanced by a correction means 27. Meanwhile, a suction pressure is detected by a suction pressure detecting means 17, and when a suction pressure is changed to a value higher than a set value, a computing and an injection timing are corrected to a value delaying than the respective increased timings. This constitution feeds all of a fuel amount necessary to a cylinder under a suction stroke, and prevents the occurrence of failure in ignition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、燃料噴射弁を備えたエンジンの燃料制御装置
の改良に関し、特に、エンジンの加速時での燃料噴射量
を適宜調整して加速性能の向上を図るものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improving a fuel control device for an engine equipped with a fuel injection valve. Concerning things that improve performance.

(従来の技術) 従来より、燃料噴射弁を備えたエンジンの燃料制御装置
として、燃料噴射弁からの燃料をエンジンの気筒の吸気
行程に同期して連続的に噴射供給するものが知られてい
る。例えば特開昭57−108428号公報に開示され
るものでは、4気筒エンジンに対し、各気筒に対応して
4個の燃料噴射弁を設け、各気筒が吸気行程になる毎に
、対応する気筒の燃料噴射弁から適宜量の燃料をエンジ
ンに噴射供給するようにしている。
(Prior Art) Conventionally, as a fuel control device for an engine equipped with a fuel injection valve, one that continuously injects and supplies fuel from the fuel injection valve in synchronization with the intake stroke of the cylinder of the engine is known. . For example, in the method disclosed in Japanese Patent Application Laid-Open No. 57-108428, four fuel injection valves are provided corresponding to each cylinder in a four-cylinder engine, and each cylinder is injected into the corresponding cylinder each time the intake stroke begins. An appropriate amount of fuel is injected and supplied to the engine from the fuel injection valve.

(発明が解決しようとする問題点) ところで、エンジンの加速時には、吸入空気量の増大に
応じて各気筒に供給すべき燃料量が増量し、この必要燃
料量がその吸気行程中の気筒内に全て供給されないとき
には、燃料量が不足して、混合気の燃焼不良が生じ、失
火を招くこともあるから(第7図(イ)参照)、燃料量
の演算タイミング及び噴射タイミングを定常運転時より
も早めて、必要燃料量の全てを吸気行程中の気筒に供給
するようにし、混合気の燃焼性を良好に確保することが
望まれる。
(Problem to be solved by the invention) By the way, when the engine accelerates, the amount of fuel to be supplied to each cylinder increases in accordance with the increase in the amount of intake air, and this required amount of fuel increases within the cylinder during the intake stroke. If all of the fuel is not supplied, the amount of fuel will be insufficient, resulting in poor combustion of the air-fuel mixture, which may lead to a misfire (see Figure 7 (a)). Therefore, the timing of calculating the amount of fuel and the timing of injection should be changed from those during steady operation. It is desirable to supply all the required amount of fuel to the cylinders during the intake stroke as early as possible to ensure good combustibility of the air-fuel mixture.

しかるに、上記の如くエンジンの加速時に燃料量の演算
タイミング及び噴射タイミングを早めた場合、スロット
ル弁開度が大きく変化する加速初期時では、第7図(ロ
)に示す如く、その後に初めて吸気行程となる気筒での
混合気の燃焼性が低下し、失火を招くこともあり、加速
ショックが生じて加速性能が低下することが判った。
However, if the fuel amount calculation timing and injection timing are advanced when the engine accelerates as described above, at the beginning of acceleration when the throttle valve opening changes greatly, the intake stroke does not start until after that, as shown in Figure 7 (b). It has been found that the combustibility of the air-fuel mixture in the cylinder is reduced, which can lead to misfires, causing acceleration shock and deteriorating acceleration performance.

そこで、本発明者は、加速時の状況を仔細に把握すべく
実験したところ、加速初期時には、同図(ハ)に示す如
く、吸入空気量を検出するエアフローセンサの出力が大
きく変化すると共に、エンジンの吸気圧力も大きく変化
する状況であって、燃料量の演算タイミングを早めた時
点で演算された燃料量では、実際に吸入行程中の気筒に
供給された時点での吸入空気量に対応する必要燃料量に
対して不足し、このため、混合気の燃焼性が低下して、
失火を招く懸念があることを知悉した。
Therefore, the inventor conducted an experiment to understand the situation during acceleration in detail, and found that at the initial stage of acceleration, the output of the air flow sensor that detects the intake air amount changes greatly, as shown in Figure (C). The intake pressure of the engine is also changing significantly, and the fuel amount calculated when the fuel amount calculation timing is advanced does not correspond to the amount of intake air when it is actually supplied to the cylinder during the intake stroke. The amount of fuel is insufficient compared to the required amount, and as a result, the combustibility of the mixture decreases,
It was learned that there was a concern that this could lead to misfires.

本発明は斯かる点に鑑みてなされたものであり、特に上
記実験で把握した加速時での状況、つまり第8図に示す
如く、加速初期では同図(イ)から判るように、エンジ
ンの吸気圧力(吸気負圧)Plはスロットル弁の開動作
に伴い漸次大きくなる(大気圧に近づく)一方で、吸気
行程にある気筒の筒内圧P2は、ピストンの下降動作に
伴い唐突に低くなって上記吸気圧力21未満に低下し、
この圧力差でもって燃料噴射弁から噴射された燃料が素
早く気筒に吸入される状況にあること、及び加速中期か
ら後期では、同図(ロ)から判るように、吸気圧力P1
と筒内圧P2とがほぼ同圧力であって、上記加速初期の
ように燃料が圧力差で素早く吸入される状況にないこと
に着目したものである。
The present invention has been made in view of this point, and in particular, the situation during acceleration ascertained through the above experiment, as shown in Figure 8, shows that at the beginning of acceleration, as can be seen from Figure (A), the engine While the intake pressure (intake negative pressure) Pl gradually increases (approaches atmospheric pressure) as the throttle valve opens, the in-cylinder pressure P2 of the cylinder in the intake stroke suddenly decreases as the piston descends. The intake pressure decreases to less than 21,
Due to this pressure difference, the fuel injected from the fuel injection valve is quickly sucked into the cylinder, and in the middle to late stages of acceleration, the intake pressure P1
This focuses on the fact that the cylinder pressure P2 and the cylinder pressure P2 are almost the same pressure, and the fuel is not quickly sucked in due to the pressure difference as in the early stage of acceleration.

すなわち、上記の如くエンジンの加速時に増量する必要
燃料量の全てを吸気行程中の気筒に供給すべく燃料量の
演算タイミング及び噴射タイミングを定常時よりも早め
た場合にも、加速初期ではこれを加速中期、後期よりも
遅くしても、噴射された燃料はその全てが上記吸気圧力
P1と筒内圧P2との圧力差でもって吸気行程中の気筒
に確実に吸入供給されることから、本発明の目的は、エ
ンジンの加速時には、その初期での燃料量の演算及び噴
射タイミングを加速中期、後期よりも遅らせることによ
り、加速中期、後期は勿論のこと、吸入空気量が増量す
る加速初期にも、燃料噴射量をその気筒内への供給時で
の吸入空気量に良好に対応させて、混合気の燃焼状態を
良好に確保し、よって加速初期での燃焼不良に伴う加速
ショックを有効に抑制して加速性能の向上を図ることに
ある。
In other words, even if the fuel amount calculation timing and injection timing are advanced from the steady state in order to supply all of the required fuel amount that increases when the engine accelerates to the cylinders during the intake stroke as described above, this is not possible at the beginning of acceleration. Even if it is later than the middle and late stages of acceleration, all of the injected fuel is reliably sucked and supplied to the cylinder during the intake stroke due to the pressure difference between the intake pressure P1 and the cylinder pressure P2, so the present invention The purpose of this is to calculate fuel amount and injection timing at the initial stage of engine acceleration later than during the mid- and late-acceleration stages. , the amount of fuel injection corresponds well to the amount of intake air when supplied to the cylinder, ensuring a good combustion state of the air-fuel mixture, and thus effectively suppressing acceleration shock caused by poor combustion at the beginning of acceleration. The purpose is to improve acceleration performance.

(問題点を解決するための手段) 以上の目的を達成するため、本発明の解決手段は、第1
図に示す如く、エンジン1の吸気通路5に燃料を噴射す
る燃料噴射手段9と、気筒の吸気行程に同期してエンジ
ン1への燃料量を演算して噴射するよう上記燃料噴射手
段9を制御する噴射制御手段25とを備えたエンジンの
燃料制御装置を対象とする。そして、エンジン1の加速
時を検出する加速検出手段26と、エンジン1の吸気圧
力を検出する吸気圧力検出手段17と、該両検出手段2
6.17の出力を受け、エンジン1の加速時に燃料量の
演算タイミング及び噴射タイミングを早めると共に、エ
ンジン1の加速時に吸気圧力が設定値以上変化するとき
には、燃料量の演算タイミング及び噴射タイミングを上
記早めた演算タイミング及び噴射タイミングよりも遅く
するよう、上記噴射制御手段25の燃料量の演算タイミ
ング及び噴射タイミングを補正する補正手段27とを設
ける構成としたものである。
(Means for solving the problem) In order to achieve the above object, the solving means of the present invention is as follows.
As shown in the figure, the fuel injection means 9 injects fuel into the intake passage 5 of the engine 1, and the fuel injection means 9 is controlled to calculate and inject the amount of fuel to the engine 1 in synchronization with the intake stroke of the cylinder. The present invention is directed to a fuel control device for an engine equipped with an injection control means 25 that performs the following steps. Acceleration detection means 26 detects when the engine 1 accelerates; intake pressure detection means 17 detects the intake pressure of the engine 1; and both detection means 2
6. In response to the output of 17, when the engine 1 accelerates, the fuel amount calculation timing and injection timing are advanced, and when the intake pressure changes by more than the set value when the engine 1 accelerates, the fuel amount calculation timing and injection timing are changed as described above. A correction means 27 is provided for correcting the fuel amount calculation timing and injection timing of the injection control means 25 so that they are later than the earlier calculation timing and injection timing.

(作用) 以上の構成により、本発明では、基本的に噴射制御手段
25により、気筒の吸気行程に同期して燃料量が演算さ
れて、この燃料量が燃料噴射手段9から噴射される。
(Function) With the above configuration, in the present invention, basically, the injection control means 25 calculates the amount of fuel in synchronization with the intake stroke of the cylinder, and this amount of fuel is injected from the fuel injection means 9.

而して、エンジン1の加速時、その中期及び後期では、
各気筒に供給すべき燃料量が吸入空気量の増大に応じて
増量するが、上記噴射制御手段25での燃料量の演算タ
イミング及び噴射タイミングが補正手段27によって補
正されて、定常運転時よりも早くなるので、混合気の良
好な燃焼に必要な燃料量の全てが吸気行程中の気筒に供
給されて、混合気の良好な燃焼が確保され、失火を招く
ことはない。
Therefore, when the engine 1 accelerates, in the middle and late stages,
The amount of fuel to be supplied to each cylinder increases in accordance with the increase in the amount of intake air, but the calculation timing of the fuel amount and the injection timing in the injection control means 25 are corrected by the correction means 27, so that the amount of fuel to be supplied to each cylinder increases compared to during steady operation. Since the combustion speed is faster, all the fuel amount necessary for good combustion of the air-fuel mixture is supplied to the cylinder during the intake stroke, ensuring good combustion of the air-fuel mixture, and no misfire occurs.

また、加速初期では、吸入空気量が大きく変化する状況
であって、上記加速中期、後期の燃料量の演算タイミン
グ及び噴射タイミングでは、演算される燃料量が、実際
に吸気行程中の気筒に供給された時点での吸入空気量に
対応する必要燃料量に対して不足し、このため混合気の
燃焼性の低下を招くが、この加速初期では、燃料量の演
算タイミング及び噴射タイミングが、補正手段27によ
って上記加速中期、後期よりも遅く補正されるので、そ
の演算された燃料量がほぼ必要燃料量に一致すると共に
、気筒が吸気行程になる時点では、その筒内圧とエンジ
ン1の吸気圧力との間に圧力差が生じて、この圧力差で
もって上記燃料量が素早く上記吸気行程中の気筒に吸入
供給されて、混合気の良好な燃焼性が確保され、この加
速初期での加速ショックが有効に抑制される。よって、
加速性能が向上することになる。
In addition, at the beginning of acceleration, the amount of intake air changes greatly, and at the calculation timing and injection timing of the fuel amount in the middle and late stages of acceleration, the calculated amount of fuel is actually supplied to the cylinder during the intake stroke. However, at the beginning of this acceleration, the calculation timing of the fuel amount and the injection timing are determined by the correction means. 27 is corrected later than in the middle and late stages of acceleration, the calculated fuel amount almost matches the required fuel amount, and at the time when the cylinder enters the intake stroke, the in-cylinder pressure and the intake pressure of the engine 1 are A pressure difference is generated between the two, and with this pressure difference, the above amount of fuel is quickly sucked and supplied to the cylinder during the intake stroke, ensuring good combustibility of the air-fuel mixture, and reducing acceleration shock at the beginning of acceleration. effectively suppressed. Therefore,
Acceleration performance will be improved.

(実施例) 以下、本発明の実施例を第2図以下の図面に基いて説明
する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は本発明に係るエンジンの燃料制御装置の全体概
略構成を示し、1は4気筒エンジン、2はエンジン1の
シリンダ3に嵌挿したピストン4により容積可変に形成
される燃焼室、5は一端がエアクリーナ6を介して大気
に連通し、他端が4分岐して各気筒の燃焼室2に開口し
て吸気を供給するための吸気通路、7は一端が4分岐し
て各気筒の燃焼室2に開口し、他端が大気に開放されて
排気を排出するための排気通路であって、上記吸気通路
5の途中には、吸入空気量を制御する一スロットル弁8
と、その下流側で各気筒への分岐部上流側に燃料をエン
ジン1に噴射供給する燃料噴射手段としての燃料噴射弁
9とが配設されている。
FIG. 2 schematically shows the overall configuration of the engine fuel control system according to the present invention, in which 1 is a four-cylinder engine, 2 is a combustion chamber whose volume is variable by a piston 4 fitted into a cylinder 3 of the engine 1, and 5 is a combustion chamber having a variable volume. 7 has one end that communicates with the atmosphere via the air cleaner 6, and the other end that branches into four and opens into the combustion chamber 2 of each cylinder to supply intake air. This is an exhaust passage that opens into the combustion chamber 2 and has its other end open to the atmosphere to discharge exhaust gas.In the middle of the intake passage 5, there is a throttle valve 8 for controlling the amount of intake air.
A fuel injection valve 9 as a fuel injection means for injecting and supplying fuel to the engine 1 is disposed on the downstream side thereof and on the upstream side of a branch part to each cylinder.

該吸気通路5の各燃焼室2への開口部には各々吸気弁1
0が、排気通路7の各燃焼室2への開口部には排気弁1
1が各々配置されていると共に、各燃焼室2の頂部には
、該燃焼室2内の混合気に点火する点火プラグ12が配
置されている。
An intake valve 1 is provided at the opening of the intake passage 5 to each combustion chamber 2.
0, and an exhaust valve 1 is installed at the opening of the exhaust passage 7 to each combustion chamber 2.
At the top of each combustion chamber 2, an ignition plug 12 for igniting the air-fuel mixture in the combustion chamber 2 is disposed.

また、同図において、15は吸気通路5のスロットル弁
8上流側で吸入空気量を検出するエアフローセンサ、1
6はスロットル弁8の開度を検出する開度センサ、17
は吸気通路5のスロットル弁8下流側で且つ分岐部上流
側にてエンジン1の吸気圧力(吸気負圧)を検出する吸
気圧力検出手段としての吸気圧力センサであって、該各
センサ15〜18の検出信号は、各々、上記燃料噴射弁
9からの燃料量及びその噴射タイミングを制御するコン
トローラ20のI10ボート21を経てCPU22に入
力されている。また、該コントローラ20には、RAM
やROMを備えたメモリ23が内蔵されている。該メモ
リ23には、予め、燃料噴射弁9からの燃料の噴射タイ
ミングが設定記憶されていて、混合気の点火順序が第1
=第3=第4=第2気筒の順序である場合に、最初の2
気筒(第1及び第3気筒)では第1気筒の吸気行程時に
燃料を噴射し、後の2気筒(第4及び第2気筒)では第
4気筒の吸気行程時に燃料を噴射するように、2気筒ず
つグループ化して燃料を気筒の吸気行程時に同期して噴
射するように設定され、特に、燃料の噴射タイミングは
、第6図に示す如くエンジン回転数に応じて設定記憶さ
れていて、エンジン1の加速中期及び後期には、図中破
線で示す如く、エンジン1の定常運転時よりも早いタイ
ミングに設定されていると共に、加速初期では、図中実
線で示す如く、上記加速中期及び後期の噴射タイミング
よりも遅いタイミングに設定されている。
Further, in the same figure, reference numeral 15 denotes an air flow sensor that detects the amount of intake air on the upstream side of the throttle valve 8 in the intake passage 5;
6 is an opening sensor that detects the opening of the throttle valve 8; 17;
is an intake pressure sensor serving as an intake pressure detection means for detecting the intake pressure (intake negative pressure) of the engine 1 on the downstream side of the throttle valve 8 of the intake passage 5 and on the upstream side of the branching part, and each of the sensors 15 to 18 The detection signals are input to the CPU 22 via the I10 boat 21 of the controller 20, which controls the amount of fuel from the fuel injection valve 9 and its injection timing. The controller 20 also includes a RAM.
A memory 23 including ROM and ROM is built-in. The memory 23 stores in advance the timing of fuel injection from the fuel injection valve 9, and the ignition order of the air-fuel mixture is the first one.
= 3rd = 4th = 2nd cylinder, then the first 2
The cylinders (first and third cylinders) inject fuel during the intake stroke of the first cylinder, and the latter two cylinders (fourth and second cylinders) inject fuel during the intake stroke of the fourth cylinder. The cylinders are grouped and fuel is injected in synchronization with the intake stroke of each cylinder. In particular, the fuel injection timing is set and stored according to the engine speed as shown in FIG. In the middle and late stages of acceleration, as shown by the broken line in the figure, the timing is set earlier than during steady operation of the engine 1, and in the early stage of acceleration, as shown by the solid line in the figure, the injection timing in the middle and late stages of acceleration is set. The timing is set later than the specified timing.

次に、ト記コントローラ20による燃料噴射弁9の燃料
噴射制御を第3図ないし第5図の制御フローに基いて説
明する。
Next, the fuel injection control of the fuel injection valve 9 by the controller 20 will be explained based on the control flows shown in FIGS. 3 to 5.

先ず、第3図のメインフローからスタートして、ステッ
プS1で開度センサ16からのスロットル弁8の開度の
変化率でもってエンジン1の加速時か否かを判別し、エ
ンジン1の加速時に限り、ステップS2で第4図に示す
気筒の吸気行程時における吸気圧力の上昇の判定ルーチ
ンに進んで、加速初期か加速中期、後期かを判定した後
、ステップS3で第5図に示す燃料噴射の実行ルーチン
に進んで燃料噴射制御を行い、ステップS4で他の制御
の処理ルーチン(図示せず)を処理して、リターンする
First, starting from the main flow shown in FIG. 3, in step S1, it is determined whether or not the engine 1 is accelerating based on the rate of change in the opening of the throttle valve 8 from the opening sensor 16. In step S2, the routine proceeds to a determination routine for determining the increase in intake pressure during the intake stroke of the cylinder as shown in FIG. The process proceeds to an execution routine to perform fuel injection control, and in step S4, processes other control processing routines (not shown), and then returns.

次に、第4図に示す気筒の吸気行程時における吸気圧力
の上昇判定ルーチンでは、ステップSS1で、開度セン
サ16で検出した現在のスロットル弁開度とエンジン回
転数とに応じてその後に初めて吸気行程となる時期での
吸気圧力値P1を予想し、この予想吸気圧力値P1を、
吸気圧力センサ17で検出した前回の燃料の噴射タイミ
ングでの吸気圧力値P1°と比較し、その差(P+ −
Plo)が微小値α以下(P+ −P+ °≦α)のと
きには、加速中期、後期と判断して、判定フラグKFL
AG −1に設定する一方、P、−P、°〉αのときに
は、吸気圧力が上昇する加速初期と判断して、判定フラ
グKFLAG −0に設定して、リターンするものであ
る。
Next, in the routine for determining the increase in intake pressure during the intake stroke of the cylinder shown in FIG. Estimate the intake pressure value P1 at the time of the intake stroke, and use this predicted intake pressure value P1 as
It is compared with the intake pressure value P1° at the previous fuel injection timing detected by the intake pressure sensor 17, and the difference (P+ -
When Plo) is less than the minimum value α (P+ −P+ °≦α), it is determined that the acceleration is in the middle or late stage, and the determination flag KFL is set.
AG -1 is set, while when P, -P, °>α, it is determined that this is the initial stage of acceleration where the intake pressure increases, the determination flag is set to KFLAG -0, and the process returns.

続いて、第5図の燃料噴射実行ルーチンでは、ステップ
SFIで上記加速初期又は中期、後期の判定フラグKP
LAGの値を判別し、KFLAG −1の加速中期、後
期では、ステップSF2で第6図に破線で示す加速中期
、後期での燃料の噴射タイミングか否かを判別し、この
噴射タイミングの時に限り、ステップSF4でエアフロ
ーセンサ15の検出信号に基いてエンジン1への吸入空
気量を演算すると共に、ステップSF5で上記演算した
吸入空気量の下で混合気の良好な燃焼が行われる必要燃
料量(燃焼噴射パルス幅)を演算し、その後、ステップ
SF6でこの燃料量を噴射するよう燃料噴射弁9を制御
して燃料噴射を実行し、リターンする。
Subsequently, in the fuel injection execution routine shown in FIG.
The value of LAG is determined, and in the middle and late stages of acceleration of KFLAG -1, it is determined in step SF2 whether or not the fuel injection timing is in the middle and late stages of acceleration as shown by the broken line in FIG. 6, and only at this injection timing. In step SF4, the intake air amount to the engine 1 is calculated based on the detection signal of the air flow sensor 15, and in step SF5, the required fuel amount ( After that, in step SF6, the fuel injection valve 9 is controlled to execute fuel injection to inject this amount of fuel, and the process returns.

一方、上記ステップSFIで判定フラグKFLAG−0
の加速初期の場合では、ステップSF3で、今度は第6
図に実線で示す加速初期での燃料の噴射タイミングか否
かを判別し、この加速初期での燃料噴射タイミングの時
に限り、上記と同様にステップSF4〜SF6において
、エンジン1への吸入空気量を演算すると共に、この吸
入空気量に対応する必要燃料量(燃料噴射パルス幅)を
演算して、この燃料量を噴射するよう燃料噴射弁9を制
御して、リターンする。
On the other hand, in step SFI above, the determination flag KFLAG-0
In the case of the initial acceleration of , in step SF3, the sixth
It is determined whether or not the fuel injection timing is at the early stage of acceleration, which is shown by the solid line in the figure, and only at the fuel injection timing at the early stage of acceleration, the amount of intake air to the engine 1 is adjusted in steps SF4 to SF6 in the same way as above. At the same time, the necessary fuel amount (fuel injection pulse width) corresponding to this intake air amount is calculated, the fuel injection valve 9 is controlled to inject this fuel amount, and the process returns.

よって、第5図の燃料噴射実行ルーチン(ステップSF
l、SFJ〜5F6)の処理により、エンジン1の4気
筒を2グループ化して、各グループの所定気筒(第1気
筒と第4気筒)の各吸気行程に同期して、この各吸気行
程毎にエンジン1への燃料量を演算して噴射するよう燃
料噴射弁9を制御するようにした噴射制御手段25を構
成している。
Therefore, the fuel injection execution routine (step SF
1, SFJ to 5F6), the four cylinders of engine 1 are divided into two groups, and in synchronization with each intake stroke of the predetermined cylinders (first cylinder and fourth cylinder) of each group, An injection control means 25 is configured to control the fuel injection valve 9 to calculate and inject the amount of fuel to the engine 1.

また、第3図の制御フローのステップS1により、開度
センサ16で検出したスロットル弁8の開度の変化率で
もってエンジン1の加速時を検出するようにした加速検
出手段26を構成している。
Further, in step S1 of the control flow shown in FIG. 3, the acceleration detection means 26 is configured to detect the acceleration of the engine 1 based on the rate of change in the opening of the throttle valve 8 detected by the opening sensor 16. There is.

さらに、上記第4図の気筒の吸気行程時における吸気圧
力の上昇判定ルーチン及び、第5図の燃料噴射実行ルー
チンのステップSF2.SF3により、加速検出手段2
6及び吸気圧力センサ17の出力を受け、エンジン1の
加速時には、供給すべき燃料mの演算タイミング及び噴
射タイミングを第6図に破線で示す燃料の噴射タイミン
グ特性に設定して、エンジン1の定常時よりも早めると
共に、エンジンの加速時にエンジン1の吸気圧力P1が
設定値α以上変化するときくつまり加速初期)には、燃
料量の演算タイミング及び噴射タイミングを第6図の実
線の如く設定して、上記早めた同図破線の燃料量の演算
タイミング及び噴射タイミングよりも遅くするよう、上
記噴射制御手段25の燃料量の演算タイミング及び噴射
タイミングを補正するようにした補正手段27を構成し
ている。
Furthermore, the routine for determining the increase in intake pressure during the intake stroke of the cylinder shown in FIG. 4 and step SF2 of the fuel injection execution routine shown in FIG. Acceleration detection means 2 by SF3
6 and the intake pressure sensor 17, when the engine 1 is accelerating, the calculation timing and injection timing of the fuel m to be supplied are set to the fuel injection timing characteristics shown by the broken line in FIG. In addition to setting the fuel amount calculation timing and injection timing earlier than usual, when the intake pressure P1 of the engine 1 changes by more than the set value α during engine acceleration (that is, at the beginning of acceleration), the fuel amount calculation timing and injection timing are set as shown by the solid line in Fig. 6. , a correction means 27 is configured to correct the fuel amount calculation timing and injection timing of the injection control means 25 so as to be later than the fuel amount calculation timing and injection timing indicated by the dashed line in the figure, which have been advanced. .

したがって、」−2実施例では、1つの気筒グループ(
第1及び第3気筒)の第1気筒の吸気行程時には、この
両気筒に必要な燃料量が噴射制御手段25で演算されて
、この燃料量を噴射するよう燃料噴射弁9が制御される
と共に、他の気筒グループ(第2及び第4気筒)の第4
気筒の吸気行程時に、この雨気筒に必要な燃料量が噴射
制御手段25で演算されて、この燃料量を噴射するよう
燃料噴射弁9が制御される。
Therefore, in the "-2 embodiment, one cylinder group (
During the intake stroke of the first cylinder (first and third cylinders), the amount of fuel required for both cylinders is calculated by the injection control means 25, and the fuel injection valve 9 is controlled to inject this amount of fuel. , the fourth cylinder of the other cylinder groups (second and fourth cylinders)
During the intake stroke of the cylinder, the amount of fuel required for this rain cylinder is calculated by the injection control means 25, and the fuel injection valve 9 is controlled to inject this amount of fuel.

而して、エンジン1の加速時には、吸入空気量の増大に
伴い必要燃料量も増大するが、定常運転時と同一の燃料
量の演算タイミング及び噴射タイミングでは、増量した
必要燃料量の全てが吸気行程中の気筒に吸入されずに燃
料量不足が生じるために、第7図(イ)に示す如く、燃
料噴射後に初めて吸気行程となる気筒(図では第1気筒
)では、混合気の燃焼不良を生じ、失火を招くこともあ
るが、本発明では、同図(ロ)に示す如く、加速時(そ
の中期、後期)で、燃料量の演算及び噴射タイミングが
補正手段27でもって第6図の破線のタイミング特性に
設定されて定常運転時よりも早められるので、噴射され
た必要燃料量の全量が吸気行程中の気筒に供給されて、
燃料量不足は生じず、混合気の燃焼状態は良好に確保さ
れ、失火は確実に防止される。
Therefore, when the engine 1 accelerates, the required amount of fuel increases as the amount of intake air increases, but with the same fuel amount calculation timing and injection timing as during steady operation, all of the increased required fuel amount is consumed by the intake air. As shown in Figure 7 (a), as the amount of fuel is insufficient because it is not inhaled into the cylinder during the stroke, the cylinder that undergoes the intake stroke for the first time after fuel injection (the first cylinder in the figure) suffers from poor combustion of the air-fuel mixture. However, according to the present invention, as shown in FIG. Since the timing characteristics are set to the timing characteristics shown by the dashed line, the timing is set earlier than during steady operation, so the entire required amount of injected fuel is supplied to the cylinder during the intake stroke.
There is no shortage of fuel, a good combustion state of the air-fuel mixture is ensured, and misfires are reliably prevented.

しかも、加速初期では、同図(ハ)に示すように、エア
フローセンサ15の出力値が唐突に変化して、吸入空気
量が唐突に増大するため、上記加速中期、後期と同様に
早めた燃料量の演算タイミング及び噴射タイミングでも
って燃料量を演算、噴射するときには、同図(ロ)に示
す如く、実際に吸気行程中の気筒に燃料が供給された時
点の吸入空気量に対して燃料量が不足して、この加速初
期後に初めて吸気行程になる気筒(図では第4気筒)で
は、混合気の燃焼不良が生じる。しかし、この加速初期
の状況、つまり、同図(ハ)に示す如く、スロットル弁
開度の唐突な変化に応じて吸気負圧(吸気負圧)P+ 
も上昇する一方、この加速初期後に初めて吸気行程にな
る気筒(第4気筒)では、第8図(イ)に示す如く、そ
の吸気行程で筒内圧P2がピストン4の下降動作に応じ
て唐突に減少して、上記吸気負圧21未満に低下するか
ら、この圧力差(PHP2)により、燃料噴射弁9から
噴射される燃料は素早く吸気行程の気筒に吸入される状
況であることから、本発明では、加速初期後に初めて吸
気行程になる気筒(第4気筒)への燃料供給に際しては
、燃料量の演算タイミング及び噴射タイミングが補正手
段27で第6図に実線で示すタイミング特性に設定され
て、上記加速中期、後期のものよりも遅く補正される。
Moreover, at the early stage of acceleration, as shown in FIG. When calculating and injecting the amount of fuel based on the amount calculation timing and injection timing, as shown in the same figure (b), the amount of fuel is determined based on the amount of intake air at the time when fuel is actually supplied to the cylinder during the intake stroke. In the cylinder (the fourth cylinder in the figure) that undergoes the intake stroke for the first time after this initial acceleration, poor combustion of the air-fuel mixture occurs. However, in this early stage of acceleration, as shown in the same figure (c), the intake negative pressure (intake negative pressure) P+
On the other hand, in the cylinder (fourth cylinder) that undergoes the intake stroke for the first time after the initial stage of acceleration, the cylinder pressure P2 suddenly increases in response to the downward movement of the piston 4 during the intake stroke, as shown in Fig. 8 (a). This pressure difference (PHP2) causes the fuel injected from the fuel injection valve 9 to be quickly sucked into the cylinder during the intake stroke. Now, when supplying fuel to the cylinder (fourth cylinder) that undergoes the intake stroke for the first time after the initial stage of acceleration, the calculation timing of the fuel amount and the injection timing are set by the correction means 27 to the timing characteristics shown by the solid line in FIG. 6, It is corrected more slowly than those in the middle and late stages of acceleration.

このことにより、演算される燃料量は、実際に気筒に吸
入される時点での吸入空気量にほぼ対応した燃料量にな
ると共に、この燃料量の全てが上記圧力差(P+−P2
)でもって吸気行程となる気筒(第4気筒)に素早く吸
入されるので、混合気の良好な燃焼が確保されて、燃焼
不良による加速初期での加速ショックが有効に抑制され
る。よって、加速時には、その初期や中期、後期に拘ら
ず、混合気の燃焼状態を良好に確保できるので、加速初
期での加速ショックをを効に抑制して、加速性能の向上
を図ることができる。
As a result, the calculated amount of fuel almost corresponds to the amount of intake air at the time when it is actually taken into the cylinder, and all of this amount of fuel corresponds to the pressure difference (P+-P2
), the air is quickly drawn into the cylinder (fourth cylinder) undergoing the intake stroke, ensuring good combustion of the air-fuel mixture and effectively suppressing acceleration shock at the beginning of acceleration due to poor combustion. Therefore, during acceleration, a good combustion state of the air-fuel mixture can be ensured regardless of whether it is in the early, middle, or late stages of acceleration, so it is possible to effectively suppress acceleration shock in the early stages of acceleration and improve acceleration performance. .

尚、上記実施例では、気筒グループ別に、各々属する所
定気筒の吸気行程時に燃料を演算及び噴射する構成とし
たが、その他、各気筒別に各々燃料噴射弁を設け、各気
筒の吸気行程時に、各々、対応する燃料噴射弁からの燃
料量を演算して噴射する構成とする場合等にも同様に適
用できるのは勿論である。
In the above embodiment, fuel is calculated and injected during the intake stroke of each cylinder group, but fuel injection valves are provided for each cylinder, and fuel is injected during the intake stroke of each cylinder. Of course, the present invention can also be similarly applied to a configuration in which the amount of fuel from a corresponding fuel injection valve is calculated and injected.

(発明の効果) 以上説明したように、本発明のエンジンの燃料制御装置
によれば、気筒の吸気行程に同期して燃料を連続的に噴
射する場合、エンジンの加速時には、その中期、後期で
の燃料量の演算タイミング及び噴射タイミングを定常運
転時よりも早めて、必要燃料量の全量を吸気行程の気筒
に供給すると共に、吸入空気量の増大変化する加速初期
では、その早めた燃料量の演算タイミング及び噴射タイ
ミングよりも遅くして、燃料量をその吸気行程中の気筒
内への供給時における吸入空気量に良好に対させつつ、
その燃料量の全量を、吸気行程中の気筒での筒内圧と吸
気圧力との圧力差でもって素早くその気筒に吸入供給さ
せたので、加速中期。
(Effects of the Invention) As explained above, according to the engine fuel control device of the present invention, when fuel is continuously injected in synchronization with the intake stroke of the cylinder, when the engine accelerates, it is possible to The fuel amount calculation timing and injection timing are advanced from those during steady operation to supply the entire required amount of fuel to the cylinder during the intake stroke, and at the beginning of acceleration when the intake air amount increases and changes, the earlier fuel amount is The calculation timing and the injection timing are set later than the calculation timing and the injection timing, so that the amount of fuel corresponds well to the amount of intake air when being supplied into the cylinder during the intake stroke,
The entire amount of fuel is quickly sucked and supplied to the cylinder by the pressure difference between the in-cylinder pressure and the intake pressure in the cylinder during the intake stroke.

後期は勿論のこと、加速初期での混合気の燃焼性を良好
に確保でき、加速初期での加速ショックを有効に抑制し
て、加速性能の向上を図ることができる。
It is possible to ensure good combustibility of the air-fuel mixture not only in the later stages but also in the early stages of acceleration, and it is possible to effectively suppress acceleration shocks in the early stages of acceleration, thereby improving acceleration performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図である。 第2図ないし第8図は本発明の実施例を示し、第2図は
全体概略構成図、第3図ないし第5図は燃料の噴射制御
を示すフローチャート図、第6図は加速初期と加速中期
、後期での燃料の噴射タイミング特性を示す図、第7図
(イ)〜(ハ)及び第8図(イ)及び(ロ)は作動説明
図である。 1・・・エンジン、5・・・吸気通路、8・・・スロッ
トル弁、9・・・燃料噴射弁、15・・・エアフローセ
ンサ、17・・・吸気圧力センサ、20・・・コントロ
ーラ、25・・・噴射制御手段、26・・・加速検出手
段、27・・・補正手段。 特許出願人 マ ツ ダ  株式会社。
FIG. 1 is a block diagram showing the configuration of the present invention. Figures 2 to 8 show embodiments of the present invention, Figure 2 is a general schematic diagram, Figures 3 to 5 are flowcharts showing fuel injection control, and Figure 6 is an initial stage of acceleration and acceleration. Figures 7(a) to 7(c) and 8(a) and 8(b), which show the fuel injection timing characteristics in the middle and later stages, are operation explanatory diagrams. DESCRIPTION OF SYMBOLS 1... Engine, 5... Intake passage, 8... Throttle valve, 9... Fuel injection valve, 15... Air flow sensor, 17... Intake pressure sensor, 20... Controller, 25 ... injection control means, 26 ... acceleration detection means, 27 ... correction means. Patent applicant Mazda Corporation.

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンの吸気通路に燃料を噴射する燃料噴射手
段と、気筒の吸気行程に同期してエンジンへの燃料量を
演算して噴射するよう上記燃料噴射手段を制御する噴射
制御手段とを備えたエンジンの燃料制御装置であって、
エンジンの加速時を検出する加速検出手段と、エンジン
の吸気圧力を検出する吸気圧力検出手段と、該両検出手
段の出力を受け、エンジンの加速時に燃料量の演算タイ
ミング及び噴射タイミングを早めると共に、エンジンの
加速時に吸気圧力が設定値以上変化するときには、燃料
量の演算タイミング及び噴射タイミングを上記の早めた
演算タイミング及び噴射タイミングよりも遅くするよう
、上記噴射制御手段の燃料量の演算タイミング及び噴射
タイミングを補正する補正手段とを備えたことを特徴と
するエンジンの燃料制御装置。
(1) A fuel injection means for injecting fuel into the intake passage of the engine; and an injection control means for controlling the fuel injection means to calculate and inject the amount of fuel to the engine in synchronization with the intake stroke of the cylinder. A fuel control device for an engine, comprising:
an acceleration detection means for detecting when the engine is accelerating; an intake pressure detection means for detecting the intake pressure of the engine; receiving the outputs of both the detection means, and advancing the fuel amount calculation timing and injection timing when the engine is accelerating; When the intake pressure changes by more than a set value during engine acceleration, the injection control means controls the fuel amount calculation timing and injection timing so that the fuel amount calculation timing and injection timing are later than the aforementioned earlier calculation timing and injection timing. 1. A fuel control device for an engine, comprising: a correction means for correcting timing.
JP62323466A 1987-12-21 1987-12-21 Engine fuel control device Expired - Fee Related JP2653802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62323466A JP2653802B2 (en) 1987-12-21 1987-12-21 Engine fuel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62323466A JP2653802B2 (en) 1987-12-21 1987-12-21 Engine fuel control device

Publications (2)

Publication Number Publication Date
JPH01163439A true JPH01163439A (en) 1989-06-27
JP2653802B2 JP2653802B2 (en) 1997-09-17

Family

ID=18154999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62323466A Expired - Fee Related JP2653802B2 (en) 1987-12-21 1987-12-21 Engine fuel control device

Country Status (1)

Country Link
JP (1) JP2653802B2 (en)

Also Published As

Publication number Publication date
JP2653802B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
US20160258345A1 (en) Internal combustion engine
US6578551B2 (en) Fuel injection control for internal combustion engine
EP1348856A1 (en) Digital control apparatus for an engine and control method thereof
US5697337A (en) Engine rotation speed controller
CN113015848B (en) Control device
JPH01163439A (en) Fuel control device for engine
US11098671B2 (en) Combustion control device
JPH0512538B2 (en)
JP2007211616A (en) Fuel injection control device of engine
JP6485466B2 (en) Engine evaporative fuel processing device
JP2750777B2 (en) Electronic control fuel supply device for internal combustion engine
JP2000087791A (en) Combustion control device for internal combustion engine
JP2855383B2 (en) Interrupt injection control device for electronically controlled fuel injection type internal combustion engine
JPS62189348A (en) Fuel injection control device for engine
JP2017210934A (en) Engine control system
JPS61185646A (en) Control device for internal-combustion engine
JP3116426B2 (en) Fuel injection amount control device for internal combustion engine
JPH08165936A (en) Control device for engine
JPH10274079A (en) Control device for engine
JPS62101857A (en) Electronically-controlled fuel injection device
JPH0571381A (en) Fuel feed control device for internal combustion engine
JPS6375354A (en) Ignition timing control device for internal combustion engine
JPS63124844A (en) Deceleration fuel stop device for engine
JP2018059446A (en) Engine control device
JPH0650202A (en) Fuel supply controller of two-cycle internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees