JPH01163438A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPH01163438A
JPH01163438A JP31746887A JP31746887A JPH01163438A JP H01163438 A JPH01163438 A JP H01163438A JP 31746887 A JP31746887 A JP 31746887A JP 31746887 A JP31746887 A JP 31746887A JP H01163438 A JPH01163438 A JP H01163438A
Authority
JP
Japan
Prior art keywords
control valve
intake
intake control
fuel
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31746887A
Other languages
Japanese (ja)
Other versions
JP2596025B2 (en
Inventor
Keisuke Tsukamoto
啓介 塚本
Taiichi Meguro
目黒 泰一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31746887A priority Critical patent/JP2596025B2/en
Publication of JPH01163438A publication Critical patent/JPH01163438A/en
Application granted granted Critical
Publication of JP2596025B2 publication Critical patent/JP2596025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To perform optimum control responding to opening and closing of a suction control valve, by a method wherein, in the feed of fuel, the magnitude of the correction factor of correction of fuel loading is varied by opening and closing of a suction control valve. CONSTITUTION:In a transient operation state, e.g. acceleration and deceleration running of an engine, the opening and closing state of a suction control valve is discriminated by an SCV state discriminating means, and the magnitude of a correction factor by a correction factor calculating means 2 is varied by opening and closing of a suction control valve 32. Correction of a fuel feed amount under the transient state of an engine responds to the state of the suction control valve to perform optimum control, resulting in prevention of disturbance of an air-fuel ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、吸気制御弁即ちスロットルバルブ下流かつ
吸気弁上流に吸気を制御する絞り弁を備えた機関の空燃
比制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air-fuel ratio control device for an engine equipped with an intake control valve, that is, a throttle valve downstream of a throttle valve and upstream of an intake valve for controlling intake air.

〔従来の技術] 内燃機関では空燃比は基本的には理論空燃比に制御nさ
れ、そのため例えば電子制御燃料噴射式の内燃機関では
、空燃比を理論空燃比にする基本燃料噴射量を回転数と
負荷因子としての吸気管圧力とにより算出している。そ
して、加速運転時等の過渡運転時に空燃比が荒れるのを
防止するため、基本燃料噴射量に増量又は減量補正を加
えるのが普通である。一方、空燃比が理論空燃比より極
端に希薄な混合気で燃焼を可能とする内燃機関として吸
気制御弁を使用したものが公知である。例えば、特開昭
60−62640号参照。かかる、希薄燃焼内燃機関で
は吸気制御弁の開閉によって同じ吸気管圧力であっても
吸入空気量は変化する。従って、過渡時の空燃比の荒れ
を防止するための燃料増量補正因子(基本燃料噴射量を
補正するための補正係数や、補正量)は吸気制御弁の開
か、閉かで最適値は変化する筈である。ところが、従来
技術では同一の加減速状態である限りは吸気制御弁の開
か閉かに関わらず増量補正因子は同じ値を採用していた
、その値を吸気制御弁の閉鎖時に最適な値とすれば、吸
気制御弁開放時に空燃比に荒れが発生し、逆に吸気制御
弁の開放時に最適な値とすれば、吸気制御弁閉鎖時に空
燃比に荒れが発生する。
[Prior Art] In an internal combustion engine, the air-fuel ratio is basically controlled to the stoichiometric air-fuel ratio. Therefore, for example, in an electronically controlled fuel injection type internal combustion engine, the basic fuel injection amount to bring the air-fuel ratio to the stoichiometric air-fuel ratio is controlled by the rotational speed. It is calculated using the intake pipe pressure as a load factor. In order to prevent the air-fuel ratio from becoming rough during transient operation such as during acceleration operation, it is common to add an increase or decrease correction to the basic fuel injection amount. On the other hand, an internal combustion engine that uses an intake control valve is known as an internal combustion engine that enables combustion with an air-fuel mixture whose air-fuel ratio is extremely leaner than the stoichiometric air-fuel ratio. For example, see Japanese Patent Application Laid-Open No. 60-62640. In such a lean-burn internal combustion engine, the amount of intake air changes depending on the opening and closing of the intake control valve even if the intake pipe pressure remains the same. Therefore, the optimal value of the fuel increase correction factor (correction coefficient and correction amount for correcting the basic fuel injection amount) to prevent the air-fuel ratio from becoming rough during transient periods changes depending on whether the intake control valve is open or closed. It should be. However, in the conventional technology, the same increase correction factor was used regardless of whether the intake control valve was open or closed as long as the acceleration/deceleration state was the same. For example, a roughness occurs in the air-fuel ratio when the intake control valve is opened, and conversely, if the optimum value is set when the intake control valve is opened, a roughness occurs in the air-fuel ratio when the intake control valve is closed.

この発明では吸気制御弁の開か閉かに関わらず、過渡運
転時に空燃比の荒れを防止することができるようにする
ことを目的とする。
An object of this invention is to prevent the air-fuel ratio from becoming rough during transient operation, regardless of whether the intake control valve is open or closed.

〔問題点を解決するための手段] 第1図においてこの発明の希薄燃焼内燃機関の空燃比制
御装置は、吸気管負圧によって駆動される吸気制御弁3
2と、燃料供給手段26と、燃料供給手段26から機関
に導入される燃料量を吸気管圧力に応じて算出する燃料
供給量算出手段1と、吸気制御弁32が開状態にあるか
閉状態にあるかを判別する吸気制御弁状態判別手段2と
、該吸気制御弁状態判別手段2による吸気制御弁32の
開か閉かの判別結果に応じて、燃料供給量算出手段1に
より燃料供給量を算出するとき使用される補正因子を大
小可変とする補正因子算出手段2とから構成される 【実施例〕 第2図において、10はシリンダブロック、12はシリ
ンダボアである。12a、12bは吸気ボート、14a
、14bは排気ポートであり、夫々のボートのため吸気
弁16 a、  16 b、排気弁18a、18bが設
けられた所謂4バルブ構成さである。第1の吸気ボート
12aは所謂ヘリカル型であり、吸気スワールの形成に
好都合な形状に構成されている。第2の吸気ボート12
bはストレート型である。吸気ボート12a、12bは
吸気管20、サージタンク22を介してスロットルボデ
ィ23に接続される。スロットルボディ23内にスロッ
トル弁24が設置される。各気筒の吸気ボー)12a及
び12bに近接して吸気管20に燃料インジェクタ26
々(配置される。排気ボート14a、14bは排気マニ
ホルド28に接続される。尚、30はディストリビュー
タである。
[Means for Solving the Problems] In FIG. 1, the air-fuel ratio control device for a lean-burn internal combustion engine of the present invention includes an intake control valve 3 driven by intake pipe negative pressure.
2, a fuel supply means 26, a fuel supply amount calculation means 1 that calculates the amount of fuel introduced into the engine from the fuel supply means 26 according to the intake pipe pressure, and whether the intake control valve 32 is in an open state or a closed state. The intake control valve state determining means 2 determines whether the intake control valve 32 is open or closed, and the fuel supply amount calculating means 1 determines the fuel supply amount according to the result of the determination by the intake control valve state determining means 2 as to whether the intake control valve 32 is open or closed. [Embodiment] Consisting of a correction factor calculation means 2 that makes the correction factor used in calculation variable in size [Embodiment] In FIG. 2, 10 is a cylinder block, and 12 is a cylinder bore. 12a and 12b are intake boats, 14a
, 14b are exhaust ports, and each boat has a so-called 4-valve configuration in which intake valves 16a, 16b and exhaust valves 18a, 18b are provided. The first intake boat 12a is of a so-called helical type, and is configured to have a shape convenient for forming an intake swirl. Second intake boat 12
b is a straight type. The intake boats 12a and 12b are connected to a throttle body 23 via an intake pipe 20 and a surge tank 22. A throttle valve 24 is installed within the throttle body 23. A fuel injector 26 is installed in the intake pipe 20 adjacent to the intake bows 12a and 12b of each cylinder.
The exhaust boats 14a and 14b are connected to the exhaust manifold 28. Note that 30 is a distributor.

ストレートの吸気ボート12bに蝶型弁とじての吸気制
御弁32が設けられる。吸気制御弁32の閉鎖状態では
ヘリカル型の吸気ボート12aのみから吸入空気の導入
が行われ、シリンダボア12内にスワールSが形成され
、超希薄混合気の燃焼が実現される。吸気制御弁32が
開放されると双方の吸気制御弁12a、12bより空気
が導入され、スワールが解消される。各気筒の吸気制御
弁32の弁軸にレバー34が取付られ、ロンド36を介
して負圧アクチュエータ38に連結される。負圧アクチ
ュエータ38はダイヤフラム40とスプリング41とか
ら構成される。ダイヤフラム40に負圧がかかっていな
いときはスプリング41の働きでダイヤフラム40は図
の下方に押され、吸気制御弁32は開放位置される。ダ
イヤフラム40に負圧が加わるとダイヤフラム40はス
プリング41に抗して引っ張られ、吸気制御弁32は吸
気ボート12bを閉鎖する位置をとる。
An intake control valve 32 as a butterfly valve is provided on the straight intake boat 12b. When the intake control valve 32 is in the closed state, intake air is introduced only from the helical intake boat 12a, a swirl S is formed in the cylinder bore 12, and combustion of an ultra-lean mixture is achieved. When the intake control valve 32 is opened, air is introduced from both intake control valves 12a and 12b, and the swirl is eliminated. A lever 34 is attached to the valve shaft of the intake control valve 32 of each cylinder, and is connected to a negative pressure actuator 38 via a rond 36. The negative pressure actuator 38 is composed of a diaphragm 40 and a spring 41. When no negative pressure is applied to the diaphragm 40, the diaphragm 40 is pushed downward in the figure by the action of the spring 41, and the intake control valve 32 is placed in the open position. When negative pressure is applied to the diaphragm 40, the diaphragm 40 is pulled against the spring 41, and the intake control valve 32 assumes a position that closes the intake boat 12b.

ダイヤフラム40は、負圧遅延弁42、電磁3方弁44
、及び負圧保持チエツク弁46を介してサージタンク2
2の負圧取出ボート22aに接続される。負圧遅延弁4
2はオリフィス42aとチエツク弁42bとを並列配置
して構成され、ダイヤフラム40への大気圧導入速度、
即ち吸気制御弁32の開放速度を適当な値にコントロー
ルするものである。一方、チエツク弁46はダイヤフラ
ム40に加わる負圧を保持するものである。電磁弁44
は3つのボート44a、44b、44cを具備しており
、除電時はボー)44aと44bとが連通されてダイヤ
フラム40は負圧ボート22aに連通され、通電時はボ
ート44aと44cとが連通され、ダイヤフラム40は
大気(フィルタ48)に連通される。電磁弁44は制御
回路50によって駆動され、吸気制御弁32の作動を制
御する。
The diaphragm 40 includes a negative pressure delay valve 42 and an electromagnetic three-way valve 44.
, and the surge tank 2 via the negative pressure maintenance check valve 46.
It is connected to No. 2 negative pressure extraction boat 22a. Negative pressure delay valve 4
2 is configured by arranging an orifice 42a and a check valve 42b in parallel, and the rate at which atmospheric pressure is introduced into the diaphragm 40,
That is, the opening speed of the intake control valve 32 is controlled to an appropriate value. On the other hand, the check valve 46 maintains the negative pressure applied to the diaphragm 40. Solenoid valve 44
is equipped with three boats 44a, 44b, and 44c, and when electricity is removed, the boats 44a and 44b are communicated, and the diaphragm 40 is communicated with the negative pressure boat 22a, and when electricity is applied, the boats 44a and 44c are communicated. , the diaphragm 40 is in communication with the atmosphere (filter 48). The solenoid valve 44 is driven by the control circuit 50 and controls the operation of the intake control valve 32.

制御回路50は、例えば、マイクロコンピュータシステ
ムとして構成され、インジェクタ26及び電磁弁44を
この発明に従って制御するものである。吸気管圧力セン
サ52はサージタンク22に設置され、吸気管圧力PM
に応じた信号を発生する。クランク角度センサ54,5
6はディストリビュータ30に設けられ、第1のクラン
ク角度センサ54は基準位置検出用で、例えば、機関の
クランク軸の720度毎に信号を発生し、第2のクラン
ク角度センサ56は、クランク角度で例えば30度毎の
信号を発生し、機関回転数NEを知るのに役立つ。水温
センサ57は機関冷却水温TIIHに応じた信号を発生
する。また、所謂リーンセンサ等の空燃比センサ58が
排気マニホルド28に設けられ、空燃比Oxに応じた信
号が得られる。
The control circuit 50 is configured as a microcomputer system, for example, and controls the injector 26 and the solenoid valve 44 according to the present invention. The intake pipe pressure sensor 52 is installed in the surge tank 22 and measures the intake pipe pressure PM.
Generates a signal according to the Crank angle sensor 54,5
6 is provided in the distributor 30, the first crank angle sensor 54 is for detecting the reference position and generates a signal every 720 degrees of the engine crankshaft, and the second crank angle sensor 56 is for detecting the crank angle. For example, it generates a signal every 30 degrees and is useful for knowing the engine speed NE. Water temperature sensor 57 generates a signal according to engine cooling water temperature TIIH. Further, an air-fuel ratio sensor 58 such as a so-called lean sensor is provided in the exhaust manifold 28, and a signal corresponding to the air-fuel ratio Ox is obtained.

59はスロットル弁広開度スイッチ(■Lスイッチ)で
あり、スロットル弁24が全負荷に相当する開度まで踏
み込まれたときONとなり、通常はOFFである。制御
回路50はこれらのセンサからの信号に基づいて必要な
演算処理を実行し、インジェクタ及び電磁弁の駆動制御
を行うことになる。
59 is a throttle valve wide opening switch (■L switch), which is turned ON when the throttle valve 24 is depressed to an opening corresponding to the full load, and is normally OFF. The control circuit 50 executes necessary arithmetic processing based on the signals from these sensors, and controls the driving of the injector and the solenoid valve.

以下の制御回路50の作動をフローチャートによって説
明する。第3図は吸気制御弁(SCV)32の駆動のた
めのルーチンを示している。このルーチンはメインルー
チンの中に位置させても良い。ステップ70では吸気制
御弁32の開閉条件の判別が行われる。吸気制御弁32
は、周知のように、機関の部分負荷低回転時において閉
弁され、このとき空燃比はリーン側に制御される。そし
て機関の高負荷又は高回転では吸気制御弁は開放され、
このとき空燃比は吸気制御弁32が閉のときに比べてリ
ッチ側に制御される。吸気制御弁32の開閉域の詳細は
この発明と直接関係しないので、その説明は省略する。
The operation of the control circuit 50 will be explained below using a flowchart. FIG. 3 shows a routine for driving the intake control valve (SCV) 32. This routine may be located within the main routine. In step 70, the opening/closing conditions for the intake control valve 32 are determined. Intake control valve 32
As is well known, the valve is closed when the engine is under partial load and at low speed, and at this time the air-fuel ratio is controlled to the lean side. When the engine is under high load or at high speed, the intake control valve is opened.
At this time, the air-fuel ratio is controlled to be richer than when the intake control valve 32 is closed. The details of the opening/closing range of the intake control valve 32 are not directly related to this invention, so a description thereof will be omitted.

ステップ72ではステップ70で判別した吸気制御弁の
作動域が閉鎖域にあるか否か判別される。吸気制御弁の
閉鎖域とすれば、ステップ74に進み、YSCV= 1
とセットされる。ここにYSCVは吸気制御弁32の閉
(1)か開(0)かの状態を示すフラグである。ステッ
プ76では電磁弁44をOFFとすべき信号が出力され
る。そのため、電磁弁44は黒塗りのポート位置をとり
、サージタンク22の負圧ポート22 aの負圧がチエ
ツク弁46.負圧遅延弁42のチエツク弁42bを介し
てダイヤフラム40に印加され、ダイヤフラム40はス
プリング42に抗して吸引され、吸気制御弁32は閉弁
される。尚、吸気制御弁32を閉弁せしめる負圧が一旦
発生すると、チエツク弁46の働きでこの負圧は保持さ
れ、ポート22aの負圧が閉弁には足りなくても吸気制
御弁32を閉弁保持することができる。
In step 72, it is determined whether the operating range of the intake control valve determined in step 70 is in the closed region. If the intake control valve is in the closed region, the process proceeds to step 74, and YSCV=1.
is set. Here, YSCV is a flag indicating whether the intake control valve 32 is closed (1) or open (0). In step 76, a signal to turn off the solenoid valve 44 is output. Therefore, the solenoid valve 44 assumes the black port position, and the negative pressure of the negative pressure port 22a of the surge tank 22 is applied to the check valve 46. Negative pressure is applied to the diaphragm 40 through the check valve 42b of the delay valve 42, the diaphragm 40 is attracted against the spring 42, and the intake control valve 32 is closed. Note that once the negative pressure that closes the intake control valve 32 is generated, this negative pressure is maintained by the function of the check valve 46, and the intake control valve 32 is closed even if the negative pressure in the port 22a is not sufficient to close the valve. Valve can be retained.

吸気制御弁32の開放領域にあるとすれば、ステップ7
2よりステップ72よりステップ78に進み、YSCV
=0とリセットされ、電磁弁44をOFFとすべき信号
が出力される。そのため、電磁弁44は白抜きのポート
位置をとり、空気フィルタ48から大気圧が負圧遅延弁
のオリフィス42aを介してダイヤフラム40に印加さ
れ、ダイヤフラム40はスプリング42によって下降さ
れ、吸気制御弁32は開弁される。オリフィス42aは
吸気制御弁32の開弁速度を適正に規制する。
If it is in the open region of the intake control valve 32, step 7
2, proceed from step 72 to step 78, and YSCV
= 0, and a signal to turn off the solenoid valve 44 is output. Therefore, the solenoid valve 44 assumes the white port position, atmospheric pressure is applied from the air filter 48 to the diaphragm 40 through the orifice 42a of the negative pressure delay valve, the diaphragm 40 is lowered by the spring 42, and the intake control valve 32 is opened. The orifice 42a appropriately regulates the opening speed of the intake control valve 32.

第4図は燃料噴射ルーチンを示し、このルーチンはクラ
ンク角度における各気筒の燃料噴射時期の幾分手前をク
ランク角度センサ54及び56により検出することによ
り実行開始される。即ち、4気筒の内燃機関ではクラン
ク角度にして180゜毎に実行される。ステップ90で
は非常に短い間隔(例えばl −2slsec)毎にA
D変換される圧力センサ52によって計測される吸気管
圧力の現在値PMから前回(即ちクランク角度で180
°前)に計測された吸気管圧力計測値PMOO差DLP
M。
FIG. 4 shows a fuel injection routine, and this routine is started when the crank angle sensors 54 and 56 detect a point slightly before the fuel injection timing for each cylinder at the crank angle. That is, in a four-cylinder internal combustion engine, the process is performed every 180 degrees in terms of crank angle. In step 90, every very short interval (e.g. l -2slsec)
From the current value PM of the intake pipe pressure measured by the pressure sensor 52 which is D-converted (i.e. 180 degrees in crank angle)
intake pipe pressure measurement value PMOO difference DLP measured before
M.

即ち過渡的な圧力変化分が算出される。尚、圧力センサ
52の計測値PMは図示しないフィルタ回路又はソフト
ウェア上の処理により鈍化(なまし)処理がされている
。ステップ92では圧力変化による燃料増量分を検出す
るときの重み係数に1におけるエンジン水温寄与分KI
THWが算出される。
That is, a transient pressure change is calculated. Note that the measured value PM of the pressure sensor 52 is blunted by a filter circuit (not shown) or software processing. In step 92, the engine water temperature contribution KI at 1 is used as the weighting coefficient when detecting the fuel increase due to pressure change.
THW is calculated.

このKIT)l−の値は水温THWに応じて変化するも
ので、制御回路50のメモリ内にTHWに対するKIT
II−□の値のマツプが格納されてあり、水温センサ5
7により実測される水温THWに対応するKITH−の
値が補間により演算される。
The value of this KIT)l- changes depending on the water temperature THW, and the value of KIT)l- for THW is stored in the memory of the control circuit 50.
A map of the values of II-□ is stored, and the water temperature sensor 5
7, the value of KITH- corresponding to the actually measured water temperature THW is calculated by interpolation.

ステップ94では圧力変化による燃料増量分を算出する
ときの重み係数に1におけるエンジン回転数寄与分KI
NEが算出される。このKINEの値は回転数NEに応
じて変化するもので、制御回路5゜のメモリ内にNEに
対するKINHの値のマツプが格納されてあり、クラン
ク角度センサの30°パルスの時間間隔より実測される
エンジン回転数NEに対応するKINEの値が同様に補
間により演算される。ステップ96ではステップ92で
算出されるKITHWとステップ94で算出されるにI
NHの和が圧力変化による燃料増量分算出用重み係数K
lとされる。
In step 94, the engine speed contribution KI at 1 is used as a weighting coefficient when calculating the fuel increase due to pressure change.
NE is calculated. This value of KINE changes according to the rotational speed NE, and a map of the value of KINH with respect to NE is stored in the memory of the control circuit 5°, and is actually measured from the time interval of the 30° pulse of the crank angle sensor. The value of KINE corresponding to the engine speed NE is similarly calculated by interpolation. In step 96, KITHW calculated in step 92 and II calculated in step 94 are
The sum of NH is the weighting coefficient K for calculating the fuel increase due to pressure change.
It is assumed that l.

ステップ98では圧力変化DLPHの時間積分項による
燃料増量分を算出するときの重み係数におけるエンジン
水温寄与分に2T)INが算出される。同様にTHW−
に2THWのマツプがあり、補間演算が実行される。ス
テップ100では圧力変化OLPMの時間積分項による
燃料増量分を算出するときの重み係数における回転数寄
与分に2NBが算出される。NE−K2NHのマツプが
あり、同様な補間演算が実行されることになる。ステッ
プ102では、ステップ98で算出されるに2Tl+−
と、ステップ100で算出されるに2NEとの積が圧力
変化OLPMの時間減衰に伴った積分項による燃料増量
分算出用重み係数に2となる。
In step 98, 2T)IN is calculated as the engine coolant temperature contribution in the weighting coefficient when calculating the fuel increase based on the time integral term of the pressure change DLPH. Similarly, THW-
There is a 2THW map, and interpolation calculations are performed. In step 100, 2NB is calculated as the rotation speed contribution in the weighting coefficient when calculating the fuel increase amount due to the time integral term of the pressure change OLPM. There is a map of NE-K2NH, and a similar interpolation operation will be performed. In step 102, the value calculated in step 98 is 2Tl+-
The product of 2NE and 2NE calculated in step 100 becomes 2 as the weighting coefficient for calculating the fuel increase amount by the integral term accompanying the time decay of the pressure change OLPM.

ステップ104では、圧力差積分値DLPMiがOLP
Mz ”OLPM + K 3 XDLPMt−+によ
って算出される。K3は前回までの積分値のための重み
係数であり、0.9位の大きさである。
In step 104, the pressure difference integral value DLPMi is
It is calculated by Mz "OLPM + K 3

この式は物理的には前回までの圧力変化(即ち吸入空気
量変化)の総和の意味をもっている。即ち、第5図(イ
)において実線は過渡状態における吸気管圧力の実際の
変化を示ししており、破線はなまし後の吸気管圧力PM
を示す。このなまされた吸気管圧力値により燃料噴射量
の算出が行われることになる。従って、なまし値により
燃料噴射量を算出すると過渡的には空燃比が荒れること
になる。そこで、実際の吸気管圧力となまし値の差の分
だけ増量する必要がある。第5図(ロ)が補正量になる
。この発明の実施例では加算方式の増量を行っている。
Physically, this equation has the meaning of the sum of pressure changes (that is, intake air amount changes) up to the previous time. That is, in FIG. 5(a), the solid line shows the actual change in intake pipe pressure in a transient state, and the broken line shows the intake pipe pressure PM after annealing.
shows. The fuel injection amount is calculated based on this smoothed intake pipe pressure value. Therefore, if the fuel injection amount is calculated using the smoothed value, the air-fuel ratio will be transiently rough. Therefore, it is necessary to increase the amount by the difference between the actual intake pipe pressure and the annealed value. Figure 5 (b) shows the correction amount. In the embodiment of this invention, the amount is increased using an addition method.

即ち、吸気管圧力の変化分を算出しこれによって基本噴
射量に加算すべき補正量を算出しているのである。第5
図(ハ)においてDLPMは今回と前回との吸気管圧力
の差を示し、これは前回の噴射と今回の噴射とでの噴射
量の増加に対応する。一方、DLPM、は前回までの圧
力変化の総和であり、前回までの燃料噴射量の総和に相
当する。従って、DLPM、 DLPM、の夫々に対応
する重み係数Kl、に2を掛算したものの和、K I 
XDLPMt K 2 XDLP門iが過渡時における
それまでの全圧力変化となる。
That is, the amount of change in the intake pipe pressure is calculated, and based on this, the correction amount to be added to the basic injection amount is calculated. Fifth
In Figure (c), DLPM indicates the difference in intake pipe pressure between the current and previous injections, and this corresponds to the increase in the injection amount between the previous injection and the current injection. On the other hand, DLPM is the sum of pressure changes up to the previous time, and corresponds to the sum of the fuel injection amounts up to the previous time. Therefore, the sum of the weighting coefficients Kl corresponding to each of DLPM and DLPM multiplied by 2, K I
XDLPMt K 2 XDLP gate i is the total pressure change during the transient period.

そして、吸気管圧力から燃料噴射量への変換係数をCと
すれば、 CX (K I XDLPMtに2DLP翫)が過渡増
量値となる。
Then, if the conversion coefficient from intake pipe pressure to fuel injection amount is C, then CX (K I XDLPMt plus 2DLP) becomes the transient increase value.

ここで問題となるのは、この発明のような吸気制御弁3
2を備えた内燃機関では吸気制御弁32の開か、閉かに
よって同じ吸気管圧力では吸入空気量は同じではない。
The problem here is that the intake control valve 3 as in the present invention
In an internal combustion engine equipped with 2, the amount of intake air is not the same at the same intake pipe pressure depending on whether the intake control valve 32 is open or closed.

即ち、第6図はこの状況を説明するもので、(イ)はP
Mの変化、(ロ)は吸入空気量の変化を実線は吸気制御
弁32が開のとき、破線は吸気制御弁32が閉のときで
示す。
That is, Figure 6 explains this situation, and (a) is P
The solid line shows the change in M, and (b) shows the change in the intake air amount when the intake control valve 32 is open, and the broken line shows the change when the intake control valve 32 is closed.

従って、吸気管圧カー燃料噴射量の変換係数Cを吸気制
御弁32の開閉で同じ値とすると、かりに吸気制御弁3
2が閉の状態で最適なCの値に設定したとすれば、吸気
制御弁32が閉の状態では(ハ)に示すように過渡的な
空燃比の荒れは殆ど抑制されるが、吸気制御弁32が開
の状態では実線で示すように空燃比の荒れは大きくなる
。この発明では吸気管圧カー燃料噴射量の変換係数Cを
吸気制御弁の開か閉かにより切替を行うことにより吸気
制御弁の開か閉かに関わらず空燃比の荒れを防止するも
のである。
Therefore, if the conversion coefficient C of the intake pipe pressure car fuel injection amount is the same value depending on whether the intake control valve 32 is opened or closed, then
If the value of C is set to the optimum value when the intake control valve 32 is closed, the transient roughness of the air-fuel ratio is almost suppressed when the intake control valve 32 is closed, as shown in (c), but the intake control valve 32 is closed. When the valve 32 is open, the air-fuel ratio becomes more uneven as shown by the solid line. This invention prevents the air-fuel ratio from becoming rough regardless of whether the intake control valve is open or closed by switching the conversion coefficient C of the intake pipe pressure fuel injection amount depending on whether the intake control valve is open or closed.

ステップ106でYSCV=Oか否かの判別が行われる
。yscv=oのとき、即ち吸気制御弁32が開のとき
はステップ10Bに進み、C=52とされ、YSCV=
 1のとき、即ち吸気制御弁32が閉のときはステップ
110に進み、C=35とされる。ここの、Cの具体的
な数値に意味はなく、吸気制御弁32が開放時は閉鎖時
より吸入空気量が多いから吸気管圧カー燃料噴射量の変
換係数Cも吸気制御弁32が開放時は閉鎖時より大きく
したにすぎず、適合定数である。
In step 106, it is determined whether YSCV=O or not. When yscv=o, that is, when the intake control valve 32 is open, the process advances to step 10B, where C=52 and YSCV=
1, that is, when the intake control valve 32 is closed, the process advances to step 110, where C=35. The specific value of C here has no meaning, and since the amount of intake air is larger when the intake control valve 32 is open than when it is closed, the conversion coefficient C of the intake pipe pressure car fuel injection amount is also when the intake control valve 32 is open. is simply larger than at the time of closure and is a fitting constant.

ステップ112では加算増量補正値TPAE−が、TP
AEW =CX (K I XDLPM+K 2 XD
LPMi )によって算出される。ステップ114では
基本燃料噴射量Tpが算出される0周知のように基本燃
料噴射量吸気管圧力と回転数により決まり空燃比を理論
空燃比とする値である。制御回路50のメモリには吸気
管圧力と回転数との組合せに対する基本燃料噴射量のマ
ツプがあり、補間によりそのときの吸気管圧力と回転数
とに対する基本燃料噴射量の算出が行われる。この時、
基本噴射量も5VC32の開又は閉の状態に応じ各々の
マツプから求めて良い。
In step 112, the additional increase correction value TPAE- is
AEW = CX (K I XDLPM+K 2 XD
LPMi). In step 114, the basic fuel injection amount Tp is calculated. As is well known, the basic fuel injection amount is determined by the intake pipe pressure and the rotational speed and is a value that makes the air-fuel ratio the stoichiometric air-fuel ratio. The memory of the control circuit 50 has a map of the basic fuel injection amount for each combination of intake pipe pressure and rotational speed, and the basic fuel injection amount for the current intake pipe pressure and rotational speed is calculated by interpolation. At this time,
The basic injection amount may also be determined from each map depending on whether the 5VC32 is open or closed.

ステップ116では最終燃料噴射量TAUが、TAU−
(T p +TPAEW ) xα+βによって算出さ
れる。ここにα、βはこの発明と直接関係しないため説
明を省略する色々な補正係数、補正量を総括的に表す。
In step 116, the final fuel injection amount TAU is changed to TAU-
(T p +TPAEW) is calculated by xα+β. Here, α and β collectively represent various correction coefficients and correction amounts whose explanations are omitted because they are not directly related to the present invention.

例えばαとしてはSCv閉時に空燃比を超リーンとする
ための、PM−NEから求められるリーン補正係数を含
むものである。ステップ118では、燃料噴射信号が形
成され、この燃料噴射信号はステップ116で算出され
る燃料噴射量が得られるような継続時間を持っている。
For example, α includes a lean correction coefficient determined from PM-NE in order to make the air-fuel ratio ultra-lean when the SCv is closed. In step 118, a fuel injection signal is generated, which fuel injection signal has a duration such that the fuel injection quantity calculated in step 116 is obtained.

ステップ120では現在のPM値がPMOに移され、ス
テップ122では次回の処理のため現在のDLPM 、
がDLPM =−rに入れられる。
In step 120, the current PM value is transferred to PMO, and in step 122, the current DLPM,
is put into DLPM=-r.

実施例では加算式の過渡増量補正を説明したが、比例式
の過渡増量補正を行っているシステムについてもこの発
明のアイディアを利用することができる。この比例式の
増量補正では基本燃料噴射量に増量補正係数を掛算する
ことにより過渡増量補正を行うものである。
In the embodiment, an additive type transient increase correction has been described, but the idea of the present invention can also be used in a system that performs a proportional type transient increase correction. In this proportional type increase correction, transient increase correction is performed by multiplying the basic fuel injection amount by an increase correction coefficient.

この実施例はリーンバーンについて説明したが、これに
限定されず、通常の空燃比で運転する内燃機関にも適用
することができる。
Although this embodiment has been described with respect to a lean burn, the present invention is not limited thereto, and can also be applied to an internal combustion engine operating at a normal air-fuel ratio.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、吸気制御弁が開が閉かに応じて過渡
時の燃料供給量の補正因子を変化させることにより吸気
制御弁の開か閉かにかがわらず過渡運転時における空燃
比の荒れを防止することができる。
According to this invention, by changing the correction factor for the fuel supply amount during transient periods depending on whether the intake control valve is open or closed, the air-fuel ratio becomes unstable during transient operation regardless of whether the intake control valve is open or closed. can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の構成を示す図。 第2図はこの発明の実施例の全体概略図。 第3図及び第4図はこの発明の制御回路の作動を説明す
るフローチャート。 第5図はこの発明の加算式過渡増量補正の原理を説明す
る図。 第6図はこの発明による過渡時空燃比の制御特性を説明
する図。 12a、12b・・・吸気ポート 22・・・サージタンク 26・・・燃料インジェクタ 32・・・吸気制御弁 38・・・負圧アクチュエータ 44・・・3方電磁弁 46・・・負圧保持用チエツク弁 50・・・制御回路 52・・・吸気管圧力センサ 54.56・・・クランク角度センサ
FIG. 1 is a diagram showing the configuration of the present invention. FIG. 2 is an overall schematic diagram of an embodiment of the invention. FIGS. 3 and 4 are flowcharts illustrating the operation of the control circuit of the present invention. FIG. 5 is a diagram illustrating the principle of additive transient increase correction according to the present invention. FIG. 6 is a diagram illustrating the transient air-fuel ratio control characteristics according to the present invention. 12a, 12b...Intake port 22...Surge tank 26...Fuel injector 32...Intake control valve 38...Negative pressure actuator 44...3-way solenoid valve 46...For maintaining negative pressure Check valve 50...Control circuit 52...Intake pipe pressure sensor 54.56...Crank angle sensor

Claims (1)

【特許請求の範囲】[Claims] 吸気管負圧によって駆動される吸気制御弁と、燃料供給
手段と、燃料供給手段から機関に導入される燃料量を吸
気管圧力に応じて算出する燃料供給量算出手段と、吸気
制御弁が開状態にあるか閉状態にあるかを判別する吸気
制御弁状態判別手段と、該吸気制御弁状態判別手段によ
る吸気制御弁の開か閉かの判別結果に応じて、燃料供給
量算出手段により燃料供給量を算出するとき使用される
過渡補正因子を大小可変とする補正因子算出手段とから
構成される内燃機関の空燃比制御装置。
An intake control valve driven by intake pipe negative pressure, a fuel supply means, a fuel supply amount calculation means for calculating the amount of fuel introduced into the engine from the fuel supply means according to the intake pipe pressure, and an intake control valve that is opened. An intake control valve state determining means determines whether the intake control valve is open or closed, and a fuel supply amount calculating means supplies fuel according to the result of determining whether the intake control valve is open or closed by the intake control valve state determining means. An air-fuel ratio control device for an internal combustion engine, comprising a correction factor calculation means that makes a transient correction factor used when calculating the amount variable.
JP31746887A 1987-12-17 1987-12-17 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP2596025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31746887A JP2596025B2 (en) 1987-12-17 1987-12-17 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31746887A JP2596025B2 (en) 1987-12-17 1987-12-17 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01163438A true JPH01163438A (en) 1989-06-27
JP2596025B2 JP2596025B2 (en) 1997-04-02

Family

ID=18088565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31746887A Expired - Fee Related JP2596025B2 (en) 1987-12-17 1987-12-17 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2596025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649737U (en) * 1992-12-10 1994-07-08 日本電子機器株式会社 Air-fuel ratio controller for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649737U (en) * 1992-12-10 1994-07-08 日本電子機器株式会社 Air-fuel ratio controller for internal combustion engine

Also Published As

Publication number Publication date
JP2596025B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US4454854A (en) Exhaust gas recirculation control method for internal combustion engines for vehicles
US6196197B1 (en) Engine control apparatus and method having cylinder-charged air quantity correction by intake/exhaust valve operation
US4589390A (en) Air-fuel ratio feedback control method for internal combustion engines
US5697340A (en) Engine cold startup controller
US4699111A (en) Air-fuel ratio control method for internal combustion engines
US5188082A (en) Fuel injection control system for internal combustion engine
US4898143A (en) Exhaust gas recirculation control method for internal combustion engines
US4572129A (en) Air-fuel ratio feedback control method for internal combustion engines
JPS5934441A (en) Control method of air-fuel ratio of internal-combustion engine
JPH01163438A (en) Air-fuel ratio control device for internal combustion engine
JPH03225045A (en) Air-fuel ratio control device for internal combustion engine
JP4160745B2 (en) Control method for internal combustion engine
JPS5872631A (en) Air-fuel ratio control method of engine
JP3998784B2 (en) EGR rate estimation device for engine
JPH01163436A (en) Air-fuel ratio control device for lean combustion internal combustion engine
US6505604B2 (en) Ignition timing control apparatus for internal combustion engine
JPS6189936A (en) Control apparatus of engine
JPH0810679Y2 (en) Internal combustion engine intake system
JPS61108839A (en) Fuel injection control device of internal-combustion engine
JPH01163437A (en) Air-fuel ratio control device for lean combustion internal combustion engine
JPS61108857A (en) Method for controlling flow rate of exhaust reflux of internal-combustion engine
JPH02104961A (en) Exhaust reflux controlling method for internal combustion engine
JPH06272601A (en) Control of engine
JPH03111651A (en) Air-fuel ratio controller of internal combustion engine with exhaust gas recycle device
JPS61142341A (en) Fuel injection control device in internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees