JPH03111651A - Air-fuel ratio controller of internal combustion engine with exhaust gas recycle device - Google Patents

Air-fuel ratio controller of internal combustion engine with exhaust gas recycle device

Info

Publication number
JPH03111651A
JPH03111651A JP1246483A JP24648389A JPH03111651A JP H03111651 A JPH03111651 A JP H03111651A JP 1246483 A JP1246483 A JP 1246483A JP 24648389 A JP24648389 A JP 24648389A JP H03111651 A JPH03111651 A JP H03111651A
Authority
JP
Japan
Prior art keywords
egr
exhaust gas
fuel
cooling water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1246483A
Other languages
Japanese (ja)
Inventor
Shinichi Abe
阿部 眞一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1246483A priority Critical patent/JPH03111651A/en
Publication of JPH03111651A publication Critical patent/JPH03111651A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent overlean of air-fuel ratio by decreasingly compensating fuel calculated by a fuel supply calculation means in response to circular exhaust gas under an activation condition of exhaust gas recycle device, and compensating it in response to increase in temperature of cooling water. CONSTITUTION:Operation conditions of cooling water temperature, intake pipe pressure and the like are detected by an operation condition detection means A. An exhaust gas recycle (EGR) range is judged by the temperature of cooling water and other operation conditions with an (EGR) condition judgement means B. An exhaust gas recycle activation is attained in an EGR activation means C when it is in the EGR range. Fuel supply is calculated by a fuel injection calculation means D, and fuel calculated by a fuel supply means E is supplied to an engine. The fuel supply is decreasingly compensated in response to an EGR rate at an EGR compensation calculation means F. The fuel supply is compensated to increase the decreasing compensation by the EGR in response to the increase of the cooling water temperature in a temperature compensation calculation means G.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は排気ガス再循環装置付内燃機関の空燃比制御
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air-fuel ratio control device for an internal combustion engine with an exhaust gas recirculation device.

〔従来の技術〕[Conventional technology]

内燃機関の排気ガス再循環装置では機関の低温時は機関
の安定な燃焼を確保するため排気ガス再循環作動は停止
され、機関の温度が所定値に達したときに排気ガス再循
環が許可される。機関に導入される全吸入空気量に対す
る再循環排気ガス量の割合(EGR率)は機関の負荷に
相当する吸気管圧力もしくは吸入空気量一回転数比と、
機関回転数とに応じて所定の割合(例えば一定)に設定
される。
In the exhaust gas recirculation system of an internal combustion engine, the exhaust gas recirculation operation is stopped to ensure stable combustion in the engine when the engine is cold, and exhaust gas recirculation is enabled when the engine temperature reaches a predetermined value. Ru. The ratio of the amount of recirculated exhaust gas to the total amount of intake air introduced into the engine (EGR rate) is determined by the intake pipe pressure or intake air amount per rotation speed ratio corresponding to the engine load,
The rate is set at a predetermined rate (for example, constant) depending on the engine speed.

燃料噴射量が吸気管に設けられる吸気管圧力センサによ
って検出される吸気管圧力によって算出される所謂D−
J型の燃料噴射システムでは吸気管圧力はEGR率によ
って影響を受ける。すなわち、吸気管圧力センサの出力
値そのままで燃料噴射量を決定すると機関に現実に導入
される吸入空気量に対して燃料が過大となる。そこで、
D−J型の燃料噴射システムではEGR率の分だけ差し
引いて燃料噴射量を決定しすることにより、EGR制御
に拘わらず吸入空気量に見あった量の燃料を機関に供給
すように図っている。例えば、特開昭60−81449
号参照。
The so-called D- in which the fuel injection amount is calculated based on the intake pipe pressure detected by an intake pipe pressure sensor installed in the intake pipe.
In a J-type fuel injection system, the intake pipe pressure is affected by the EGR rate. That is, if the fuel injection amount is determined based on the output value of the intake pipe pressure sensor as is, the amount of fuel will be excessive with respect to the amount of intake air actually introduced into the engine. Therefore,
In the DJ type fuel injection system, the fuel injection amount is determined by subtracting the EGR rate, so that the engine is supplied with the amount of fuel that matches the intake air amount, regardless of EGR control. There is. For example, JP-A-60-81449
See issue.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術では、エンジンが冷たい状態から始動して、エ
ンジンが温まったと判断される(水温〉所定値で判断さ
れる)ためEGR作動域に入るとその負荷および回転数
によって決る量の排気ガスがEGRガスとして機関に供
給される。この場合、水温が所定値を越えてEGRが作
動を開始するとそのときの負荷および回転数によって決
る再循環排気ガスに応じた全量の排気ガス再循環に伴う
燃料の補正が行われる。
In the conventional technology, the engine is started from a cold state, and it is determined that the engine has warmed up (determined based on a predetermined value of water temperature). Supplied to the engine as gas. In this case, when the water temperature exceeds a predetermined value and the EGR starts operating, the fuel is corrected by recirculating the entire amount of exhaust gas in accordance with the recirculated exhaust gas determined by the load and rotational speed at that time.

ところがEGRによる燃料噴射量の補正量は完全暖機時
において最適な燃料噴射量を得るための補正値である。
However, the correction amount of the fuel injection amount by EGR is a correction value for obtaining the optimum fuel injection amount at the time of complete warm-up.

すなわち、完全暖機時においてEGRによって新気が減
少した分と、高温のEGRガスによる加熱作用によって
燃焼室に導入される空気密度が下がった分との双方の燃
料噴射量減少要因を補正すべきものである。ところが、
エンジンが冷たい状態から始動して排気ガス再循環を開
始する所定値を横切った直後では再循環排気ガスによる
空気温度の上昇は少なく空気密度はそれほど上がらない
。一方、燃料噴射量は排気ガス温度が高いことによる空
気密度が低いとして補正しているので過剰に補正が行わ
れる結果となり、空燃比としては希薄側に過補正なる。
In other words, the factors that reduce the amount of fuel injection should be corrected, including the reduction in fresh air due to EGR during complete warm-up and the reduction in air density introduced into the combustion chamber due to the heating effect of high-temperature EGR gas. It is. However,
Immediately after the engine starts from a cold state and crosses a predetermined value at which exhaust gas recirculation begins, the air temperature increases little due to the recirculated exhaust gas and the air density does not increase significantly. On the other hand, since the fuel injection amount is corrected based on the assumption that the air density is low due to the high exhaust gas temperature, the result is an excessive correction, and the air-fuel ratio is overcorrected toward the lean side.

この発明はエンジンが冷たい状態から始動した場合にお
いてEGR制御域に移行したときの空燃比のオーバリー
ンを防止することを目的とする。
An object of the present invention is to prevent the air-fuel ratio from overleaning when the engine is started from a cold state and shifts to the EGR control range.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の排気ガス再循環装置を備えた内燃機関におけ
る空燃比制御装置は、 内燃機関の冷却水温度および吸気管圧力を含めた運転条
件を検出する手段A、 冷却水温度より排気ガス再循環を行わしめる運転域を判
別する手段B1 前記運転域において排気ガス再循環を行わしめる排気ガ
ス再循環作動手段C1 吸気管圧力より内燃機関に供給すべき燃料量を算出する
燃料供給量算出手段D、 算出された量の燃料を内燃機関に供給せしめる燃料供給
手段E、 排気ガス再循環の作動条件において燃料供給量算出手段
りが算出する燃料の量を還流排気ガス量に応じて減量補
正する第1の補正量算出手段F1排気ガス再循環の作動
条件において燃料供給量算出手段りが算出する燃料量を
冷却水温度の上昇に応じて減量するように更に補正する
第2の補正量算出手段G1 を具備する。
The air-fuel ratio control device for an internal combustion engine equipped with an exhaust gas recirculation device according to the present invention includes: means A for detecting operating conditions including the cooling water temperature and intake pipe pressure of the internal combustion engine; and exhaust gas recirculation based on the cooling water temperature. Means B1 for determining the operating range in which exhaust gas recirculation is to be carried out; Exhaust gas recirculation operating means C1 for carrying out exhaust gas recirculation in the operating range; Fuel supply amount calculation means D for calculating the amount of fuel to be supplied to the internal combustion engine from intake pipe pressure; a fuel supply means E for supplying the amount of fuel to the internal combustion engine; Correction amount calculation means F1 A second correction amount calculation means G1 that further corrects the fuel amount calculated by the fuel supply amount calculation means under the operating conditions of exhaust gas recirculation so as to decrease in accordance with a rise in cooling water temperature. do.

〔作動〕[Operation]

運転条件検出手段Aは冷却水温度、吸気管圧力、その他
の運転条件を検出する。
Operating condition detection means A detects cooling water temperature, intake pipe pressure, and other operating conditions.

EGR条件判別手段Bは冷却水温度、必要に応じてその
他の運転条件よりEGR域を判別し、EGR域と判別す
れば、EGR作動手段Cは排気ガス再循環作動を達成す
る。
The EGR condition determining means B determines the EGR range based on the cooling water temperature and other operating conditions as necessary, and if it is determined to be the EGR range, the EGR operating means C achieves exhaust gas recirculation operation.

燃料供給量算出手段りは燃料供給量を算出し、燃料供給
手段Fより算出された量の燃料がエンジンに供給される
The fuel supply amount calculation means calculates the fuel supply amount, and the fuel supply means F supplies the calculated amount of fuel to the engine.

EGR補正量算出手段FはEGR率に応じて燃料供給量
を減量補正する。
The EGR correction amount calculation means F corrects the fuel supply amount by decreasing it according to the EGR rate.

温度補正量算出手段Gは冷却水温の増大に応じてEGR
による減量補正が大きくなるように燃料供給量を更に補
正する。
The temperature correction amount calculation means G performs EGR according to the increase in cooling water temperature.
The fuel supply amount is further corrected so that the reduction correction by .

〔実施例〕〔Example〕

第2図において、lOは内燃機関の本体、12は吸気管
、14はスロットル弁、16は燃料インジェクタ、18
は排気管、20はディストリビュータである。吸気管1
2と排気管18とを結んで排気ガス再循環(EGR)通
路22が設けられる。24はEGR弁装置であり、EG
R通路22に設けられるEGR弁28と、弁座30と、
EGR弁28に連結されるダイヤフラム機構32とを備
える。排気ガスの流れ方向における弁座30の直ぐ上流
のEGR通路22にオリフィス34が配置され、弁座2
8とオリフィス34との間は定圧室36を形成する。
In FIG. 2, lO is the main body of the internal combustion engine, 12 is the intake pipe, 14 is the throttle valve, 16 is the fuel injector, and 18 is the intake pipe.
is an exhaust pipe, and 20 is a distributor. Intake pipe 1
An exhaust gas recirculation (EGR) passage 22 is provided connecting 2 and the exhaust pipe 18. 24 is an EGR valve device,
An EGR valve 28 provided in the R passage 22, a valve seat 30,
A diaphragm mechanism 32 connected to the EGR valve 28 is provided. An orifice 34 is disposed in the EGR passage 22 immediately upstream of the valve seat 30 in the exhaust gas flow direction, and the orifice 34
8 and the orifice 34 form a constant pressure chamber 36.

ダイヤフラム機構32はダイヤフラム室32−1を有し
、同ダイヤフラム室32−1は負圧導管40を介してス
ロットル弁14のアイドル位置の少し上流において吸気
管12に設けた負圧ボート42(通常EGRボートと称
する)に接続される。変圧弁44は、周知のように、E
GRボート42からEGR弁装置24のダイヤフラム室
32−1に導入される負圧を一定のEGR率が得られる
ように制御する作動を達成する。変圧弁44はダイヤフ
ラム44−1と、スプリング44−2とを有し、ダイヤ
フラム44の下側に形成される排気ガス室46は排気ガ
ス圧力導管48を介して定圧室36に連通される。一方
、ダイヤフラム44−1の上側の大気室50は大気開放
である。
The diaphragm mechanism 32 has a diaphragm chamber 32-1, and the diaphragm chamber 32-1 is connected via a negative pressure conduit 40 to a negative pressure boat 42 (normally an EGR (referred to as a boat). As is well known, the pressure transforming valve 44 is
An operation is achieved in which the negative pressure introduced from the GR boat 42 into the diaphragm chamber 32-1 of the EGR valve device 24 is controlled so as to obtain a constant EGR rate. The variable pressure valve 44 has a diaphragm 44-1 and a spring 44-2, and an exhaust gas chamber 46 formed below the diaphragm 44 is communicated with the constant pressure chamber 36 via an exhaust gas pressure conduit 48. On the other hand, the atmospheric chamber 50 above the diaphragm 44-1 is open to the atmosphere.

この大気室50は、排気ガス室46の排気ガス圧力に応
じて大気室50から負圧導管40への空気量を制御し、
これにより定圧室36を大気圧に近い一定圧力に制御し
、これにより再循環排気ガス量は、排気管18の圧力に
比例し、所謂EGR率を負荷に係わらず一定値に制御す
ることができる。
This atmospheric chamber 50 controls the amount of air from the atmospheric chamber 50 to the negative pressure conduit 40 according to the exhaust gas pressure in the exhaust gas chamber 46,
As a result, the constant pressure chamber 36 is controlled to a constant pressure close to atmospheric pressure, so that the amount of recirculated exhaust gas is proportional to the pressure of the exhaust pipe 18, and the so-called EGR rate can be controlled to a constant value regardless of the load. .

定圧室36の圧力制御の仕組みについて説明すると、定
圧室36の排気ガス圧力が所定値以上となると、ダイヤ
フラム44−1はスプリング44−2に抗してバルブバ
イブ44−3を閉鎖し、導管40への大気圧ブリード量
が減少し、EGRボート42に接続されるEGR弁のア
クチュエータ32のダイヤフラム室32の負圧は強くな
る。その結果、ダイヤフラム32−2はスプリング32
−3に抗して下方に引っ張られ、EGR弁28はリフト
され、EGR通路22を通過するEGRガス量は増大す
る。その結果、定圧室36の圧力は低(なる。すると、
スプリング44−2はダイヤフラム44−1を押し下げ
、パイプ44−3は開けられ、大気室44−1より空気
がブリードされ、ダイヤフラム室32−1の圧力は大気
圧に近づき、スプリング32−1はEGR弁28をして
上昇させ、弁座30からのリフトを小さ(し、定圧室3
6の圧力は増大する。このような制御の繰り返しによっ
て定圧室の圧力は略々一定に制御される。
To explain the mechanism of pressure control in the constant pressure chamber 36, when the exhaust gas pressure in the constant pressure chamber 36 exceeds a predetermined value, the diaphragm 44-1 closes the valve vibe 44-3 against the spring 44-2, and the conduit 40 The amount of atmospheric pressure bleed to the EGR boat 42 decreases, and the negative pressure in the diaphragm chamber 32 of the EGR valve actuator 32 connected to the EGR boat 42 becomes stronger. As a result, the diaphragm 32-2 is connected to the spring 32-2.
-3, the EGR valve 28 is lifted, and the amount of EGR gas passing through the EGR passage 22 increases. As a result, the pressure in the constant pressure chamber 36 becomes low (then,
The spring 44-2 pushes down the diaphragm 44-1, the pipe 44-3 is opened, air is bled from the atmospheric chamber 44-1, the pressure in the diaphragm chamber 32-1 approaches atmospheric pressure, and the spring 32-1 pushes down the EGR. The valve 28 is raised and the lift from the valve seat 30 is reduced (and the constant pressure chamber 3 is
6 pressure increases. By repeating such control, the pressure in the constant pressure chamber is controlled to be substantially constant.

EGR弁24と変圧弁44との間の負圧配管に3方電磁
切替弁60が設けられ、この電磁弁60は非通電のとき
はEGR弁24に大気圧を導入し、EGR弁28はスプ
リング32−3によって閉鎖され、EGR作動は停止さ
れる。電磁弁60は通電を受けると、EGR弁28に変
圧弁44からの調圧された負圧を導入し、EGR弁28
は開弁し、 EGR作動が行われる。
A three-way electromagnetic switching valve 60 is provided in the negative pressure piping between the EGR valve 24 and the pressure transformation valve 44, and this electromagnetic valve 60 introduces atmospheric pressure into the EGR valve 24 when not energized. 32-3, and EGR operation is stopped. When the solenoid valve 60 is energized, it introduces the regulated negative pressure from the pressure transformation valve 44 to the EGR valve 28 , and the EGR valve 28
The valve opens and EGR operation is performed.

制御回路62はマイクロコンピュータシステムとして構
成され、燃焼インジェクタ16への燃料噴射信号を形成
すると共に、EGR制御用の3方電磁切替弁60の駆動
信号を形成する。制御回路62に種々のセンサからの運
転条件信号が入力される。
The control circuit 62 is configured as a microcomputer system, and forms a fuel injection signal to the combustion injector 16 as well as a drive signal for the three-way electromagnetic switching valve 60 for EGR control. Operating condition signals from various sensors are input to the control circuit 62 .

吸気管圧力センサ64はスロットル弁14の下流の吸気
管圧力PMに応じた信号を発生する。クランク角度セン
サ64,66がディストリビュータ20に設けられ、第
1のクランク角度センサ64からは基準位置用でディス
トリビュータ軸20−1の一回転毎、即ちクランク軸の
720°の回転毎にパルス信号を発生し、第2のクラン
ク角度センサ66はクランク軸の30°の回転毎のパル
ス信号を発生しエンジン回転数NEを知ることができる
。水温センサ70はエンジン本体10の冷却水ジャケッ
ト72に収容される冷却水の温度TIIWを知ることが
できる。
The intake pipe pressure sensor 64 generates a signal corresponding to the intake pipe pressure PM downstream of the throttle valve 14. Crank angle sensors 64 and 66 are provided in the distributor 20, and the first crank angle sensor 64 generates a pulse signal for the reference position every rotation of the distributor shaft 20-1, that is, every 720° rotation of the crankshaft. However, the second crank angle sensor 66 generates a pulse signal every 30° rotation of the crankshaft, so that the engine speed NE can be determined. The water temperature sensor 70 can detect the temperature TIIW of the cooling water contained in the cooling water jacket 72 of the engine body 10.

第3図、第4図によって制御回路62の作動を説明する
と、第3図はEGR制御ルーチンを示しており、このル
ーチンはメインルーチンの過程において実行することが
できる。ステップ80では冷却水ジャケット72内の冷
却水の温度TIIWが所定値T0より大きいか否か判別
され、ステップ82では吸気管圧力PMが所定値P。よ
り大きいか否か、ステップ84ではエンジン回転数NB
が所定値NEoより大きいか否か判別される。TIIW
 >Toで、エンジンの負荷が所定値かこれより小さく
 (PM≦po)、またエンジン回転数が所定値か又は
それより小さいとき(NE≦NEo)、即ち、冷却水温
が所定値以上の低負荷、低回転時がEGR作動を行う運
転域であリ、このとははステップ80.82.84より
ステップ86に流れ、フラグFEGRがセットされ(=
1)、ステップ88では3方電磁切替弁(VSV) 6
0にこれをONとするべき信号が印加される。そのため
、切替弁60は黒塗りのように切替られ、負圧がEGR
弁24に導入され、EGR作動が実行される。
The operation of the control circuit 62 will be explained with reference to FIGS. 3 and 4. FIG. 3 shows an EGR control routine, which can be executed in the course of the main routine. In step 80, it is determined whether the temperature TIIW of the cooling water in the cooling water jacket 72 is greater than a predetermined value T0, and in step 82, the intake pipe pressure PM is set to a predetermined value P. In step 84, the engine speed NB is determined.
It is determined whether or not is larger than a predetermined value NEo. TIIW
>To, when the engine load is at or below a predetermined value (PM≦po), and when the engine speed is at or below a predetermined value (NE≦NEo), that is, when the cooling water temperature is at or above the predetermined value, the load is low. , the operating range in which EGR operation is performed is when the rotation speed is low.
1), in step 88, the 3-way solenoid switching valve (VSV) 6
0 is applied with a signal to turn it ON. Therefore, the switching valve 60 is switched as shown in black, and the negative pressure is changed to EGR.
The fuel is introduced into the valve 24 and EGR operation is performed.

THW≦TO,PM >poまたはNE>NE、の一つ
でも成立するとき、即ち、冷却水温度が所定値以下であ
るか、又は冷却水温度が所定値以上でも高負荷又は高回
転であるときはステップ90に流れ、フラグFEGRが
リセットされ、ステップ92では3方電磁切替弁(VS
V)  60にこれをOFFとするべき信号が印加され
る。そのため、切替弁60は白抜きのように切替られ、
大気圧がEGR弁24に導入され、EGR作動が停止さ
れる。
When at least one of THW≦TO, PM >po or NE>NE holds true, that is, when the cooling water temperature is below a predetermined value, or when the cooling water temperature is above a predetermined value but the load or rotation is high. The flow goes to step 90, the flag FEGR is reset, and in step 92, the 3-way electromagnetic switching valve (VS
V) A signal is applied to 60 to turn it off. Therefore, the switching valve 60 is switched as shown in white,
Atmospheric pressure is introduced into the EGR valve 24, and EGR operation is stopped.

第4図は燃料噴射ルーチンであり、このルーチンは各気
筒の燃料噴射毎に実行される。各気筒の燃料噴射タイミ
ングは決まっており、このタイミングは第1のクランク
角度センサ64からの720°CA (エンジン1回転
)信号の到来毎にクリヤされ、第2クランク角度センサ
66からの30゜CΔ倍信号到来毎にインクリメントす
るカウンタの値によって知ることができる。その気筒の
燃料噴射タイミングが来たことをカウンタの値によって
検出すると、第4図のルーチンは実行開始され、ステッ
プ94では基本燃料噴射時間TPがマツプ1より算出さ
れる。ここに基本燃料噴射時間TPとはその負荷(PM
)および回転数NHにおいて、理論空燃比を得るための
燃料インジェクタ16の開弁時間である。マツプ1では
吸気管圧力PMと回転数NEとの組合せに対する基本燃
料噴射時間TPの二次元データであり、そのときの検出
される吸気管圧力PMと回転数NEとに対する基本燃料
噴射時間TPが補間により計算される。ステップ96で
はフラグFEGR・lか否か、即ちEGR作動実行中か
否か判別される。
FIG. 4 shows a fuel injection routine, and this routine is executed every time fuel is injected into each cylinder. The fuel injection timing for each cylinder is determined, and this timing is cleared every time a 720° CA (one revolution of the engine) signal arrives from the first crank angle sensor 64, and a 30° CA signal from the second crank angle sensor 66 is cleared. This can be determined by the value of a counter that is incremented each time the double signal arrives. When it is detected from the value of the counter that the fuel injection timing for that cylinder has arrived, the routine shown in FIG. Here, the basic fuel injection time TP is the load (PM
) and the rotation speed NH, this is the valve opening time of the fuel injector 16 to obtain the stoichiometric air-fuel ratio. Map 1 is two-dimensional data of the basic fuel injection time TP for the combination of intake pipe pressure PM and rotational speed NE, and the basic fuel injection time TP for the intake pipe pressure PM and rotational speed NE detected at that time is interpolated. Calculated by In step 96, it is determined whether the flag FEGR.l is set, that is, whether the EGR operation is being executed.

EGR作動が非実行中はFEGR・0であり、ステップ
98に進み、基本燃料噴射時間におけるEGR補正量T
PEGR=0とされる。即ち、EGRを行っていないこ
とから、新気量は吸気管圧力センサ63による検出圧力
値そのままであり、補正を行う必要がなく、同補正は停
止される。
While EGR operation is not being executed, FEGR is 0, and the process proceeds to step 98, where the EGR correction amount T during the basic fuel injection time is determined.
PEGR=0. That is, since EGR is not being performed, the fresh air amount remains the same as the pressure value detected by the intake pipe pressure sensor 63, and there is no need to perform correction, and the correction is stopped.

EGRを行っているときは(FEGR・1)、ステップ
100に進み、燃料噴射時間におけるEGR補正量TP
EGRが算出される。このTPEGRは、EGR作動中
には、吸気管圧力センサ63による測定値にEGRガス
の分も含まれ、その分新気ガスの量が減っていることか
ら、この分を燃料噴射時間が減少されるようにEGRの
影響を反映させるものである。このTPEGRの値は吸
気管圧力PMと回転数NBとに対する値としてマツプ2
に記憶されている。即ち、エンジンに導入される全ガス
量のうちのEGRガスの量は機関負荷と、回転数とによ
って変化することから、TPEGRの値はその負荷、回
転数に対してそのときのEGRガス量を差し引き、純粋
に新気の量に応じた燃料噴射時間を得るように補正する
ものである。ステップ100では検出される吸気管圧力
PMと回転数NBとに対するEGR補正値TPEGRが
補間により計算される。
When EGR is being performed (FEGR・1), the process proceeds to step 100, and the EGR correction amount TP during the fuel injection time is determined.
EGR is calculated. During EGR operation, the value measured by the intake pipe pressure sensor 63 includes the EGR gas, and the amount of fresh air gas is reduced by that amount, so the fuel injection time is reduced by this amount. The effect of EGR is reflected in this way. The value of TPEGR is shown in map 2 as a value for intake pipe pressure PM and rotational speed NB.
is stored in In other words, the amount of EGR gas out of the total amount of gas introduced into the engine changes depending on the engine load and rotation speed, so the TPEGR value is calculated based on the amount of EGR gas at that time for the load and rotation speed. This correction is made to obtain a fuel injection time that corresponds purely to the amount of fresh air. In step 100, an EGR correction value TPEGR for the detected intake pipe pressure PM and rotational speed NB is calculated by interpolation.

ステップ102はマツプ3より水温補正係数KEGHの
補正が行われる。この補正係数KEGRは低温のエンジ
ンを始動させた場合に、温度によるEGR作動点を横切
ることにより(第3図のステップ80でYes  (例
えばTHW>60°C)) 、EGRが行われた場合に
、それからエンジンが完全暖機(例えばTOW〉80°
C)に到達するまでの間のEGRによる新気減少分の補
正が過度に行われるのを防止する因子である。即ち、ス
テップ100による燃料噴射時間補正値TPEGRは完
全暖機においてEGRによる新気全減少分を補正する因
子である。この補正因子は、実は、EGRによる新気全
減少分だけでなく、BGHにより高温の排気ガスが吸気
管に導入されることにより吸入空気温度が高くなり、空
気密度が小さくなることによる新気全減少分をも補正す
る。ところが、水温によるEGR作動条件に入った直後
(即ちTIIWが閾値である60°C付近)は水温は完
全暖機時の水温より未だ相当に低い。すると、EGRガ
スによる吸入空気の加温は完全暖機後程には行われず空
気密度は大きい。一方、ステップ100での補正量はE
GRガスが完全に温まっており、空気密度は下がってい
ること前提に決定されている。そのため、水温によるE
GR作動条件に入ったと直後はEGRガスによる空気温
度上昇分が過剰に見積もられており、まだ密度が下がっ
ていないのに密度は下がっているとして燃料噴射が必要
以上に短縮される。そのため、新気量に見合った量の燃
料噴射が行われず、空燃比はオーバリーンとなる。ステ
ップ102のKEGRこれを補正するもので、にEGR
の値は水温によるEGR作動切替点(T11W=TO)
の温度から次第に太き(なり、完全暖機に相当する水温
(TIIW=T I )において1.0の値を持つ(修
正行われない)ように設定される。
In step 102, the water temperature correction coefficient KEGH is corrected using the map 3. This correction coefficient KEGR is calculated by crossing the temperature-based EGR operating point when starting a low-temperature engine (Yes at step 80 in Fig. 3 (for example, THW>60°C)), and when EGR is performed. , then the engine is completely warmed up (e.g. TOW>80°
This is a factor that prevents excessive correction of the decrease in fresh air due to EGR until reaching C). That is, the fuel injection time correction value TPEGR in step 100 is a factor for correcting the total decrease in fresh air due to EGR during complete warm-up. This correction factor actually accounts for not only the total reduction in fresh air caused by EGR, but also the total fresh air caused by the introduction of high-temperature exhaust gas into the intake pipe by BGH, which increases the intake air temperature and reduces the air density. It also compensates for the decrease. However, immediately after entering the EGR operation condition based on water temperature (ie, around 60° C. where TIIW is a threshold value), the water temperature is still considerably lower than the water temperature at the time of complete warm-up. Then, the intake air is not heated by the EGR gas until after it is completely warmed up, and the air density is high. On the other hand, the correction amount at step 100 is E
The determination is made on the assumption that the GR gas has completely warmed up and the air density has decreased. Therefore, E due to water temperature
Immediately after the GR operating condition is entered, the air temperature rise due to EGR gas is overestimated, and the fuel injection is unnecessarily shortened, assuming that the density has decreased even though it has not yet decreased. Therefore, fuel injection is not performed in an amount commensurate with the amount of fresh air, and the air-fuel ratio becomes over-lean. The KEGR in step 102 corrects this, and the EGR
The value is the EGR operation switching point depending on water temperature (T11W=TO)
It is set to have a value of 1.0 (no correction is performed) at a water temperature corresponding to complete warm-up (TIIW=T I ).

ステップ104では最終的にl1GR補正量がTPEG
R=TPEGRx KEGR によって算出される。
In step 104, the l1GR correction amount is finally
Calculated by R=TPEGRxKEGR.

ステップ最終燃料噴射時間TAUが TAU=TPX(1−TPEGR) xkによって算出
される。ここに、kはこの発明と関係しないため詳細説
明を省略する、種々の補正係数を代表的に示している。
The step final fuel injection time TAU is calculated by TAU=TPX(1-TPEGR) xk. Here, k represents various correction coefficients whose detailed explanation will be omitted because they are not related to this invention.

ステップlO8ではステップ108で計算された開弁時
間TAUだけこれから燃料噴射を行う気筒のインジェク
タ16が開弁するように、インジェクタ作動信号が形成
される。この処理自体は良く知られており、この発明の
要部ではないので詳細説明は省略する。
In step lO8, an injector activation signal is generated so that the injector 16 of the cylinder to which fuel is to be injected is opened for the valve opening time TAU calculated in step 108. This process itself is well known and is not an important part of this invention, so detailed explanation will be omitted.

〔効果〕〔effect〕

この発明によれば、冷たいエンジンが冷却水温度の閾値
を越えることでEGR条件に入った場合に排気ガス再循
環による燃料噴射量の減量補正を冷却水温度の増大に応
じて減少するように行っている。即ち、IEGR条件で
はあるが冷却水温度が未だ低いときは完全暖機時と比較
して吸入空気温度は小さく、空気密度は高く、完全暖機
時と同量の補正すると減量補正が行きすぎとなり、空燃
比がオーバリーンとなり、運転性が悪化するが、この発
明では排気ガス再循環による燃料噴射量の減量補正を冷
却水温度の増大に応じて減少するように行っているため
、冷却水温度が高くないEGR作動時の燃料減量補正を
適性な空燃比を得ることができるよう最適化することが
でき、オーバリーンを防止し、運転性の向上が実現され
る。
According to this invention, when a cold engine enters an EGR condition due to a cooling water temperature exceeding a threshold value, a reduction correction for the fuel injection amount by exhaust gas recirculation is performed so as to decrease in accordance with an increase in the cooling water temperature. ing. In other words, when the cooling water temperature is still low under IEGR conditions, the intake air temperature is lower and the air density is higher than when completely warmed up, and if the same amount of correction as when completely warmed up, the reduction correction will be excessive. , the air-fuel ratio becomes over-lean and drivability deteriorates.However, in this invention, the amount of fuel injection is corrected to be reduced by exhaust gas recirculation so that it decreases in accordance with the increase in the cooling water temperature. It is possible to optimize the fuel reduction correction during EGR operation, which is not high, so as to obtain an appropriate air-fuel ratio, prevent over-lean, and improve drivability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の機能構成を示すブロックダイヤフラ
ム図。 第2図はこの発明の実施例の構成を示す概略図。 第3図および第4図は第2図の制御回路の作動を説明す
るフローチャート。 10・・・機関本体、12・・・吸気管、14・・・ス
ロットル弁、16・・・燃料インジェクタ、18・・・
排気管、20・・・ディストリビュータ、22・・・E
GR通路、24・・・EGR装置、28・・・EGR弁
、30・・・弁座、34・・・定圧オリフィス、36・
・・定圧室、42・・・EGRボート、44・・・変圧
弁、60・・・3方電磁弁、62・・・制御回路、63
・・・吸気管圧力センサ、 64.66・・・クランク角度センサ、70・・・冷却
水温センサ 第 図
FIG. 1 is a block diaphragm diagram showing the functional configuration of the present invention. FIG. 2 is a schematic diagram showing the configuration of an embodiment of the present invention. 3 and 4 are flowcharts illustrating the operation of the control circuit of FIG. 2. DESCRIPTION OF SYMBOLS 10... Engine body, 12... Intake pipe, 14... Throttle valve, 16... Fuel injector, 18...
Exhaust pipe, 20...Distributor, 22...E
GR passage, 24... EGR device, 28... EGR valve, 30... Valve seat, 34... Constant pressure orifice, 36...
...Constant pressure chamber, 42...EGR boat, 44...Transformer valve, 60...3-way solenoid valve, 62...Control circuit, 63
...Intake pipe pressure sensor, 64.66...Crank angle sensor, 70...Cooling water temperature sensor Diagram

Claims (1)

【特許請求の範囲】 排気ガス再循環装置を備えた内燃機関において、内燃機
関の冷却水温度および吸気管圧力を含めた運転条件を検
出する手段、 冷却水温度より排気ガス再循環を行わしめる運転域を判
別する手段、 前記運転域において排気ガス再循環を行わしめる排気ガ
ス再循環作動手段、 吸気管圧力より内燃機関に供給すべき燃料量を算出する
燃料供給量算出手段、 算出された量の燃料を内燃機関に供給せしめる燃料供給
手段、 排気ガス再循環の作動条件において燃料供給量算出手段
が算出する燃料の量を還流排気ガス量に応じて減量補正
する第1の補正量算出手段、排気ガス再循環の作動条件
において燃料供給量算出手段が算出する燃料量を冷却水
温度の上昇に応じて減量するように更に補正する第2の
補正量算出手段、 を具備した内燃機関の空燃比制御装置。
[Claims] In an internal combustion engine equipped with an exhaust gas recirculation device, a means for detecting operating conditions including a cooling water temperature and an intake pipe pressure of the internal combustion engine, an operation in which exhaust gas recirculation is performed based on the cooling water temperature. Exhaust gas recirculation operating means for recirculating exhaust gas in the operating range; Fuel supply amount calculation means for calculating the amount of fuel to be supplied to the internal combustion engine from intake pipe pressure; A fuel supply means for supplying fuel to the internal combustion engine; a first correction amount calculation means for reducing the amount of fuel calculated by the fuel supply amount calculation means under the operating conditions of exhaust gas recirculation according to the amount of recirculated exhaust gas; Air-fuel ratio control for an internal combustion engine, comprising: second correction amount calculation means for further correcting the fuel amount calculated by the fuel supply amount calculation means under gas recirculation operating conditions so as to reduce the amount of fuel calculated by the fuel supply amount calculation means in accordance with a rise in cooling water temperature. Device.
JP1246483A 1989-09-25 1989-09-25 Air-fuel ratio controller of internal combustion engine with exhaust gas recycle device Pending JPH03111651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246483A JPH03111651A (en) 1989-09-25 1989-09-25 Air-fuel ratio controller of internal combustion engine with exhaust gas recycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246483A JPH03111651A (en) 1989-09-25 1989-09-25 Air-fuel ratio controller of internal combustion engine with exhaust gas recycle device

Publications (1)

Publication Number Publication Date
JPH03111651A true JPH03111651A (en) 1991-05-13

Family

ID=17149071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246483A Pending JPH03111651A (en) 1989-09-25 1989-09-25 Air-fuel ratio controller of internal combustion engine with exhaust gas recycle device

Country Status (1)

Country Link
JP (1) JPH03111651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296111A (en) * 1992-04-17 1993-11-09 Mitsubishi Motors Corp Lean-burn internal combustion engine and its control method
KR20190063758A (en) * 2017-11-30 2019-06-10 현대자동차주식회사 Fuel injection control method for vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296111A (en) * 1992-04-17 1993-11-09 Mitsubishi Motors Corp Lean-burn internal combustion engine and its control method
KR20190063758A (en) * 2017-11-30 2019-06-10 현대자동차주식회사 Fuel injection control method for vehicles

Similar Documents

Publication Publication Date Title
US5928303A (en) Diagnostic system for diagnosing deterioration of heated type oxygen sensor for internal combustion engines
US6609059B2 (en) Control system for internal combustion engine
GB2049229A (en) System and method for controlling egr in internal combustion engine
US6564778B2 (en) Fuel supply control system for internal combustion engine
US4300516A (en) System and method for controlling exhaust gas recirculation
US7047123B2 (en) Engine air-fuel ratio control system
JPH03111651A (en) Air-fuel ratio controller of internal combustion engine with exhaust gas recycle device
US11754016B2 (en) Fuel injection control device and fuel injection control method for internal combustion engine
JPH01240741A (en) Fuel supply amount control method for internal combustion engine
JPH03105042A (en) Fuel injection controller of diesel engine
JPS618444A (en) Air-fuel ratio control device
US5022373A (en) Fuel injection control apparatus for internal combustion engine
JP2987675B2 (en) Intake control device for internal combustion engine
JPS5872631A (en) Air-fuel ratio control method of engine
JP2621032B2 (en) Fuel injection control device
JPH1047171A (en) Exhaust gas reflux device for internal combustion engine
JPS60198348A (en) Engine controller
JP4404652B2 (en) EGR control device
JPH0517394Y2 (en)
JPH06323200A (en) Exhaust gas recirculation control device for diesel engine
JPH11153058A (en) Engine control device having idle intake pressure learning function
JPH01232141A (en) Air-fuel ratio control device for engine
JPS63263258A (en) Diagnosis device for exhaust gas recirculation apparatus
JPH0437251Y2 (en)
JP2932141B2 (en) Intake control device for internal combustion engine